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Some background from string theory

An N = (2,2) SCFT gives rise to two topo-

logical CFTs, the A-model and the B-model.

Mathematically, these are A∞-categories of a

certain kind (Costello, Kontsevich).

The moduli space M of SCFTs thus has two

foliations whose leaves correspond to SCFTs

with fixed A- or B-models.

For example, at a point of M corresponding

to the non-linear sigma model on a CY 3-fold

XI,β,ω the two TCFTs are

Db Fuk(Xβ,ω) and Db Coh(XI).

The corresponding leaves are the complex mod-

uli spaceMC(Xβ,ω) and the stringy Kähler mod-

uli space MK(XI).



Question : What do the points of the leaf
L ⊂M corresponding to a fixed TCFT D cor-
respond to in terms of D?

Answer (Douglas) : Points of L determine an
R-graded subcategory

P =
⋃

φ∈R
P(φ) ⊂ D

of BPS branes, together with complex num-
bers (central charges)

Z(E) ∈ R>0 exp(iπφ)

for all E ∈ P(φ).

Example : Take the A-model

D = Db Fuk(Xβ,ω)

above. Then points of MC(Xβ,ω) determine
the subcategory P ⊂ D of special Lagrangians.
The map Z is given by

Z(L) =
∫

L
Ω

where Ω ∈ H3,0(X) is a holomorphic 3-form.



Stability conditions

From now on D denotes a triangulated cate-

gory. At some point we may wish to assume

that D satisfies some extra conditions, to en-

sure that it is a topological twist of a SCFT.

For example we could take D = Db Coh(X) for

X a smooth projective Calabi-Yau.

The aim is to axiomatise the properties of the

subcategories P ⊂ D of BPS branes and the

map Z, and to obtain the corresponding leaf

L ⊂ M as the space of all possible choices of

such data.



Definition 1 A stability condition on D con-
sists of a full additive subcategory P(φ) ⊂ D
for each φ ∈ R, and a group homomorphism
Z : K(D) → C, such that

(a) if E ∈ P(φ) then Z(E) ∈ R>0 exp(iπφ),

(b) P(φ + 1) = P(φ)[1] for all φ ∈ R,

(c) if φ1 > φ2 and Aj ∈ P(φj) then

HomD(A1, A2) = 0,

(d) for each 0 6= E ∈ D there is a finite se-
quence of real numbers

φ1 > φ2 > · · · > φn

and a collection of triangles
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with Aj ∈ P(φj) for all j.



Given a stability condition σ = (Z,P) on D and
an object 0 6= E ∈ D, the filtrations of axiom
(d) are unique up to isomorphism. Thus we
can define

φ+
σ (E) = φ1, φ−σ (E) = φn,

mσ(E) =
n∑

i=1

|Z(Ai)| ∈ R>0.

The expression

sup
0 6=E∈D

{
|φ±σ (E)− φ±τ (E)|, | log

mσ(E)

mτ(E)
|
}

defines a metric d(σ, τ) ∈ [0,∞] on the set of
all stability conditions on D.

Write Stab(D) for the set of “locally-finite”
stability conditions on D with the topology in-
duced by this metric. There is a continuous
map

Z : Stab(D) −→ HomZ(K(D),C)

sending a stability condition σ = (Z,P) to its
central charge Z.



Theorem 1 For each connected component

Σ ⊂ Stab(D) there is a linear subspace

V (Σ) ⊂ HomZ(K(D),C)

with a well-defined linear topology such that

the map Z induces a local homeomorphism

Z : Σ → V (Σ) onto an open subset.

It follows that Stab(D) is a (possibly infinite-

dimensional) complex manifold.

If X is a smooth projective complex variety, set

D = Db Coh(X).

Let Stab(X) be the subset of Stab(D) for which

Z : K(D) → C factors via the Chern character

ch: K(D) −→ H∗(X,Q).

Then Stab(X) is a finite-dimensional complex

manifold.



Example 1 Suppose X is an elliptic curve. Then

Stab(X) = C×H
where H is the upper half-plane. Note that

Aut(D) = Aut(X)× Pic0(X)× SL(2,Z)× Z.

and hence the quotient

Stab(X)/Aut(D)

is a C∗-bundle over the modular curve

H /PSL(2,Z).



From categories to geometry

According to Kontsevich homological mirror

symmetry for a pair (X, X̌) is an equivalence

Db Coh(X) ∼= Db Fuk(X̌).

More traditionally mirror symmetry is supposed

to identify an open subset of the stringy Kähler

moduli space

{β + iω ∈ H2(X,C)/H2(X,Z) : ω À 0 Kähler}
equipped with a VHS coming from Gromov-

Witten invariants, with an open subset of the

complex moduli space MC(X̌) equipped with

the VHS coming from Hodge theory.

To deduce the second statement from the first

we need to know how to get from categories

to spaces.



Barannikov/Kontsevich: Associate to D its mod-

uli space of deformations as an A∞ category.

D −→ DefA∞(D).

This as a formal germ of a manifold, naturally

equipped with a semi-infinite VHS. In the case

D = Db Coh(X) this is an extended version of

MC(X). The semi-infinite VHS allows one to

pick out the submanifold

MC(X) ⊂ DefA∞(D)



Alternatively, one can associate to D its space

of stability conditions

D −→ Stab(D).

This is a global complex manifold. Mirror sym-

metry leads one to expect that it should also

have a semi-infinite VHS, which would allow

one to pick out a submanifold

MK(X) ⊂ Stab(D).

Furthermore, for a mirror pair, (X, X̌) one would

expect the corresponding categories

D = Db Coh(X) and Ď = Db Coh(X̌)

to satisfy

Stab(D) ∼= DefA∞(Ď).



Example 1 : A surface singularity

Consider the family of hypersurfaces

fs(x, y, z) = x2 + y2 +
n∏

i=0

(z − αi) = 0

in C3 parameterized by the points of

S = {(α0, · · · , αn) ∈ Cn+1 :
n∑

i=0

αi = 0}/Symn+1 .

This family of surfaces is the universal unfold-

ing of the An singularity x2 + y2 + zn+1 = 0.

The surface Xs is smooth unless s lies on the

discriminant

∆ = {(α0, · · · , αn) ∈ S : αi not all distinct}.



Each smooth surface Xs has a natural Kähler

form restricted from C3 and a non-vanishing

holomorphic two-form Ωs obtained by taking

the Poincaré residue of the form

dx ∧ dy ∧ dz

fs(x, y, z)
.

Take D to be the subcategory

D ⊂ Db Fuk(Xs)

generated by the vanishing cycles. This is in-

dependent of s ∈ S \ ∆ since all the smooth

surfaces Xs are isomorphic as symplectic man-

ifolds.

Theorem 2 (R.P. Thomas) There is a con-

nected component of Stab(D) which is isomor-

phic to the universal cover of S \∆.



The tangent space to Stab(D) at a given point

σ = (Z,P) is just

V = HomZ(K(D),C).

The Euler form on K(D) induces a form (−,−)

on V . This is given by

(θ1, θ2) =
∑

L∈K(D)

θ1(L)θ2(L)

Here the sum is taken over the classes L ∈
K(D) such that χ(L, L) = 2, i.e. those which

are represented by spheres.

We can also define triple-point functions on V

by

(θ1, θ2, θ3) =
∑

L∈K(D)

θ1(L)θ2(L)θ3(L)

Z(L)

and hence a product V ⊗ V → V satisfying

(θ1 ◦ θ2, θ3) = (θ1, θ2, θ3) = (θ1, θ2 ◦ θ3).



This makes V into a Frobenius algebra with

identity Z. The resulting structure on Stab(D)

is not quite a Frobenius manifold (the identity

is not flat). It is the “almost-dual” Frobe-

nius manifold (in the sense of Dubrovin) to

the Frobenius structure on the unfolding space

written down by Kyoji Saito.

Saito’s construction works for any isolated hy-

persurface singularity. Does the above picture

generalise? Of course, for non-simple singu-

larities there will be infinitely many roots, so

convergence becomes a problem.



Example 2 : A non-compact CY threefold

Let X = OP2(−3) be the total space of the
canonical bundle of P2.

The McKay correspondence shows that

Db Coh(X) ∼= Db CohZ3
(C3)

where Z3 acts on C3 with weights (1,1,1).

The abelian category CohZ3
(C3) is equivalent

to the category of representations of a quiver
with relations of the form

• 3 //•
3££¥¥
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¥¥

¥

•3

\\:::::::

Let D ⊂ Db Coh(X) be the full subcategory of
objects supported on the zero-section P2 ⊂ X.
Under the above equivalence these objects cor-
respond to equivariant sheaves supported at
the origin and hence to nilpotent representa-
tions of the quiver.



Theorem 3 There is a connected open sub-

set Stab0(X) ⊂ Stab(X) which as a set is a

disjoint union of regions

Stab0(X) =
⊔

g∈G

D(g),

where G is the affine braid group with presen-

tation

G =
〈
τ0, τ1, τ2 | τiτjτi = τjτiτj for all i, j

〉
.

The stability conditions in a given region D(g)

all have the same heart A(g) ⊂ D.

Each region D(g) is mapped isomorphically by

Z onto a locally-closed subset of

HomZ(K(D),C) ∼= C3,

and the closures of two regions D(g1) and D(g2)

intersect in Stab0(X) precisely if g1g−1
2 = τ±1

i

for some i ∈ {0,1,2}.



The abelian subcategories A(g) ⊂ D are all dis-

tinct, and each is equivalent to a category of

nilpotent representations of a quiver with rela-

tions of the form

• a //•
b££¥¥

¥¥
¥¥

¥

•c

\\:::::::

with a2 + b2 + c2 = abc.

For each g ∈ G let S0(g), S1(g), S2(g) be the

three simple objects of A(g). These are spher-

ical objects. The associated Seidel-Thomas

twist functors induce pseudo-reflections

φS0(g)
, φS1(g)

, φS2(g)
∈ AutK(D),

which with respect to the fixed basis of K(D)

defined by the classes of the objects Si = Si(e)

are given by a triple of matrices

M0(g), M1(g), M2(g) ∈ SL(3,Z).



The same system of matrices come up in the

study of the quantum cohomology of P2.

Dubrovin showed how the quantum cohomol-

ogy of P2 can be analytically continued to a

semisimple Frobenius structure on a dense open

subset M of the universal cover of

{(u0, u1, u2) ∈ C : i 6= j =⇒ ui 6= uj}.

The Frobenius structure defines a flat connec-

tion ∇ (the second structure connection) on

p∗TM where

W = {(m, z) ∈ M × C : z 6= ui(m)}
and p : W → M is the projection.

At each point m ∈ M the restriction ∇m is

a meromorphic connection on a rank 3 trivial

bundle on P1 with simple poles at ui(m) and

at ∞. These connections vary isomonodromi-

cally.



Fix a point m ∈ M such that ui(m) are the

three cube roots of unity. Choose also a basis

of flat sections of ∇m near 0 ∈ P1.

Note that G is a subgroup of the fundamental

group of

{(u0, u2, u2) ∈ C∗ : i 6= j =⇒ ui 6= uj}/Sym3 .

So for each g ∈ G we get a point g(m) ∈ M

such that the ui(g(m)) are the cube roots of

unity, and a basis of flat sections of ∇g(m) near

0 ∈ P1.

Taking monodromy about loops encircling the

roots of unity gives the same matrices

M0(g), M1(g), M2(g) ∈ SL(3,Z).


