
Branes in the Poisson sigma model and

deformation quantization

Giovanni Felder, ETH Zurich

joint work with Alberto S. Cattaneo

Durham, July 2005

1



Table of contents

1. Deformation quantisation, Konsevich formula

2. Poisson sigma model

3. One D-brane: coisotropic submanifolds and hamiltonian re-

duction

4. Relative formality theorem

5. Several D-branes: bimodules

math.QA/0309180

math.QA/0501540

2



Deformation quantisation-1

Let A be a commutative algebra with 1 over k = R or C. A formal

associative deformation of the product in A is an associative

k[[ε]]-bilinear product ? on A[[ε]] with unit 1 ∈ A and which

reduces to the product · in A modulo ε.

Such a product is uniquely determined by bilinear maps Pi : A×
A→ A appearing in the product of f, g ∈ A:

f ? g = f · g + εP1(f, g) + ε2P2(f, g) + · · · , (ε = i~)

Equivalence relation: ? ' ?

0

if D(f ? g) = D(f) ?

0

D(g),

D(f) = f + �D

1

(f) + �

2

D

2

(f) + � � �
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Let A be a commutative algebra with 1 over k = R or C. A formal

associative deformation of the product in A is an associative

k[[ε]]-bilinear product ? on A[[ε]] with unit 1 ∈ A and which

reduces to the product · in A modulo ε.

Such a product is uniquely determined by bilinear maps Pi : A×
A→ A appearing in the product of f, g ∈ A:

f ? g = f · g + εP1(f, g) + ε2P2(f, g) + · · · , (ε = i~)

Equivalence relation: ? ' ?′ if D(f ? g) = D(f) ?′D(g),

D(f) = f + εD1(f) + ε2D2(f) + · · ·
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Deformation quantisation-2

Basic fact: If ? is an associative deformation of the product then

A with {f, g} = 1
ε(f ? g − g ? f)mod ε is a Poisson algebra:

{ , } is a Lie bracket on A obeying {f · g, h} = f{g, h}+ {f, h}g.

General problem: classify all deformations ? up to equivalence.

Special case of deformation quantisation (star-products): A =

C

1

(M). Require P

j

, D

j

to be di�erential operators in each

argument.

In this case, Poisson brackets are given by bivector �elds � =

�

ij

@

i

^ @

j

2 �(M;^

2

TM): ff; gg = �

ij

@

i

f@

j

g, obeying [�; �] = 0
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Deformation quantisation-2

Basic fact: If ? is an associative deformation of the product then

A with {f, g} = 1
ε(f ? g − g ? f)mod ε is a Poisson algebra:

{ , } is a Lie bracket on A obeying {f · g, h} = f{g, h}+ {f, h}g.

General problem: classify all deformations ? up to equivalence.

Special case of deformation quantisation (star-products): A =

C∞(M). Require Pj, Dj to be differential operators in each

argument.

In this case, Poisson brackets are given by bivector fields π =

πij∂i ∧ ∂j ∈ Γ(M,∧2TM): {f, g} = πij∂if∂jg, obeying [π, π] = 0
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Deformation quantisation-3

Theorem (Kontsevich) There is a bijection

{π ∈ Γ(M,∧2TM)[[ε]] Poisson}/D → {Star-products on M}/ '

where D = exp(εΓ(M, TM)[[ε]]) is the group of formal diffeomor-
phisms.

Explicit formula for M = Rd

,

1

2

ff; gg = �

ij

@

i

f@

j

g

f ? g = fg+ ��

ij

@

i

f@

j

g+

�

2

3

�

il

@

l

�

jk

@

i

@

j

f@

k

g+ � � �

Corresponding graphs :

�

. &

f g

� �! �

# . #

f g
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Deformation quantisation-3

Theorem (Kontsevich) There is a bijection

{π ∈ Γ(M,∧2TM)[[ε]] Poisson}/D → {Star-products on M}/ '

where D = exp(εΓ(M, TM)[[ε]]) is the group of formal diffeomor-
phisms.

Explicit formula for M = Rd, 1
2{f, g} = πij∂if∂jg

f ? g = fg + επij∂if∂jg +
ε2

3
πil∂lπ

jk∂i∂jf∂kg + · · ·

Corresponding graphs :

�

. &

f g

� �! �

# . #

f g
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Deformation quantisation-3

Theorem (Kontsevich) There is a bijection

{π ∈ Γ(M,∧2TM)[[ε]] Poisson}/D → {Star-products on M}/ '

where D = exp(εΓ(M, TM)[[ε]]) is the group of formal diffeomor-
phisms.

Explicit formula for M = Rd, 1
2{f, g} = πij∂if∂jg

f ? g = fg + επij∂if∂jg +
ε2

3
πil∂lπ

jk∂i∂jf∂kg + · · ·

Corresponding graphs :
π

↙ ↘
f g

π −→ π
↓ ↙ ↓
f g
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Deformation quantisation-4

Gn,2 the set of graphs with vertices 1, . . . , n of the first kind (two

outgoing edges) and 1̄, 2̄ of the second kind (no outgoing edges).

f ? g = fg +
∞∑

n=1

εn

n!

∑
Γ∈Gn,2

wΓPΓ(f, g)

To each � 2 G

n;2

there corresponds a bidi�erential operator P

�

as above and a weight

w

�

=

1

(2�)

2n

Z

H

n

+

Y

(i;j)2E

�

d�(z

i

; z

j

); �(z; w) =

1

2i

ln

(z � w)(z � �w)

(�z � w)(�z � �w)

The integration is over points z

1

; : : : ; z

n

2 H

+

= fIm z > 0g

corresponding to vertices i of the �rst kind, with z

�

1

= 0, z

�

2

= 1

for vertices of the second kind.
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Deformation quantisation-4

Gn,2 the set of graphs with vertices 1, . . . , n of the first kind (two

outgoing edges) and 1̄, 2̄ of the second kind (no outgoing edges).

f ? g = fg +
∞∑

n=1

εn

n!

∑
Γ∈Gn,2

wΓPΓ(f, g)

To each Γ ∈ Gn,2 there corresponds a bidifferential operator PΓ

as above and a weight

wΓ =
1

(2π)2n

∫
Hn

+

∏
(i,j)∈EΓ

dφ(zi, zj), φ(z, w) =
1

2i
ln

(z − w)(z − w̄)

(z̄ − w)(z̄ − w̄)

The integration is over points z1, . . . , zn ∈ H+ = {Im z > 0}
corresponding to vertices i of the first kind, with z1̄ = 0, z2̄ = 1

for vertices of the second kind.
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Poisson sigma model-1

x

X(q)
X(p)

D

M

r

p q

Path integral formula for a star-product on a Poisson manifold
(M, π)

f ? g(x) =
∫
X(r)=x

e
i
~S(X̂)f(X(p))g(X(q))dX̂

The integration is over bundle maps X̂ = (X, η): TD → T ∗M
with base map X : D →M and fiber map η ∈ Ω1(D, X∗T ∗M).

S(X; �) =

R

D

hdX; �i+

1

2

h�; � 
 �i

Gauge symmetry: �X = �

]

�, � 2 


0

(D;X

�

TM)

Boundary conditions: �j

T@D

= 0; �j

@D

= 0.

Gauge invariant observables: f(Xj

@D

).
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Poisson sigma model-1

x

X(q)
X(p)

D

M

r

p q

Path integral formula for a star-product on a Poisson manifold
(M, π)

f ? g(x) =
∫
X(r)=x

e
i
~S(X̂)f(X(p))g(X(q))dX̂

The integration is over bundle maps X̂ = (X, η): TD → T ∗M
with base map X : D →M and fiber map η ∈ Ω1(D, X∗T ∗M).

S(X, η) =
∫
D〈dX, η〉+ 1

2〈π, η ⊗ η〉

Gauge symmetry: δX = π]β, β ∈ Ω0(D, X∗TM)

Boundary conditions: �j

T@D

= 0; �j

@D

= 0.

Gauge invariant observables: f(Xj

@D

).
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Poisson sigma model-1

x

X(q)
X(p)

D

M

r

p q

Path integral formula for a star-product on a Poisson manifold
(M, π)

f ? g(x) =
∫
X(r)=x

e
i
~S(X̂)f(X(p))g(X(q))dX̂

The integration is over bundle maps X̂ = (X, η): TD → T ∗M
with base map X : D →M and fiber map η ∈ Ω1(D, X∗T ∗M).

S(X, η) =
∫
D〈dX, η〉+ 1

2〈π, η ⊗ η〉

Gauge symmetry: δX = π]β, β ∈ Ω0(D, X∗TM)

Boundary conditions: η|T∂D = 0, β|∂D = 0.

Gauge invariant observables: f(X|∂D).
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Poisson sigma model-2

The Kontsevich formula arises as the Feynman perturbation se-

ries around the classical solution X(u) = x, η(u) = 0.

If we set X

i

(u) = x

i

+ �

i

(u), the relavant propagator is

h�

i

(z)�

j

(w)i = �

j

i

G(z; w); G(z; w) =

1

2�

d

z

�(z; w):

It is (up to sign) the Green function of the de Rham di�erential

on the upper half plane with boundary condition �

@=@x

G(x;w) =

0; x 2 R:

d

z

G(z; z

0

) = ��

z

0

(z)

The other component d

w

�(z; w) appearing in Kontsevich's for-

mula comes from ghosts after BV gauge �xing.
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Poisson sigma model-2

The Kontsevich formula arises as the Feynman perturbation se-

ries around the classical solution X(u) = x, η(u) = 0.

If we set Xi(u) = xi + ξi(u), the relavant propagator is

〈ηi(z)ξ
j(w)〉 = δ

j
i G(z, w), G(z, w) =

1

2π
dzφ(z, w).

It is (up to sign) the Green function of the de Rham differential

on the upper half plane with boundary condition ι∂/∂xG(x, w) =

0, x ∈ R:

dzG(z, z0) = −δz0(z)

The other component d

w

�(z; w) appearing in Kontsevich's for-

mula comes from ghosts after BV gauge �xing.
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Poisson sigma model-2

The Kontsevich formula arises as the Feynman perturbation se-

ries around the classical solution X(u) = x, η(u) = 0.

If we set Xi(u) = xi + ξi(u), the relavant propagator is

〈ηi(z)ξ
j(w)〉 = δ

j
i G(z, w), G(z, w) =

1

2π
dzφ(z, w).

It is (up to sign) the Green function of the de Rham differential

on the upper half plane with boundary condition ι∂/∂xG(x, w) =

0, x ∈ R:

dzG(z, z0) = −δz0(z)

The other component dwφ(z, w) appearing in Kontsevich’s for-

mula comes from ghosts after BV gauge fixing.
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Questions:

More general boundary conditions (D-branes) for the Poisson

sigma model?

Admissible Dirichlet boundary conditions are on coisotropic sub-

manifolds

Quantisation of algebras of functions on singular manifolds?

Examples are given by Hamiltonian reduction

Modules of the algebra with star-product?

They are associated to coisotropic submanifolds
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Quantisation of algebras of functions on singular manifolds?

Examples are given by Hamiltonian reduction
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Coisotropic submanifolds-1

Let (M, π) be a Poisson manifold, C ⊂M a submanifold, IC the
ideal in C∞(M) of functions vanishing on C.

C is called coisotropic if IC is a Poisson subalgebra.

Hamiltonian vector �elds fh; �g, h 2 I

C

are then tangent to C and

form an integrable distribution. The corresponding foliation is

called the characteristic foliation of C. The space of leaves is

the reduced phase space C. If it is smooth it inherits a Poisson

structure.
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Coisotropic submanifolds-1

Let (M, π) be a Poisson manifold, C ⊂M a submanifold, IC the
ideal in C∞(M) of functions vanishing on C.

C is called coisotropic if IC is a Poisson subalgebra.

Hamiltonian vector fields {h, ·}, h ∈ IC are then tangent to C and
form an integrable distribution. The corresponding foliation is
called the characteristic foliation of C. The space of leaves is
the reduced phase space C. If it is smooth it inherits a Poisson
structure.
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Coisotropic submanifolds-2

Even if C is not smooth, the ‘algebra of smooth funtions’ C∞(C)
on it is defined:

C∞(C) = N(IC)/IC, N(IC) = {f ∈ C∞(M) | {f, IC} ⊂ IC}.

It is a Poisson algebra.

Dirac's terminology: suppose C is de�ned by equations h

i

(x) =

0, i = 1; : : : ; r. Then I

C

is generated by the constraints h

i

and C

is coisotropic if h

i

are �rst class constraints, namely

fh

i

; h

j

g(x) =

r

X

k=1

�

k

ij

(x)h

k

(x);

for some functions �

k

ij

on M . The foliation is spanned by the

hamiltonian ows of the constraints h

i

.
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Coisotropic submanifolds-2

Even if C is not smooth, the ‘algebra of smooth funtions’ C∞(C)
on it is defined:

C∞(C) = N(IC)/IC, N(IC) = {f ∈ C∞(M) | {f, IC} ⊂ IC}.

It is a Poisson algebra.

Dirac’s terminology: suppose C is defined by equations hi(x) =
0, i = 1, . . . , r. Then IC is generated by the constraints hi and C

is coisotropic if hi are first class constraints, namely

{hi, hj}(x) =
r∑

k=1

λk
ij(x)hk(x),

for some functions λk
ij on M . The foliation is spanned by the

hamiltonian flows of the constraints hi.
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Coisotropic submanifolds-3

Examples of coisotropic submanifolds

1. Lagrangian submanifolds of symplectic manifolds are coisotropic.

2. Graphs of Poisson maps (M;�)! (M

0

; �

0

) are coisotropic (in

(M �M

0

; (��)� �

0

)).

3. If g is a Lie algebra, g� is a Poisson manifold (such that

the bracket of linear functions is the Lie bracket). If h � g is a

Lie subalgebra then C = h? is coisotropic and C

1

polynomial

(C) =

S(g=h)h.

4. If � : M ! g� is an equivariant moment map, then C = �

�1

(0)

is coisotropic and C = �

�1

(0)=G =M==G is the symplectic quo-

tient.
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Examples of coisotropic submanifolds
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Coisotropic submanifolds-3

Examples of coisotropic submanifolds

1. Lagrangian submanifolds of symplectic manifolds are coisotropic.

2. Graphs of Poisson maps (M, π)→ (M ′, π′) are coisotropic (in
(M ×M ′, (−π)⊕ π′)).

3. If g is a Lie algebra, g∗ is a Poisson manifold (such that
the bracket of linear functions is the Lie bracket). If h ⊂ g is a
Lie subalgebra then C = h⊥ is coisotropic and C∞polynomial(C) =

S(g/h)h.

4. If µ : M → g∗ is an equivariant moment map, then C = µ−1(0)
is coisotropic and C = µ−1(0)/G = M//G is the symplectic quo-
tient.
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Coisotropic submanifolds-4

5. C = M is a coisotropic submanifold of itself. The character-

istic foliation is trivial (every point is a leaf) and thus C = C.

6. A one-point set C = fx

0

g is coisotropic i� the Poisson bivector

�eld vanishes there. Again C = C in this case.

7. All submanifolds of codimension 1 are coisotropic. For exam-

ple, constant energy hypersurfaces of a hamiltonian system are

coisotropic and the foliation is given by the trajectories.
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The algebra of cochains of N∗C

There is a differential graded commutative algebra A = A(C, π)

canonically associated with a coisotropic submanifold C, whose

cohomology in degree 0 is C∞(C). It is the Lie algebroid cochain

complex of the conormal bundle N∗C.

As an algebra A = �(C;^NC) is the algebra of sections of the

exterior algebra of the normal bundle NC = T

C

M=TC. It comes

with a di�erential

C

1

(C)

�

�! �(C;NC)

�

�! �(C;^

2

NC)

�

�! � � �

such that for f 2 C

1

(C),

�f = �

]

d

~

f;

~

f 2 C

1

(M);

~

f j

C

= f
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The algebra of cochains of N∗C

There is a differential graded commutative algebra A = A(C, π)

canonically associated with a coisotropic submanifold C, whose

cohomology in degree 0 is C∞(C). It is the Lie algebroid cochain

complex of the conormal bundle N∗C.

As an algebra A = Γ(C,∧NC) is the algebra of sections of the

exterior algebra of the normal bundle NC = TCM/TC. It comes

with a differential

C∞(C)
δ−→ Γ(C, NC)

δ−→ Γ(C,∧2NC)
δ−→ · · ·

such that for f ∈ C∞(C),

δf = π]df̃ , f̃ ∈ C∞(M), f̃ |C = f

14-a



Lie algebroid cohomology algebra

The cohomology of the differential graded algebra (A = Γ(C,∧NC), δ)

is a graded commutative algebra

H ·(N∗C) = Ker(δ)/Im(δ).

Special cases:

H

0

(N

�

C) = C

1

(C)

H

1

(N

�

C) =in�nitesimal deformations of the coisotropic embed-

ding of C modulo Hamiltonian deformations.
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Lie algebroid cohomology algebra

The cohomology of the differential graded algebra (A = Γ(C,∧NC), δ)

is a graded commutative algebra

H ·(N∗C) = Ker(δ)/Im(δ).

Special cases:

H0(N∗C) = C∞(C)

H1(N∗C) =infinitesimal deformations of the coisotropic embed-

ding of C modulo Hamiltonian deformations.
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P∞-brackets

The Poisson bracket on M induces a Poisson bracket on H0(N∗C) =

C∞(C). However this bracket does not come from a Poisson

bracket on the algebra of cochains A = Γ(C,∧NC).

Rather one has a `homotopy Poisson algebra' or P

1

-algebra,

namely a sequence of higher brackets �

n

: ^

n

A ! A of degree

2 � n, which are derivations in each argument and obey the

generalized Jacobi identity

X

p+q=n

(�1)

pq

p!q!

�

p+1

(�

q

(a

1

; : : : ; a

q

); a

q+1

; : : : ; a

n

)�permutations = 0:
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P∞-brackets

The Poisson bracket on M induces a Poisson bracket on H0(N∗C) =

C∞(C). However this bracket does not come from a Poisson

bracket on the algebra of cochains A = Γ(C,∧NC).

Rather one has a ‘homotopy Poisson algebra’ or P∞-algebra,

namely a sequence of higher brackets λn : ∧nA → A of degree

2 − n, which are derivations in each argument and obey the

generalized Jacobi identity∑
p+q=n

(−1)pq

p!q!
λp+1(λq(a1, . . . , aq), aq+1, . . . , an)±permutations = 0.
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P∞-brackets-2

Here is how these brackets arise: around a point of C choose

coordinates x

i

; i = 1; : : : ; k on C and transversal coordinates x

�

.

De�ne naively a skew-symmetric bracket on C

1

(C) by

ff; gg =

k

X

i;j=1

�

ij

@

i

f@

j

g

This bracket obeys the Leibniz rule but the Jacobi identity holds

only up to homotopy

fff; gg; hg+ f�f; g; hg+ cycl = 0:

for functions f; g; h on C with

f�; g; hg = @

�

�

ij

�

�

@

i

g@

j

h; � = �

�

@

�

2 �(C;^

1

TC):

In general, higher brackets depend on the choice of embedding

of NC into a tubular neighbourhood of C.
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P∞-brackets-2

Here is how these brackets arise: around a point of C choose
coordinates xi, i = 1, . . . , k on C and transversal coordinates xµ.
Define naively a skew-symmetric bracket on C∞(C) by

{f, g} =
k∑

i,j=1

πij∂if∂jg

This bracket obeys the Leibniz rule but the Jacobi identity holds

only up to homotopy
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for functions f; g; h on C with
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�

�

ij

�

�

@

i

g@

j

h; � = �

�

@

�

2 �(C;^

1

TC):

In general, higher brackets depend on the choice of embedding

of NC into a tubular neighbourhood of C.
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P∞-brackets-2

Here is how these brackets arise: around a point of C choose
coordinates xi, i = 1, . . . , k on C and transversal coordinates xµ.
Define naively a skew-symmetric bracket on C∞(C) by

{f, g} =
k∑

i,j=1

πij∂if∂jg

This bracket obeys the Leibniz rule but the Jacobi identity
holds only up to homotopy

{{f, g}, h}+ {δf, g, h}+ cycl = 0.

for functions f, g, h on C with

{ξ, g, h} = ∂µπijξµ∂ig∂jh, ξ = ξµ∂µ ∈ Γ(C,∧1TC).

In general, higher brackets depend on the choice of embedding
of NC into a tubular neighbourhood of C.
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Quantisation programme

Cochain complex Cohomology

Semiclassical
(A; (�

n

)

n�1

),

a P

1

-algebra, �

1

= �

H

0

(A; �) = C

1

(C), a

Poisson algebra

Quantum

(A[[�]]; (�

n

)

n�1

),

an A

1

-algebra with

�

1

=� = �(�) = �+O(�)

H

0

(A[[�]]; �(�)) an as-

sociative algebra
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Quantisation programme

Cochain complex Cohomology

Semiclassical
(A; (�

n

)

n�1

),

a P

1

-algebra, �

1

= �

H0(A, δ) = C∞(C), a

Poisson algebra

Quantum

(A[[�]]; (�

n

)

n�1

),

an A

1

-algebra with

�

1

=� = �(�) = �+O(�)

H

0

(A[[�]]; �(�)) an as-

sociative algebra
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Quantisation programme

Cochain complex Cohomology

Semiclassical
(A, (λn)n≥1),

a P∞-algebra, λ1 = δ

H0(A, δ) = C∞(C), a

Poisson algebra

Quantum

(A[[�]]; (�

n

)

n�1

),

an A

1

-algebra with

�

1

=� = �(�) = �+O(�)

H

0

(A[[�]]; �(�)) an as-

sociative algebra
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Quantisation programme

Cochain complex Cohomology

Semiclassical
(A, (λn)n≥1),

a P∞-algebra, λ1 = δ

H0(A, δ) = C∞(C), a

Poisson algebra

Quantum

(A[[ε]], (µn)n≥1),

an A∞-algebra with

µ1/ε = δ(ε) = δ + O(ε)

H0(A[[ε]], δ(ε)) an as-

sociative algebra
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Quantisation-1

Theorem Let C ⊂ M be coisotropic. The P∞-algebra A =
Γ(C,∧NC) can be quantised as an A∞-algebra. Thus there are
products µn : A⊗n → A[[ε]] of degree 2 − n, n = 0,1,2, . . . such
that ∑

±µk(id
⊗` ⊗ µn−k ⊗ id⊗`′) = 0.

Moreover, µn is of degree 2 − n, µ0 = O(ε2), µ1 = εδ + O(ε2),
µ2 = product in A + O(ε), µj = O(ε), j ≥ 3.

Here �

0

is an `anomaly' (i.e., a nuisance). The coisotropy con-

dition implies that �

0

= 0 at the classical (� = 0) level, but

quantum corrections could arise.

It is an open problem to �nd an example where the anomaly

cannot be removed
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Quantisation-1

Theorem Let C ⊂ M be coisotropic. The P∞-algebra A =
Γ(C,∧NC) can be quantised as an A∞-algebra. Thus there are
products µn : A⊗n → A[[ε]] of degree 2 − n, n = 0,1,2, . . . such
that ∑

±µk(id
⊗` ⊗ µn−k ⊗ id⊗`′) = 0.

Moreover, µn is of degree 2 − n, µ0 = O(ε2), µ1 = εδ + O(ε2),
µ2 = product in A + O(ε), µj = O(ε), j ≥ 3.

Here µ0 is an ‘anomaly’ (i.e., a nuisance). The coisotropy con-
dition implies that µ0 = 0 at the classical (ε = 0) level, but
quantum corrections could arise.

It is an open problem to find an example where the anomaly
cannot be removed
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Quantisation-2

If µ0 = 0 then the first few equations are (a, b, c ∈ A = Γ(C,∧NC)).

µ1 ◦ µ1(a) = 0,

�

1

� �

2

(a; b) = �

2

(�

1

(a); b) + (�1)

jaj

�

2

(a; �

1

(b)),

�

2

(�

2

(a; b); c) � �

2

(a; �

2

(b; c)) = �

1

� �

3

(a; b; c) + �

3

(�

1

(a); b; c) +

(�1)

jaj

�

3

(a; �

1

(b); c) + (�1)

jaj+jbj

�

3

(a; b; �

1

(c))

Thus �

1

=� is a di�erential deforming �, �

2

is a chain map A
A!

A and is associative up to the homotopy �

3

, so it induces an

associative product on the cohomology of (A[[�]]; �

1

=�).
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Quantisation-2

If µ0 = 0 then the first few equations are (a, b, c ∈ A = Γ(C,∧NC)).

µ1 ◦ µ1(a) = 0,

µ1 ◦ µ2(a, b) = µ2(µ1(a), b) + (−1)|a|µ2(a, µ1(b)),

�

2

(�

2

(a; b); c) � �

2

(a; �

2

(b; c)) = �

1

� �

3

(a; b; c) + �

3

(�

1

(a); b; c) +

(�1)

jaj

�

3

(a; �

1

(b); c) + (�1)

jaj+jbj

�

3

(a; b; �

1

(c))

Thus �

1

=� is a di�erential deforming �, �

2

is a chain map A
A!

A and is associative up to the homotopy �

3

, so it induces an

associative product on the cohomology of (A[[�]]; �

1

=�).

20-a



Quantisation-2

If µ0 = 0 then the first few equations are (a, b, c ∈ A = Γ(C,∧NC)).

µ1 ◦ µ1(a) = 0,

µ1 ◦ µ2(a, b) = µ2(µ1(a), b) + (−1)|a|µ2(a, µ1(b)),

µ2(µ2(a, b), c) − µ2(a, µ2(b, c)) = µ1 ◦ µ3(a, b, c) + µ3(µ1(a), b, c) +

(−1)|a|µ3(a, µ1(b), c) + (−1)|a|+|b|µ3(a, b, µ1(c))

Thus �

1

=� is a di�erential deforming �, �

2

is a chain map A
A!

A and is associative up to the homotopy �

3

, so it induces an

associative product on the cohomology of (A[[�]]; �

1

=�).
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Quantisation-2

If µ0 = 0 then the first few equations are (a, b, c ∈ A = Γ(C,∧NC)).

µ1 ◦ µ1(a) = 0,

µ1 ◦ µ2(a, b) = µ2(µ1(a), b) + (−1)|a|µ2(a, µ1(b)),

µ2(µ2(a, b), c) − µ2(a, µ2(b, c)) = µ1 ◦ µ3(a, b, c) + µ3(µ1(a), b, c) +

(−1)|a|µ3(a, µ1(b), c) + (−1)|a|+|b|µ3(a, b, µ1(c))

Thus µ1/ε is a differential deforming δ, µ2 is a chain map A⊗A→
A and is associative up to the homotopy µ3, so it induces an

associative product on the cohomology of (A[[ε]], µ1/ε).
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Quantisation-3

Further properties:

If H2(N∗C) = 0 the anomaly µ0 can be removed recursively by

a ‘shift’. Geometrically this means that the anomaly disappears

if we deform appropriately the coisotropic submanifold in M .

Even if H

2

(N

�

C) 6= 0 it is possible that �

0

= 0. For example

�

0

= 0 for h? � g� for any Lie subalgebra h � g of a �nite

dimensional Lie algebra.

If �

0

= 0, then H

0

(A[[�]]; �(�)) is an associative algebra with

product induced by �

2

. It is a at deformation of C

1

(C) if

H

1

�

(N

�

C) = 0.

21



Quantisation-3

Further properties:

If H2(N∗C) = 0 the anomaly µ0 can be removed recursively by

a ‘shift’. Geometrically this means that the anomaly disappears

if we deform appropriately the coisotropic submanifold in M .

Even if H2(N∗C) 6= 0 it is possible that µ0 = 0. For example

µ0 = 0 for h⊥ ⊂ g∗ for any Lie subalgebra h ⊂ g of a finite

dimensional Lie algebra.

If �

0

= 0, then H

0

(A[[�]]; �(�)) is an associative algebra with

product induced by �

2

. It is a at deformation of C

1

(C) if

H

1

�

(N

�

C) = 0.
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Quantisation-3

Further properties:

If H2(N∗C) = 0 the anomaly µ0 can be removed recursively by

a ‘shift’. Geometrically this means that the anomaly disappears

if we deform appropriately the coisotropic submanifold in M .

Even if H2(N∗C) 6= 0 it is possible that µ0 = 0. For example

µ0 = 0 for h⊥ ⊂ g∗ for any Lie subalgebra h ⊂ g of a finite

dimensional Lie algebra.

If µ0 = 0, then H0(A[[ε]], δ(ε)) is an associative algebra with

product induced by µ2. It is a flat deformation of C∞(C) if

H1
π(N∗C) = 0.
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Poisson sigma model description of the quantisation

Local description: Let x1, . . . , xd be local coordinates around a

point of the k-dimensional submanifold C, such that C is given

by the equations

xµ = 0, µ = k + 1, . . . , d.

Dirichlet boundary condi-

tions (1 ≤ i ≤ k, k < µ ≤ d)

Xµ|∂D = 0, ηi|T∂D =

βi|∂D = 0.

The original boundary con-

ditions correspond to C =

M , a ‘space-filling brane’.
X(q)

x

X(p)x

x j

i C

xµ

M

22



Observables

Local observables are associated with sections of ∧NC

a = aµ1...µn(x)
∂

∂xµ1
∧ · · · ∧

∂

∂xµn
∈ Γ(C,∧nNC).

Oa(u) = aµ1...µn(X(u))βµ1(u) · · ·βµn(u) + · · · , u ∈ ∂D.

A∞-products are expectation values of products of such observ-
ables

µm(a1, . . . , am) =
∫
0<u2<···<um−1<1

〈Oa1(0)Oa2(u2) · · ·Oam(1)〉,

in a Feynman expansion around Xi(u) = xi, βµ(u) = ∂/∂xµ.

To give a mathematical proof of the theorem one defines the A∞-
products by the Feynman expansion and checks the associativity
graph by graph.
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Feynman rules

The terms of the products µm are labeled by graphs with two
types of edges

z - w dφ(z, w) ∂
∂xi z w dφ(w, z) ∂

∂xµ

Vertices of the first kind have two outgoing edges and correspond
to transversal/parallel components of the Poisson bivector field.

��

����

���
�

����

	


Example: A graph contributing to

�

2

(a; b) with a 2 C

1

(C), b =

b

�

@

�

2 �(C;^

1

NC) correspond-

ing to the bidi�erential operator

@

p

�

i�

@

q

�

jk

@

�

�

pq

@

i

@

j

a@

k

b

�

.
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Feynman rules

The terms of the products µm are labeled by graphs with two
types of edges

z - w dφ(z, w) ∂
∂xi z w dφ(w, z) ∂

∂xµ

Vertices of the first kind have two outgoing edges and correspond
to transversal/parallel components of the Poisson bivector field.

��

����

���
�

����

	


Example: A graph contributing to

µ2(a, b) with a ∈ C∞(C), b =

bµ∂µ ∈ Γ(C,∧1NC) correspond-

ing to the bidifferential operator

∂pπiµ∂qπjk∂νπpq∂i∂ja∂kbν.
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Kontsevich’s formality theorem-1

Two differential graded Lie algebras:

Multivector fields

T (M) = ⊕i≥−1Γ(M,∧i+1TM),

with Nijenhuis–Schouten bracket (= Lie bracket on vector fields,

extended by the Leibniz rule) and zero differential.

Multidifferential operators:

D(M) = ⊕i≥−1Homdiff(A⊗i+1, A), A = C∞(M).

with Gerstenhaber bracket and Hochschild differential.
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Kontsevich’s formality theorem-2

It is an old result (HKR) that the cohomology of D(M) is isomor-

phic as a graded Lie algebra to T (M) but the HKR isomorphism

is not induced by an isomorphism at the level of dgla’s.

Theorem (Kontsevich)

There is an L

1

-quasiisomorphism U : T (M) D(M) whose �rst

order component U

1

is the HKR quasiisomorphism.

Thus U is given by a sequence of `Taylor components' U

n

:

^

n

T (M) ! D(M)[1 � n] obeying a sequence of quadratic rela-

tions.
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Kontsevich’s formality theorem-2

It is an old result (HKR) that the cohomology of D(M) is isomor-

phic as a graded Lie algebra to T (M) but the HKR isomorphism

is not induced by an isomorphism at the level of dgla’s.

Theorem (Kontsevich)

There is an L∞-quasiisomorphism U : T (M) D(M) whose first

order component U1 is the HKR quasiisomorphism.

Thus U is given by a sequence of ‘Taylor components’ Un :

∧nT (M) → D(M)[1 − n] obeying a sequence of quadratic rela-

tions.
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Maurer Cartan equations

Let g be a differential graded Lie algebra. The equation

da +
1

2
[a, a] = 0

for a ∈ g1 is called the Maurer–Cartan equation. If g0 is nilpotent
the group G = exp(g0) acts on the space MC of solutions of the
Maurer–Cartan equations by gauge transformations. (If g0 is not
nilpotent, replace g by εg and work over formal power series in
ε.) L∞-quasiisomorphisms induce isomorphisms between moduli
spaces MC/G.

� 2MC(T (M)) � �(M;^

2

TM)() � is a Poisson bivector �eld.

P 2 MC(D(M)) � Hom

di�

(C

1


 C

1

(M); C

1

(M)) () f � g +

P (f; g) is an associative product.
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Maurer Cartan equations

Let g be a differential graded Lie algebra. The equation

da +
1

2
[a, a] = 0

for a ∈ g1 is called the Maurer–Cartan equation. If g0 is nilpotent
the group G = exp(g0) acts on the space MC of solutions of the
Maurer–Cartan equations by gauge transformations. (If g0 is not
nilpotent, replace g by εg and work over formal power series in
ε.) L∞-quasiisomorphisms induce isomorphisms between moduli
spaces MC/G.

π ∈MC(T (M)) ⊂ Γ(M,∧2TM)⇐⇒ π is a Poisson bivector field.

P ∈ MC(D(M)) ⊂ Homdiff(C∞ ⊗ C∞(M), C∞(M)) ⇐⇒ f · g +
P (f, g) is an associative product.
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The relative formality theorem-1

The relative case: C ⊂M a submanifold.

Relative multivector fields (multivector fields in a formal neigh-

bourhood of C)

T (M, C) = lim←−T (M)/In
CT (M)

Relative multidifferential operators

D(M, C) = ⊕jDn(M, C),

Dj(M, C) =
∏

p+q=j+1 Homp
diff(A⊗q, A).
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The relative formality theorem-2

Theorem

There is an L∞-quasiisomorphism U : T (M, C) D(M, C). Maurer–

Cartan elements in T (M, C) are P∞-structures on C, Maurer–

Cartan elements in D(M, C) are A∞-deformations of the product

in A.

Two possible proofs: direct or reduce by `Fourier transform'

T (M;C) ' T (N

�

[1]C) to Kontsevich's theorem on the super-

manifold N

�

[1]C. In any case the components U

n

of the lo-

cal formula L

1

-quasiisomorphism are given by the same type of

Feynman graphs as above but with more general vertices
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The relative formality theorem-2

Theorem

There is an L∞-quasiisomorphism U : T (M, C) D(M, C). Maurer–

Cartan elements in T (M, C) are P∞-structures on C, Maurer–

Cartan elements in D(M, C) are A∞-deformations of the product

in A.

Two possible proofs: direct or reduce by ‘Fourier transform’

T (M, C) ' T (N∗[1]C) to Kontsevich’s theorem on the super-

manifold N∗[1]C. In any case the components Un of the lo-

cal formula L∞-quasiisomorphism are given by the same type of

Feynman graphs as above but with more general vertices
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Several D-branes: bimodules-1

Suppose C1, C2 ⊂ M are anomaly-free (i.e., such that µ0 = 0)

coisotropic submanifolds, A1, A2 the corresponding A∞-algebras.

Fix a point in the intersection C1 ∩ C2 where the intersection is

clean, i.e., locally looking like the intersection of subspaces of a

vector space.

Then the perturbative expansion of the Poisson sigma model

with Dirichlet boundary conditions C

1

on one half of the circle

@D and C

2

on the other half, gives structure maps

A


p

1


M

12


A


q

2

!M

12

[1� p� q];

M

12

= �(C

1

\ C

2

;^N

12

)[[�]]. These maps obey A

1

-type asso-

ciativity relations: M

12

is an A

1

-bimodule over A

1

and A

2

.
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Several D-branes: bimodules-1

Suppose C1, C2 ⊂ M are anomaly-free (i.e., such that µ0 = 0)

coisotropic submanifolds, A1, A2 the corresponding A∞-algebras.

Fix a point in the intersection C1 ∩ C2 where the intersection is

clean, i.e., locally looking like the intersection of subspaces of a

vector space.

Then the perturbative expansion of the Poisson sigma model

with Dirichlet boundary conditions C1 on one half of the circle

∂D and C2 on the other half, gives structure maps

A
⊗p
1 ⊗M12 ⊗A

⊗q
2 →M12[1− p− q],

M12 = Γ(C1 ∩ C2,∧N12)[[ε]]. These maps obey A∞-type asso-

ciativity relations: M12 is an A∞-bimodule over A1 and A2.
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Several D-branes: bimodules-2

In particular M12 has a differential and there is a left action of

A1 up to homotopy A1 ⊗M12 → M12, a right action of A2 and

the actions commute up to homotopy.

It follows that the cohomology H(M12) is a H(A1) −H(A2) bi-

module. Important special case: C

1

= M , C

2

= C. Then A

1

is

an associative algebra (the Kontsevich algebra) and H(M

12

) is

(in particular) a module over A

1

.
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Several D-branes: bimodules-2

In particular M12 has a differential and there is a left action of

A1 up to homotopy A1 ⊗M12 → M12, a right action of A2 and

the actions commute up to homotopy.

It follows that the cohomology H(M12) is a H(A1) −H(A2) bi-

module. Important special case: C1 = M , C2 = C. Then A1 is

an associative algebra (the Kontsevich algebra) and H(M12) is

(in particular) a module over A1.
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Several D-branes: bimodules-3

The construction may be extended to several coisotropic sub-
manifolds by dividing ∂D into arcs and imposing different bound-
ary conditions on different arcs.

At the cohomology level we have the following result:

let x

0

be a point of clean intersection of anomaly-free coisotropic

C

1

; : : : ; C

n

�M . Then the Poisson sigma model gives:

H(A

i

)�H(A

j

)-bimodules H(M

ij

).

Homomorphisms of bimodules �

ijk

: H(M

ij

) 


H(A

j

)

H(M

jk

) !

H(M

ik

)

Associativity relations �

ikl

� �

ijk

= �

ijl

� �

jkl

32



Several D-branes: bimodules-3

The construction may be extended to several coisotropic sub-
manifolds by dividing ∂D into arcs and imposing different bound-
ary conditions on different arcs.

At the cohomology level we have the following result:

let x0 be a point of clean intersection of anomaly-free coisotropic
C1, . . . , Cn ⊂M . Then the Poisson sigma model gives:

H(Ai)−H(Aj)-bimodules H(Mij).

Homomorphisms of bimodules φijk : H(Mij) ⊗H(Aj)
H(Mjk) →

H(Mik)

Associativity relations φikl ◦ φijk = φijl ◦ φjkl
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