CORRELATION FUNCTIONS FOR LATTICE EXACTLY SOLVABLE MODELS.

Fedor Smirnov

H. Boos, M. Jimbo, T. Miwa, F. Smirnov, Y. Takeyama

A recursion formula for the correlation functions of an inhomogeneous XXX model. (hep-th/0405044)

Reduced qKZ equation and correlation functions of the XXZ model (hep-th/0412191)

Traces on the Sklyanin algebra and correlation functions of the eight-vertex model (hep-th/0504072)

Density matrix of a finite sub-chain of the Heisenberg anti-ferromagnet (hep-th/0506171)

The model.

I shall consider the Heisenberg antiferromagnet with the Hamiltonian

$$H = \sum_{i=-\infty}^{\infty} \left(\sigma_i^1 \sigma_{i+1}^1 + \sigma_i^2 \sigma_{i+1}^2 + \sigma_i^3 \sigma_{i+1}^3 \right)$$

 $(\mathbb{C}^2)^{\otimes \infty}$ is bad, we need to extract a separable subspace. In order to do that we follow the procedure

$$H = \lim_{N \to \infty} H_N$$

$$H = \sum_{i=-N-1}^{N} \left(\sigma_i^1 \sigma_{i+1}^1 + \sigma_i^2 \sigma_{i+1}^2 + \sigma_i^3 \sigma_{i+1}^3 \right),$$

$$\sigma_{N+1}^a = \sigma_{-N-1}^a$$

The goal: to find the ground state $|vac\rangle$ and Fock space over it.

R-matrix:

$$R(\lambda) = \frac{\rho(\lambda)}{\lambda + 1} (\lambda + P) \in \text{End} (\mathbb{C}^2 \otimes \mathbb{C}^2)$$

where

$$\rho(\lambda) = -\frac{\Gamma\left(\frac{\lambda}{2}\right)\Gamma\left(\frac{1}{2} - \frac{\lambda}{2}\right)}{\Gamma\left(-\frac{\lambda}{2}\right)\Gamma\left(\frac{1}{2} + \frac{\lambda}{2}\right)}.$$

Considering tensor product of several spaces $V_i \simeq \mathbb{C}^2$ we write $R_{i,j}(\lambda)$ for R-matrix acting non-trivially in $V_i \otimes V_j$.

Yang-Baxter equation:

$$R_{1,2}(\lambda_{1,2})R_{1,3}(\lambda_{1,3})R_{2,3}(\lambda_{2,3}) = R_{2,3}(\lambda_{2,3})R_{1,3}(\lambda_{1,3})R_{1,2}(\lambda_{1,2})$$

We always imply

$$\lambda_{i,j} = \lambda_i - \lambda_j$$

Transfer-matrix.

$$t_N(\lambda) = \operatorname{tr}_{V_a}(R_{a,-N-1}(\lambda)R_{a,-N}(\lambda)\cdots R_{a,N-1}(\lambda)R_{a,N}(\lambda))$$

Due to Yang-Baxter

$$[t(\lambda_1), t(\lambda_2)] = 0$$

Moreover

$$t_N(0) = U_N, \qquad U_N \ \sigma_j^a \ U_N^{-1} = \sigma_{j+1}^a$$

$$\frac{d}{d\lambda}\log t_N(\lambda) = \sum_{n=1}^{\infty} \lambda^n I_{N,n} , \quad I_{N,1} = H_N$$

Transfer-matrix can be diagonalised by Bethe ansatz.

Spectrum.

Ground state $|vac\rangle$. Magnon is spin-1/2 particle parametrised by rapidity β ,

$$u(\beta) = \tanh \frac{1}{2} \left(\beta + \frac{\pi i}{2} \right), \quad e(\beta) = \frac{1}{\cosh(\beta)}$$

Factorised scattering, two-particle S-matrix:

$$S_{1,2}(\beta_{1,2}) = R_{1,2} \left(-\frac{\beta_{1,2}}{\pi i} \right)$$

Basis:

$$|\text{vac}\rangle, \quad |\beta_1, \cdots, \beta_n\rangle_{\epsilon_1, \cdots, \epsilon_n}$$

with $\beta_1 < \cdots < \beta_n$

$$\epsilon'_1, \dots, \epsilon'_m \langle \beta'_1, \dots, \beta'_m | \beta_1, \dots, \beta_n \rangle_{\epsilon_1, \dots, \epsilon_n} = \delta_{m,n} \prod_{j=1}^n \delta(\beta_j - \beta'_j) \delta_{\epsilon_j}^{\epsilon'_j}$$

Form factors.

The matrix elements

$$\epsilon'_1, \cdots, \epsilon'_m \langle \beta'_1, \cdots, \beta'_m | \sigma^a_k | \beta_1, \cdots, \beta_n \rangle_{\epsilon_1, \cdots, \epsilon_n}$$

can be explicitly calculated. The algebra of local spins is represented in the Fock space.

Correlation functions.

Consider an operator

$$0 = \sigma_{i_1}^{a_1} \sigma_{i_2}^{a_2} \cdots \sigma_{i_k}^{a_k}$$

$$i_1 < i_2 < \cdots < i_k$$

The length of operator $l(\mathcal{O}) = i_k - i_1 + 1$. The problem is to find $\langle \text{vac} | \mathcal{O} | \text{vac} \rangle$

L-operator.

Let $\{S_a\}_{a=1}^3$ be a basis of \mathfrak{sl}_2 satisfying $[S_a, S_b] = 2i\epsilon_{abc}S_c$. Define the *L*-operator which belongs to $U(\mathfrak{sl}_2) \otimes \mathbb{C}^2$:

$$L(\lambda) = \frac{\rho(\lambda, d)}{\lambda + \frac{d}{2}} L^{(0)}(\lambda),$$

$$L^{(0)}(\lambda) = \lambda + \frac{1}{2} + \frac{1}{2} \sum_{a=1}^{3} S_a \otimes \sigma^a,$$

where d is related to the Casimir operator as

$$C = \sum_{a=1}^{3} S_a S^a = d^2 - 1$$

and

$$\rho(\lambda, d) = -\frac{\Gamma\left(\frac{1}{2} - \frac{d}{4} + \frac{\lambda}{2}\right) \Gamma\left(1 - \frac{d}{4} - \frac{\lambda}{2}\right)}{\Gamma\left(\frac{1}{2} - \frac{d}{4} - \frac{\lambda}{2}\right) \Gamma\left(1 - \frac{d}{4} + \frac{\lambda}{2}\right)}.$$

In this normalisation we have the unitarity and crossing symmetry in the form

$$L(\lambda)L(-\lambda) = 1$$
, $\sigma^2 (L(\lambda))^t \sigma^2 = -L(-\lambda - 1)$.

Yang-Baxter equation:

$$R_{1,2}(\lambda_{1,2})L_1(\lambda_1)L_2(\lambda_2) = L_2(\lambda_2)L_1(\lambda_1)R_{1,2}(\lambda_{1,2})$$

Monodromy matrix.

$$T(\lambda) = \cdots L_1(\lambda)L_2(\lambda)\cdots \in (\mathbb{C}^2)^{\otimes \infty} \otimes U(\mathfrak{sl}_2)$$

Trace functional.

We define "trace over a space of fractional dimension". By this we mean the unique $\mathbb{C}[d]$ linear map

$$\operatorname{Tr}_d: U(\mathfrak{sl}_2) \otimes \mathbb{C}[d] \longrightarrow \mathbb{C}[d]$$

such that for any non-negative integer k we have

$$\operatorname{Tr}_{k+1}(A) = \operatorname{tr}_{V(k)} \pi^{(k)}(A) \qquad (A \in U(\mathfrak{sl}_2)).$$

Here tr in the right hand side stands for the usual trace over (k+1)-dim irrep $\pi^{(k)}$. We list some properties of the trace function Tr_d .

$$\operatorname{Tr}_d(AB) = \operatorname{Tr}_d(BA), \quad \operatorname{Tr}_d(1) = d,$$
 $\operatorname{Tr}_d(A) = 0 \text{ if } A \text{ has non-zero weight,}$

$$\operatorname{Tr}_d(e^{zH}) = \frac{\sinh(dz)}{\sinh z},$$

$$\operatorname{Tr}_d(CA) = (d^2 - 1)\operatorname{Tr}_d(A), \quad (A \in U(\mathfrak{sl}_2) \otimes \mathbb{C}[d]).$$

By the generating series the traces $\operatorname{Tr}_d(H^a)$ are known, $\operatorname{Tr}_d(H^aE^bF^c)$ is reduced to them inductively for all $a, b, c \geq 0$. We emphasise that $\operatorname{Tr}_d(A)$ is determined by the 'dimension' $\operatorname{Tr}_d(1) = d$ and the value of the Casimir operator; we have

$$\operatorname{Tr}_d(A) = \operatorname{Tr}_d(A') \text{ if } \varpi_d(A) = \varpi_d(A'),$$

where ϖ_d is the projection

$$\varpi_d: U(\mathfrak{sl}_2) \otimes \mathbb{C}[d] \to U(\mathfrak{sl}_2) \otimes \mathbb{C}[d]/I_d$$

and I_d signifies the two-sided ideal of $U(\mathfrak{sl}_2) \otimes \mathbb{C}[d]$ generated by $C - (d^2 - 1)$.

The following are simple consequences of these rules.

$$\operatorname{Tr}_{-d}(A) = -\operatorname{Tr}_d(A),$$
 $\operatorname{Tr}_d(A) - d\varepsilon(A) \in d(d^2 - 1)\mathbb{C}[d],$
 $\varepsilon: U(\mathfrak{sl}_2) \otimes \mathbb{C}[d] \to \mathbb{C}[d]$ stands for the counit,
The degree of $\operatorname{Tr}_d(H^a E^b F^c)$
is at most $m+1$ $(m \text{ even})$
or m $(m \text{ odd})$ where $m=a+b+c.$

Formally,

$$t(\lambda) = \operatorname{Tr}_2(T(\lambda))$$

Consider tensor product of several copies of $U(\mathfrak{sl}_2)$. We define

$$\operatorname{Tr}_{d_1,\dots,d_k}(A_1\otimes\dots\otimes A_k)=\prod_{i=1}^k\operatorname{Tr}_{d_i}(A_i)$$

Main formula.

Define

$$\varphi(\lambda) = \frac{\lambda}{\lambda^2 - 1} \left(\frac{d}{d\lambda} \log \rho(\lambda) + \frac{1}{2(\lambda^2 - 1)} \right)$$
$$= \frac{\lambda}{\lambda^2 - 1} \left(\sum_{k=1}^{\infty} (-1)^k \frac{2k}{\lambda^2 - k^2} + \frac{1}{2(\lambda^2 - 1)} \right)$$

Ajoint action of monodromy matrix on operators:

$$\mathfrak{T}(\lambda)(\mathfrak{O}) = T(\lambda) \cdot \mathfrak{O} \cdot T(\lambda)^{-1}$$

Notice that in $T(\lambda)$ only finite piece of length $l(\mathfrak{O})$ is relevant.

Our result is

$$\langle \operatorname{vac} | \mathfrak{O} | \operatorname{vac} \rangle = \frac{1}{2^{\infty}} \operatorname{tr}_{(\mathbb{C}^2)^{\otimes \infty}} (\rho(\mathfrak{O})), \qquad \rho = e^{\Omega}$$

with

$$\Omega = \frac{1}{2} \iint \frac{d\mu_1}{2\pi i} \frac{d\mu_2}{2\pi i} \varphi(\mu_{1,2})$$

$$\times \operatorname{Tr}_{2,2,\mu_{1,2}} \left(\left(P^- \otimes I \right) \left(\Im(\mu_1) \otimes \Im(\mu_2) \otimes \Im\left(\frac{\mu_1 + \mu_2}{2} \right) \right) \right),$$

integrals go around $\mu_1, \mu_2 = 0$. Generally, the singularities are as follows

$$\frac{1}{(\mu_1\mu_2)^{l(0)}} \quad \text{from} \quad \mathfrak{T}\left(\frac{\mu_1+\mu_2}{2}\right),
\frac{1}{(\mu_1^2-1)^{l(0)}} \quad \text{from} \quad \mathfrak{T}(\mu_1)
\frac{1}{(\mu_2^2-1)^{l(0)}} \quad \text{from} \quad \mathfrak{T}(\mu_2)$$

Alternatively,

$$\langle \operatorname{vac} | \mathfrak{O} | \operatorname{vac} \rangle = \frac{1}{2^{l(\mathfrak{O})}} \operatorname{tr}_{(\mathbb{C}^2)^{\otimes l(\mathfrak{O})}} \left(\rho_{l(\mathfrak{O})}(\mathfrak{O}) \right)$$

Density matrix.

Consider a finite sub-chain of length n in infinite environment.

$$\rho_n(\mathfrak{O}) = \sum A_i \mathfrak{O} B_i$$

then

$$\langle \operatorname{vac} | \mathcal{O} | \operatorname{vac} \rangle = \frac{1}{2^n} \operatorname{tr}_{(\mathbb{C}^2)^{\otimes n}} (\widehat{\rho}_n \mathcal{O})$$

where

$$\widehat{\rho}_n = \sum B_i A_i$$

 $\widehat{\rho}_n$ can be described as follows. It is easy to see that

$$\widehat{\rho_n} = e^{\widehat{\Omega}_n}(I)$$

where

$$\widehat{\Omega}_n = \frac{1}{2} \iint \frac{d\mu_1}{2\pi i} \frac{d\mu_2}{2\pi i} \varphi(\mu_{1,2}) \operatorname{Tr}_{\mu_{1,2},2,2} \left(\left(\mathfrak{T}_n \left(\frac{\mu_1 + \mu_2}{2} \right)^{-1} \otimes \mathfrak{T}_n(\mu_2)^{-1} \otimes \mathfrak{T}_n(\mu_1)^{-1} \right) \left(P^- \otimes I \right) \right).$$

Structure of the result.

Taylor expansion of $\varphi(\lambda)$:

$$\varphi(\lambda) = \sum_{l=0}^{\infty} \lambda^{2l+1} \varphi_{2l+1},$$

$$\varphi_{2l+1} = \frac{l+1}{2} - \sum_{p=0}^{l} \zeta_a(2p+1)$$

where the alternating ζ -function is

$$\zeta_a(s) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k^s} = (1 - 2^{-s+1}) \zeta(s)$$

Generating function:

$$U(\alpha_{1}, \alpha_{2}) = \frac{1}{2} \iint \frac{d\mu_{1}}{2\pi i} \frac{d\mu_{2}}{2\pi i} \frac{1}{(\alpha_{1} - \mu_{1})(\alpha_{2} - \mu_{2})} \times \operatorname{Tr}_{2,2,\mu_{1,2}} \left(\left(P^{-} \otimes I \right) \left(\Im(\mu_{1}) \otimes \Im(\mu_{2}) \otimes \Im\left(\frac{\mu_{1} + \mu_{2}}{2} \right) \right) \right),$$

$$= \sum_{k_{1}, k_{2} \geq 0} \alpha_{1}^{-k_{1}-1} \alpha_{2}^{-k_{2}-1} U_{k_{1}, k_{2}}$$

where α_i are outside of the contour of integration. Formally,

$$\Omega = \int \frac{d\alpha_1}{2\pi i} \int \frac{d\alpha_1}{2\pi i} \varphi(\alpha_{1,2}) U(\alpha_1, \alpha_2)$$

Important properties of the generating function.

1. Commutativity:

$$[U(\alpha_1, \alpha_2), U(\alpha_3, \alpha_4)] = 0$$

2. Nilpotency:

$$U(\alpha_1, \alpha_2)U(\alpha_3, \alpha_4) \cdots U(\alpha_{2\left[\frac{l(0)}{2}\right]+1}, \alpha_{2\left[\frac{l(0)}{2}\right]+2}) = 0$$

The proof will be given later. From these formulae one finds

$$\Omega = \sum_{l=0}^{l(\mathfrak{O})-2} \varphi_{2l+1} \Omega_{2l+1}$$

where the commuting family of nilpotent operators Ω_{2l+1} is defined by

$$\Omega_{2l+1} = \sum_{k=0}^{2l+1} {2l+1 \choose k} U_{k,2l+1-k}$$

So, the functions $\zeta(2l+1)$ are present up to l=l(0)-2. Together with nilpotency

it means that

$$\langle \operatorname{vac} | \mathfrak{O} | \operatorname{vac} \rangle = \sum_{k_i \ge 0} \sum_{\sum k_i \le \left[\frac{l(\mathfrak{O})}{2}\right]} r_{k_0, \dots, k_{l(\mathfrak{O}) - 2}} \prod_{i=0}^{l(\mathfrak{O}) - 2} \zeta_a (2i + 1)^{k_i}$$

Inhomogeneous model. Consider the model whose integrals of motion are given by the transfer-matrix:

$$t(\lambda, \lambda_1, \dots, \lambda_n) = \lim_{N \to \infty} t_N(\lambda, \lambda_1, \dots, \lambda_n)$$

$$t_N(\lambda, \lambda_1, \dots, \lambda_n) = \operatorname{tr}_{V_a} (R_{a, -N - 1}(\lambda) \dots R_{a, 0}(\lambda) \times R_{a, 1}(\lambda - \lambda_1) \dots R_{a, n}(\lambda - \lambda_n) \times R_{a, n + 1}(\lambda) \dots R_{a, N}(\lambda))$$

Consider the operators localised at the sub-chain $1, \dots, n$. Corresponding operator $\rho_n(\lambda - 1, \dots, \lambda_n)$ depends on λ_j , it is given by the same formula as before with

$$\Omega(\lambda_{1}, \dots, \lambda_{n}) =
= \frac{1}{2} \iint \frac{d\mu_{1}}{2\pi i} \frac{d\mu_{2}}{2\pi i} \varphi(\mu_{1,2}) \operatorname{Tr}_{2,2,\mu_{1,2}} ((P^{-} \otimes I))
(\mathfrak{T}_{n}(\mu_{1}, \lambda_{1}, \dots, \lambda_{n}) \otimes \mathfrak{T}_{n}(\mu_{2}, \lambda_{1}, \dots, \lambda_{n}) \otimes \mathfrak{T}_{n}(\frac{\mu_{1} + \mu_{2}}{2}, \lambda_{1}, \dots, \lambda_{n}))),$$

the integrals are taken around $\lambda_1, \dots, \lambda_n$. Obviously,

$$\Omega(\lambda_1, \cdots, \lambda_n) = \sum_{i < j} \Omega^{(i,j)}(\lambda_1, \cdots, \lambda_n)$$

where

$$\Omega^{(i,j)}(\lambda_1, \cdots, \lambda_n) = \operatorname{res}_{\mu_1 = \lambda_i} \operatorname{res}_{\mu_2 = \lambda_j} (\operatorname{integrand})$$

Jimbo-Miwa equations.

In inhomogeneous case $\rho_n(\lambda_1, \dots, \lambda_n)$ must satisfy certain system of equations. Let

$$A_n(\lambda_1, \cdots, \lambda_n) = R_{1,2}(\lambda_{1,2}) \cdots R_{1,n}(\lambda_{1,n})$$

and

$$\mathcal{A}_n(\lambda_1, \dots, \lambda_n)(\mathcal{O})$$

$$= A_n(\lambda_1, \dots, \lambda_n) \ \sigma_1^2(\mathcal{O})^{t_1} \sigma_1^2 \ A_n(\lambda_1, \dots, \lambda_n)^{-1}$$

Then $\rho_n(\lambda_1, \dots, \lambda_n)$ obeys three equations:

$$\rho_n(\cdots,\lambda_{j+1},\lambda_j,\cdots)=\check{\mathfrak{R}}_{j,j+1}(\lambda_{j,j+1})\rho_n(\cdots,\lambda_j,\lambda_{j+1},\cdots),$$

$$\rho_n(\lambda_1 - 1, \cdots, \lambda_n) = \mathcal{A}_n(\lambda_1, \cdots, \lambda_n) \rho_n(\lambda_1, \cdots, \lambda_n)$$

$$\operatorname{tr}_1 \circ \rho_n(\lambda_1, \lambda_2, \cdots, \lambda_n) = \rho_{n-1}(\lambda_2, \cdots, \lambda_n)$$

where $\check{R} = PR$.

Properties of operators $\Omega^{(i,j)}$.

1. Exchange relation:

$$\check{\mathcal{R}}_{k,k+1}(\lambda_{k,k+1})\Omega^{(i,j)}(\dots,\lambda_k,\lambda_{k+1},\dots)$$

$$=\Omega^{(i,j)}(\dots,\lambda_{k+1},\lambda_k,\dots)$$

2. Commutativity:

$$\left[\Omega^{(i,j)}(\lambda_1,\cdots,\lambda_n),\Omega^{(k,l)}(\lambda_1,\cdots,\lambda_n)\right]=0$$

From here the commutativity of $U(\alpha_1, \alpha_2)$ follows.

3. Nilpotency:

$$\Omega^{(i,j)}(\lambda_1,\dots,\lambda_n)\Omega^{(k,l)}(\lambda_1,\dots,\lambda_n)=0$$
 if $\{i,j\}\cap\{k,l\}\neq\emptyset$

From here nilpotency of Ω follows.

4. Difference equations:

$$\Omega^{(i,j)}(\lambda_1 - 1, \dots, \lambda_n)
= \mathcal{A}_n(\lambda_1, \dots, \lambda_n) \Omega^{(i,j)}(\lambda_1, \dots, \lambda_n) \mathcal{A}_n(\lambda_1, \dots, \lambda_n)^{-1} \qquad (i, j \neq 1)
\Omega^{(1,j)}(\lambda_1 - 1, \dots, \lambda_n)
= \mathcal{A}_n(\lambda_1, \dots, \lambda_n) \left(\Omega^{(1,j)}(\lambda_1, \dots, \lambda_n) + Y^{(j)}(\lambda_1, \dots, \lambda_n)\right)$$

where $Y^{(j)}$ satisfy the following

5. Cancellation identity:

$$\sum_{j=2}^{n} Y^{(j)}(\lambda_1, \dots, \lambda_n) = 1 - \mathcal{A}_n(\lambda_1, \dots, \lambda_n)^{-1}$$

Proof of JM equations.

We have

$$\rho_n(\lambda_1,\cdots,\lambda_n)=e^{\Omega(\lambda_1,\cdots,\lambda_n)}$$

Due to nilpotency

$$\rho_n(\lambda_1, \cdots, \lambda_n) = \sum_{p=1}^{\left[\frac{n}{2}\right]} \sum_{i_k < j_k, \ i_1 < \cdots < i_p} \Omega^{(i_p, j_p)}(\lambda_1, \cdots, \lambda_n) \cdots \Omega^{(i_1, j_1)}(\lambda_1, \cdots, \lambda_n)$$

First of JM equations follows from Exchange relation. To prove the second one rewrites:

$$\rho_{n}(\lambda_{1}, \dots, \lambda_{n}) = \sum_{\substack{\left[\frac{n}{2}\right]\\p=1}} \sum_{i_{k} < j_{k}, \ 2 \leq i_{1} < \dots < i_{p}} \Omega^{(i_{p}, j_{p})}(\lambda_{1}, \dots) \dots \Omega^{(i_{1}, j_{1})}(\lambda_{1}, \dots) }$$

$$+ \sum_{\substack{p=1\\p=1}} \sum_{i_{k} < j_{k}, \ 1 < i_{2} < \dots < i_{p}} \Omega^{(i_{p}, j_{p})}(\lambda_{1}, \dots) \dots \Omega^{(1, j_{1})}(\lambda_{1}, \dots)$$

Difference equations imply

$$\rho_{n}(\lambda_{1}-1,\cdots,\lambda_{n}) = \mathcal{A}_{n}(\lambda_{1},\cdots)$$

$$\times \sum_{p=1}^{\left[\frac{n}{2}\right]} \left\{ \sum_{i_{k} < j_{k}, \ 2 \leq i_{1} < \cdots < i_{p}} \Omega^{(i_{p},j_{p})}(\lambda_{1},\cdots) \cdots \Omega^{(i_{1},j_{1})}(\lambda_{1},\cdots) \right.$$

$$\times \mathcal{A}_{n}(\lambda_{1},\cdots)^{-1}$$

$$+ \sum_{i_{k} < j_{k}, \ 1 < i_{2} < \cdots < i_{p}} \Omega^{(i_{p},j_{p})}(\lambda_{1},\cdots) \cdots \Omega^{(1,j_{1})}(\lambda_{1},\cdots)$$

$$+ \sum_{i_{k} < j_{k}, \ 2 \leq i_{2} < \cdots < i_{p}} \Omega^{(i_{p},j_{p})}(\lambda_{1},\cdots) \cdots \Omega^{(i_{2},j_{2})}(\lambda_{1},\cdots)$$

$$\times \sum_{j=2}^{n} Y^{(j)}(\lambda_{1},\cdots) \right\}$$

The Cancellation Identity

$$\sum_{j=2}^{n} Y^{(j)}(\lambda_1, \cdots) = 1 - \mathcal{A}_n(\lambda_1, \cdots)^{-1}$$

proves the second JM equation.

Conjectures about temperature correlation functions.

Recall that

$$\varphi(\lambda) = \frac{\lambda}{\lambda^2 - 1} \left(\frac{d}{d\lambda} \log \rho(\lambda) + \frac{1}{2(\lambda^2 - 1)} \right)$$

The function $\omega(\lambda) = \frac{d}{d\lambda} \log \rho(\lambda)$ satisfies the functional equation:

$$\omega(\lambda+1) + \omega(\lambda) = -\frac{1}{\lambda(\lambda+1)}$$

If replace $\varphi(\lambda)$ by

$$\varphi_{c_*}(\lambda) = \frac{\lambda}{\lambda^2 - 1} \left(\frac{d}{d\lambda} \log \rho(\lambda) + \frac{1}{2(\lambda^2 - 1)} + \sum_{k=\infty}^{\infty} c_{2k+1} e^{(2k+1)\lambda} \right)$$

the JM equations are still valid.

Conjecture. Corresponding solutions describe

$$\langle \beta_1, \cdots, \beta_k | \mathfrak{O} | \beta_1, \cdots, \beta_k \rangle_{\text{reg}}$$

Regularisation means the following:

$$\langle \beta_1, \cdots, \beta_k | \mathfrak{O} | \beta_1, \cdots, \beta_k \rangle_{\text{reg}} =$$

$$= \int \frac{d\epsilon_1}{\epsilon_1} \int \frac{d\epsilon_k}{\epsilon_k} \langle \beta_1 + \epsilon_1, \cdots, \beta_k + \epsilon_k | \mathfrak{O} | \beta_1, \cdots, \beta_k \rangle$$

Problem: What is the relation between c_{2i+1} and β_i ?

LeClair and Mussardo claim that

$$\langle \mathfrak{O} \rangle_T = \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} d\beta_1 \cdots \int_{-\infty}^{\infty} d\beta_k \ \langle \beta_1, \cdots, \beta_k | \mathfrak{O} | \beta_1, \cdots, \beta_k \rangle_{\text{reg}} \ e^{-\sum \frac{\epsilon(\beta_j)}{T}}$$

All together it leads to

Conjecture.

$$\langle \mathfrak{O} \rangle_T = \int Dc_* \ \omega(c_*, T) \ \frac{1}{2^{\infty}} \ \operatorname{tr}_{(\mathbb{C}^2)^{\infty}} \left(\rho_{(c_*)}(\mathfrak{O}) \right)$$

Problem: To find the measure $\omega(c_*, T)$.

Conjectures about VEV in SG theory. The formula

$$\langle \operatorname{vac} | \mathfrak{O} | \operatorname{vac} \rangle = \operatorname{tr}_{(\mathbb{C}^2)^{\infty}} (\rho(\mathfrak{O}))$$

allows generalisation to XYZ model. In that case still

$$\Omega^{\left[\frac{l(0)}{2}\right]+1} = 0$$

By scaling limit we obtain SG-model. The expression including $T(\lambda)$ is quite universal, in continuous limit it becomes an monodromy matrix of Bazhanov-Lukyanov-Zamolodchikov. Spinless local operators belong to

$$\bigoplus_{k\geq 0} \left(W_k \otimes \overline{W}_k\right)$$

It is natural to assume that $l(0) \sim k$, i.e. in continuous limit

$$\Omega^{\left[\frac{\deg(\mathcal{O})}{2}\right]+1} = 0$$

Problem. Can one describe effectively ρ for every degree and, thus, calculate VEV's?

Problem. To understand better this formula. In XXZ, XYZ cases to consider free fermion point.