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The model.
[ shall consider the Heisenberg antiferromagnet with the Hamiltonian
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1=—00

<C2>®OO is bad, we need to extract a separable subspace.
In order to do that we follow the procedure
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N—o0
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ON+1 = O0-_N-1

The goal: to find the ground state |vac) and Fock space over it.



R-matrix:

where

SR )

Considering tensor product of several spaces V; ~ C* we write R; ;j(\) for R-matrix

acting non-trivially in V; ® V.
Yang-Baxter equation:
Ry 2(M2)Ri3(A3)Ros(Aas) = Ros(Aas) Ry 3(A13)Ria(A2)

We always imply
)\i,j = >\z — )‘j



Transfer-matrix.

tn(A) = try, (Ro—nv-1(A)Ro—n(A) -+ Ry n—1(A) Ra N (A))
Due to Yang-Baxter
E(A1), E(A2)] =0
Moreover
ty(0)=Uy,  Uyo§Uy' =09,

d

ﬁlogt]v()\) = Z)\HIN,n , In1=Hy

Transfer-matrix can be diagonalised by Bethe ansatz.

n=1



Spectrum.

Ground state |vac). Magnon is spin-1/2 particle parametrised by rapidity 3,

1 g L
u(f) = tanh§ (ﬁ ™ 5) elf) = cosh(f)

Factorised scattering, two-particle S-matrix:

S12(812) = Ri2 (— @>

X

Basis:

|V&C>, ‘517 T 757’L>61,“- €n
with 81 < -+ < Ba

n

A, BB Buderooen = O [ [ 6085 — 85 0]
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Form factors.
The matrix elements

/ coe /
RS ,6m<617 e 767,71’0-%617 e 76n>€17'”76n

can be explicitly calculated. The algebra of local spins is represented in the Fock space.

Correlation functions.

Consider an operator
a a a
O=o0;l0) O'Z-:
1<ty < -+ <1
The length of operator [(OQ) = iy, — ¢; + 1. The problem is to find

(vac| O |vac)



L-operator.
Let {S,}2_, be a basis of sly satisfying [S,, Sp] = 2i€p.S,.. Define the L-operator which
belongs to U(sly) @ C*:

L(\) = LO(N),

3
1 1
LON =A+5+5) “
(A) A+2+QQJ%®J,

where d is related to the Casimir operator as

3
C=)» S,58=d -1

a=1
and (L4 (1—d_2)
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G-1-2)T(1-1+3)



In this normalisation we have the unitarity and crossing symmetry in the form
LINL(=X) =1, o*(L(\)) 0= —=L(=X—1).
Yang-Baxter equation:

Ry 9(A12)L1(A1)La(Aa) = La(Ag) Li( A1) Ry 2(A12)

Monodromy matrix.

T(\) = - Li(A) La(N) - - € (C) ™ @ Ulsly)



Trace functional.

We define “trace over a space of fractional dimension”. By this we mean the unique
C|d] linear map

Try : U(sly) ® C|ld] — Cld]
such that for any non-negative integer k we have
Trk+1<A> = tI‘V(k)T('(k)<A) (A S U(ﬁ[g))

Here tr in the right hand side stands for the usual trace over (k -+ 1)-dim irrep 7(*).
We list some properties of the trace function Try.

Tl"d<AB) — Tl"d<BA), Tl"d<1) — d,
Trg(A) = 0 if A has non-zero weight,

. sinh(dz)
Tra(e™) = sinh z

Try (CA) = (d° — 1)Trg(A), (A € U(sly) ® Cd)).




By the generating series the traces Trg(H®) are known, Try(H*E°F¢) is reduced to
them inductively for all a,b,c > 0. We emphasise that Try(A) is determined by the
‘dimension’ Try(1) = d and the value of the Casimir operator; we have

Trd(A) — TI‘d<A/> f wd(A) = wd(A’),
where @ is the projection
wy U(sly) ® Cld] — Ulsly) ® Cld]/14
and I signifies the two-sided ideal of U(sly) ® Cld] generated by C' — (d* — 1).
The following are simple consequences of these rules.
Tr_d(A) = —Trd(A),
Trg(A) — de(A) € d(d* — 1)C[d],
e : U(sly) ® C[d] — C|d] stands for the counit,
The degree of Try(H*E"F°)

is at most m + 1 (m even)
or m (m odd) where m = a + b+ c.
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Formally,
! t(A) = Tra (T(A))

Consider tensor product of several copies of U(sly). We define

k
Trdl,---,dk<A1 X X Ak) = H TrdZ'(Az')
1=1
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Main formula.
Define

PN = A?A— 1 (ddA log p(A) + 2()\21— 1))

A - 2k 1
— A2 — 1 <Z<1>k)\2 — k2 + 2()\2 _ 1))

k=1

Ajoint action of monodromy matrix on operators:
TNO)=T(\)-0-T(N)"
Notice that in T'(\) only finite piece of length [(Q) is relevant.
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Our result 1is

1
(vac|O|vac) = 5= tr((CQ)@oo (p(O)), p=e
with
1 d,ul d,ug
0= _ it et
2 / omiom PUH2)
_ +
X Tr?%m,z ((P ® I) (TO“) ® T<N2> & (‘T(Ml 9 M2>)) )
integrals go around p1, o = 0. Generally, the singularities are as follows
1 +
(11722)'1) from - T(#5%),
L from  T(pq)
(,u%——ll)l(o) from T (uz)
Alternatively,

1
<V&C‘O‘V&C> = W tr<cg>®l(0) (PZ(O)(O))
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Density matrix.
Consider a finite sub-chain of length n in infinite environment.

pu(0) = A0B;

1 N
(vac|Q|vac) = ﬁtr(@)m (pn0)

then

where

P, can be described as follows. It is easy to see that

~

pn=e"(I)
where

~ 1 dpy dp f1 + oy -1 _ _ _
0= || St P Tz (5 ™ @ T @ Tm) ) (P 1))
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Structure of the result.
Taylor expansion of p(\):

©¢)

p(A) = Z N o1,
=0

l+1
2141 = Zg‘a 2p + 1)

where the alternating (-function is

= 3D = (-2 )

k=1
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Generating function:

Ulay, o // dpey diis 1
1 a2) 2mi 2mi (o — piy) (e — pua)

+
X Tr22,u12 ((P @I) (T<M1>®T<M2>®T(Ml 9 NQ))) ’
—k1—1 —k2 1
Z aq Ukl ko

k1,ko>0

where a; are outside of the contour of integration.
Formally,

B dOzl dOél
= 041 2 (@17 042)

271 2777,
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Important properties of the generating function.
1. Commutativity:

[U(O&l, OQ), U(()zg, 044)] =0
2. Nilpotency:

U(Oél,a2>U(Oég,Oé4) ---U(a 2{@}“,& 2[@}+2) =0

2 2

The proof will be given later. From these formulae one finds
1(©9)—2

() = Z ©a1+1829141
(=0

where the commuting family of nilpotent operators €297, is defined by

20+ 1
20+ 1
Qe = Y < L ) Uk 2141k

k=0
So, the functions (2] + 1) are present up to [ = [(Q) — 2. Together with nilpotency
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1t means that
1(O)—2

(vaclOfvac) = > ¥ Thykyers | Ga(2i+1)"

kizozkig[@] i=0
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Inhomogeneous model. Consider the model whose integrals of motion are given
by the transfer-matrix:

t<>\7 )\17 e 7>\n> — ]\}Hn tN()\a >\17 t 7)\n>
tN()\a )\17 B )\n> — trVa (Ra,—N—l()\) T Ra,O(A)
X Raj()\ — )\1) e Ra,n<>\ — )\n)
X Ra,nJrl()\) T Ra,N<)\>)

Consider the operators localised at the sub-chain 1,--- ,n. Corresponding operator
pn(A—1,---  \,) depends oh ), it is given by the same formula as before with

Q(Ala'” 7)\71) —
1 d,u1 d,u2 —
= 5/ 977 O @(N1,2>T1"2,2,u1,2((P ® [)

+
(‘Tn(,ulv)\b'” 7)\n) ®Tn(u27)\17"° 7)‘n) ®‘In(lul 9 ,LL27)\17'” 7)‘7%)))7
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the integrals are taken around Ay, - - -, \,. Obviously,
QAL+ Aa) =Y QDA A
i<j

where N
QU (A, -, A = Tes, =)\ 1eS),=) (integrand)
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Jimbo-Miwa equations.
In inhomogeneous case p, (A1, -+, A,) must satisfy certain system of equations. Let

Ap( Ay ) = Ria(A2) - Rin(Ain)
and

An(Ar, -+ A0)(0)
= An<)\17 T )‘n> O%(O)tlaf ATL()\la R )\71)_1

Then pp(A1, - -+, Ay) obeys three equations:
[)n( T >\j+17 )\jv T ) — jzj,j—kl()\j,j—l—l)pn(' o 7)\j7 )\j+17 T >7

lOn()\l — 17 T 7)\71) — ‘ATL()\l? T 7)\72)/072()\17 R 7>\n>

trl O pn(>\17 >\27 B >\n> — pn—1<)\27 e 7)\n>
where R = PR,
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Properties of operators Q7).

1. Exchange relation:

R 1 (A ) (e Ny A, -+ +)

= QU (e Nty Ay o)
2. Commutativity:
[Q(i,j)()\b e ), QED (O 7)\n>] —(
From here the commutativity of U(ayq, ag) follows.
3. Nilpotency:
QU (g, A)QED O X)) =0 i (i, 5} N {k, 1} #£ 0

From here nilpotency of €2 follows.
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4. Difference equations:
Q(%’J)()\l — 1, )
= An(Aq, - - 7)\n)Q(i,j)()\17 o A AR ’)\n)—l (1,7 #1)
Q(Li)()\l — 1, )
= A, ) (Q(Lj)O\h c )+ y(j)o\17 . 7)\n>)

where Y1) satisfy the following
5. Cancellation identity:

SO0 A =T = A )
j=2
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Proof of JM equations.

We have
pn()\17 .« o 7)\TL) — GQ()‘laa)\n)

Due to nilpotency

K
DA, A) = Z Z Q(%»ip)()\h e ) - ..Q(il,j1)<)\17 )

p=1 ip<jp, i1<-<ip

First of JM equations follows from Exchange relation. To prove the second one rewrites:

,0n<>\17 o 7>\n) —

p=1 1. <jp, 2§i1<---<ip

3]
+Z Z Q(@'pd’p)()\h...)...Q(Lﬂ)()\h...)

p=1 1. <jp, 1<i2<'°'<ip
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Difference equations imply

pn<)\1_17 7)\71):-An()\17>

3]
> Z{ Z QUpdp)( Ny, o) QU (N )

p=1 ik<jk, 2§i1<---<ip
X Anp(Ap, )"
+ Z QUpdp) Ny, o) QIO )

1 <]k 1<Z'2<---<Z'p

s Z Q(ip>jp)<)\17 ce ) ce Q(i%]é)()\h ce >

11.<Jks 2§2'2<---<Z'p

x Zn:y(j)()\h...)}
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The Cancellation Identity

ZYU)O“’ e
j=2

proves the second JM equation.
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Conjectures about temperature correlation functions.
Recall that

w@)=A;il<;ibgMA%+%A;_D)

The function w(A) = <k log p()) satisfies the functional equation:

1
AA+1)

wA+1)+w(A) =—

If replace () by

A d 1 -
() = I A (2k+1)A

k=00

the JM equations are still valid.
Conjecture. Corresponding solutions describe

(Brs ==+, BrlOIB1, -+ 5 Bi)reg
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Regularisation means the following:

617 ﬁk‘o|ﬁla ; >1“eg —
/del/dek Gr+er, -, B+ €lO|Br, -, Br)

Problem: What is the relation between cg;41 and ;7
LeClair and Mussardo claim that

o 00 o)
O>T — Z / dﬁl / dﬁk <617"' 76k’®|617" : 76k>reg 6_2 éi
k= —00 —00

All together it leads to
Conjecture.

)1 = / De. wie.,T) = = ey (Pen(0))

Problem: To find the measure w(c,, )
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Conjectures about VEV in SG theory. The formula
(vac|Olvac) = tr<C2>w (p(9))

allows generalisation to XYZ model. In that case still
1(0)

ol 7]+ _ g

By scaling limit we obtain SG-model. The expression including T'(\) is quite uni-
versal, in continuous limit it becomes an monodromy matrix of Bazhanov-Lukyanov-
Zamolodchikov. Spinless local operators belong to

@ (Wi @ Wy)

[t is natural to assume that [(O) ~ k, i.e. in continuous limit
deg(0)

ol g

Problem. Can one describe effectively p for every degree and, thus, calculate VEV's?
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Problem. To understand better this formula. In XXZ, XYZ cases to consider free
fermion point.
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