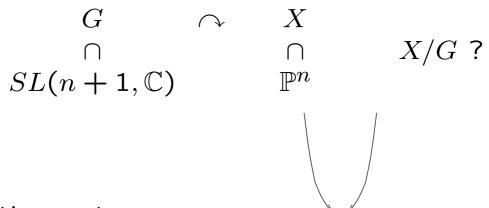
Constant scalar curvature Kähler metrics and stability of algebraic varieties

- 1. Geometric Invariant Theory
- 2. Symplectic reduction
- 3. Balanced varieties, cscK metrics
- 4. Bundle analogue
- 5. Stability of algebraic varieties (Joint work with **JULIUS ROSS**)

Geometric Invariant Theory



G-action not proper.

Quotient not Hausdorff (not separated).

GIT chooses certain "unstable" orbits to remove to give a projective quotient.

Also identifies some "semistable" orbits to compactify quotient.

$$(X, L = \mathfrak{O}(1)) \longleftrightarrow \bigoplus_{r} H^{0}(X, \mathfrak{O}(r)),$$
$$X/G \longleftrightarrow \bigoplus_{r} H^{0}(X, \mathfrak{O}(r))^{G}.$$
$$(f_{1} = 0 = \ldots = f_{k}) \subset \mathbb{P}^{n} \longleftrightarrow \frac{\mathbb{C}[x_{0}, \ldots, x_{n}]}{(f_{1}, \ldots, f_{k})}.$$

G acts on \mathbb{C}^{n+1} so on $\mathbb{O}(-1) \to \mathbb{P}^n$ so on $\mathbb{O}(r) \to X$. $H^0(X, \mathbb{O}(r)) = \{ \text{degree } r \text{ homogeneous polynomials on } \widetilde{X} \subset \mathbb{C}^{n+1} \}.$ $x \in X$ semistable iff $\exists f \in H^0(X, \mathcal{O}(r))^G$ such that $f(x) \neq 0$.

So the Kodaira "embedding" of X/G,

$$X \longrightarrow \mathbb{P}((H^0(X, \mathcal{O}(r))^G)^*),$$

$$x \mapsto ev_x \qquad (ev_x(f) := f(x)),$$

is well defined at x; i.e. $ev_x \neq 0.$

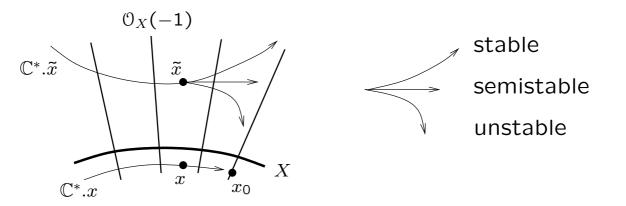
x is stable iff $\bigoplus_r H^0(X, \mathcal{O}(r))^G$ separates orbits at x and the stabiliser of x is finite.

Theorem 1 [Mumford] $x \text{ is stable } \iff G.\tilde{x} \text{ is closed in } \mathbb{C}^{n+1} \text{ and}$ $\dim G.\tilde{x} = \dim G.$ $(G.\tilde{x} \text{ just closed} = \text{polystable.})$ $x \text{ is semistable } \iff 0 \notin \overline{G.\tilde{x}}.$ **Theorem 2** [Hilbert-Mumford criterion] The same result is true iff it is true for all one parameter subgroups $(1-PS) \mathbb{C}^* \subset SL(n+1,\mathbb{C})$. So everything reduces to the \mathbb{C}^* -action on the line over the limit point $x_0 = \lim_{\lambda \to 0} \lambda . x$. x_0 fixed point of \mathbb{C}^* -action, so get action on $\mathcal{O}_{x_0}(-1)$.

Weight $\rho \in \mathbb{Z}$ of action, $\lambda \mapsto \lambda^{\rho}$,

- $\rho < 0$ stable
- $\rho = 0$ semistable
- $\rho > 0$ unstable

So "just" compute this weight for all $\mathbb{C}^* \subset$ $SL(n+1,\mathbb{C})$; x is stable \iff weight always < 0.



Fundamental example – points in \mathbb{P}^1

n points in $\mathbb{P}^1 \leftrightarrow 0$ -dim algebraic subvariety!

(Points with multiplicities \leftrightarrow length-*n* 0-dim subscheme)

$$\begin{aligned} SL(2,\mathbb{C}) &\curvearrowright \mathbb{P}^1 = \mathbb{P}(\mathbb{C}^2) \\ \Rightarrow SL(2,\mathbb{C}) &\curvearrowright S^n(\mathbb{C}^2)^* \\ &= \{ \deg n \text{ polys on } \mathbb{C}^2 \} = H^0(\mathcal{O}_{\mathbb{P}^1}(n)). \end{aligned}$$

But $\{n \text{ points}\} = \mathbb{P}(H^0(\mathcal{O}_{\mathbb{P}^1}(n)))$ as roots of the degree *n* polynomial.

Theorem 3 n points in \mathbb{P}^1 . Semistable \iff each multiplicity $\leq n/2$. Stable \iff each multiplicity < n/2. *Proof.* Diagonalise a given $\mathbb{C}^* \subset SL(2,\mathbb{C})$:

 $\begin{pmatrix} \lambda^k & 0\\ 0 & \lambda^{-k} \end{pmatrix}$ w.r.t. [x : y] coords on \mathbb{P}^1 . $(k \ge 0.)$

Polynomial $f = \sum_{i=0}^{n} a_i x^i y^{n-i}$. λf tends to ∞ iff there are more ys than xs in a nonzero summand.

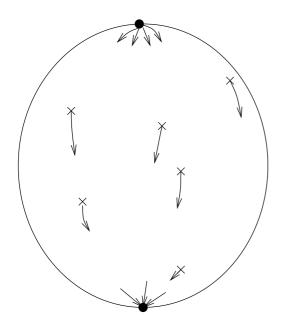
I.e. stable unless $a_i = 0$ for i < n/2. I.e. stable so long as f does not vanish to order $\geq n/2$ at x = 0, $\forall \mathbb{C}^* \subset SL(2, \mathbb{C})$.

Alternatively, use Hilbert-Mumford criterion.

Proof. After rescaling, $\lambda f \to f_0 = a_j x^j y^{n-j}$, where j is smallest such that $a_j \neq 0$. $(f = a_j x^j y^{n-j} (1 + \frac{a_{j+1}}{a_j} x y^{-1} + \dots)$

Weight on $\mathbb{C}.f_0$ is k(j - (n - j)) = k(2j - n). So stable $\iff k(2j - n) < 0 \iff j < n/2$ as before.

Subgroup moves all points to the "attractive" fixed point at x = 0 (weight -k) except those stuck at "repulsive" fixed point y = 0 (weight +k).



So total weight negative unless \geq half the points are at y = 0.

So stability generic; unstable only if "too singular" – destabilised by high multiplicity singularity.

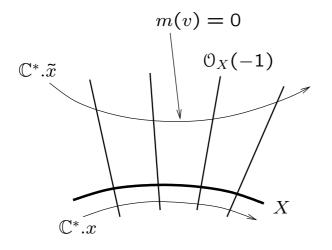
Symplectic reduction

 $G \subset SL(N + 1, \mathbb{C})$ has compact subgroup $K = G \cap SU(N + 1)$. $\mathfrak{g} = \mathfrak{k} + i\mathfrak{k}$. K acts on \mathbb{P}^N , preserves J and g, and so ω too.

So $\forall v \in \mathfrak{k} = LK$ the infinitesimal action X_v is Hamiltonian, $X_v \lrcorner \omega = dm_v$. i.e. $(X_v = J \nabla m_v)$

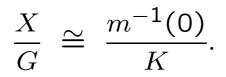
Gives moment map $m: X \to \mathfrak{k}^*$. (Collection of r hamiltonians m_v , $r = \dim K$.)

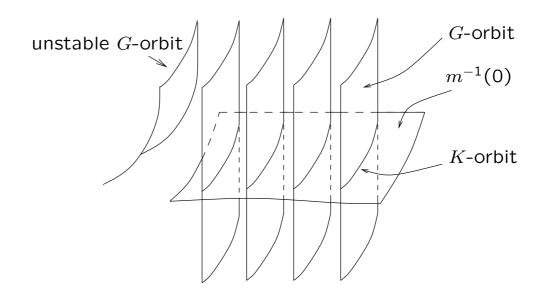
 $m_v = \text{derivative down } (0,\infty) \subset \mathbb{C}^*$ orbit of $\log ||\lambda \tilde{x}||_{\lambda \in (0,\infty)}$, i.e. down $JX_v = X_{iv}$.



(Poly)Stable $\iff ||\lambda \tilde{x}||$ achieves min on all \mathbb{C}^* -orbits $\iff m(v) = 0$ somewhere on orbit $\forall v$.

Theorem 4 [Kempf-Ness]





 $m^{-1}(0)$ provides slice to $i\mathfrak{k} \subset \mathfrak{g} = \mathfrak{k} + i\mathfrak{k}$ part of orbit; *K*-equivariant.

(Nonlinear generalisation of $V/W \cong W^{\perp}$ for $W \leq V$ vector spaces.)

E.g.
$$U(1) \subset \mathbb{C}^* \curvearrowright \mathbb{C}^n$$
, moment map $= |\underline{z}|^2 - a^2$.
$$\frac{\mathbb{C}^n \setminus \{0\}}{\mathbb{C}^*} \cong \frac{S^{2n-1} = \{\underline{z} : |\underline{z}|^2 = a^2\}}{U(1)} \cong \mathbb{P}^{n-1}.$$

E.g. n points in \mathbb{P}^1 again.

 $SL(2,\mathbb{C}) \supset SU(2) \curvearrowright \mathbb{P}^1 \xrightarrow{m} \mathfrak{su}(2)^*$

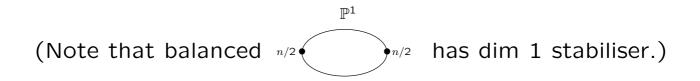
is the inclusion $S^2 \subset \mathbb{R}^3$.

Adding gives, for n points, $m=\sum_{i=1}^n m_i$: $S^n \mathbb{P}^1 \longrightarrow \mathbb{R}^3,$

the sum of n points in \mathbb{R}^3 ("centre of mass").

So $m^{-1}(0) = \{ \text{Balanced configurations} \}$ (Centre of mass $0 \in \mathbb{R}^3 \}$).

Stable $\iff \exists SL(2,\mathbb{C})$ transformation of \mathbb{P}^1 such that points are balanced \iff mass at each point < n/2.



Polarised algebraic varieties (X, L)

 $X \hookrightarrow \mathbb{P}(H^0(X, L^r)^*) = \mathbb{P}^N, \quad r \gg 0.$

Defines a point in $\operatorname{Hilb} \subset Gr \subset \mathbb{P}^M$ by the subspace

 $H^{0}(\mathbb{P}^{N}, \mathscr{I}_{X}(k)) \subset H^{0}(\mathbb{P}^{N}, \mathfrak{O}(k)) = S^{k}H^{0}(X, L^{r})$ of deg k polys on \mathbb{P}^{N} vanishing on X.

I.e. point of $\Lambda^{\dim H^0_{\mathbb{P}^N}(\mathscr{I}_X(k))}S^kH^0(X,L^r), r,k\gg 0.$

Divide by autos $SL(N+1, \mathbb{C})$ of \mathbb{P}^N to get moduli of polarised varieties.

Choice of line bundle on Hilb \Rightarrow notion of stability for (X, L).

Moment map for appropriate ample line bundle / symplectic structure on Hilb.

Fix metric on \mathbb{C}^{N+1} and so g_{FS} on \mathbb{P}^N . Let $m: \mathbb{P}^N \to \mathfrak{su}(N+1)^*$ denote the usual moment map.

Then (Donaldson) moment map takes $X \subset \mathbb{P}^N$ to the centre of mass

$$\int_X m \operatorname{vol}_{FS} \in \mathfrak{su}(N+1)^*.$$

Zeros of moment map = Balanced varieties $X \subset \mathbb{P}^N$. (Equivalently, orthonormal basis for $\mathbb{C}^{N+1} \cong H^0(\mathcal{O}_X(1))^*$ is orthonormal in L^2 -metric induced by $g_{FS}|_X$.)

Theorem 5 [Zhang/Luo/Paul/Wang] Balanced + finite automorphism group \Rightarrow HM stable.

 $s_i \in H^0(\mathcal{O}_X(1)) = H^0(X, L^r)$ L^2 -orthonormal basis. Bergman kernel (defines projection of sections of $\mathcal{O}_X(1)$ onto holomorphic sections)

$$B_r(x) = \sum_i s_i(x)^* \otimes s_i(x)$$

is const.id $\iff X \subset \mathbb{P}^N$ is balanced ($\iff s_i$ orthonormal in original metric on $\mathbb{C}^{N+1} \cong H^0(X, L^r)$).

As $r \to \infty$ ($\Rightarrow N \to \infty$) *B* has an asymptotic expansion (Catlin, Z. Lu, W.-D. Ruan, Tian, Zelditch)

$$B_r(x) \sim r^n + \frac{1}{2\pi} s(g_{FS}) r^{n-1} + O(r^{n-2}),$$

where s is the scalar curvature of g_{FS} . Roughly, balanced metrics "tend towards" cscK metrics with $[\omega] = [c_1(L)]$.

Theorem 6 [Donaldson] (Aut(X) discrete.) (X, L) admits cscK metric in $[c_1(L)] \Rightarrow (X, L^r)$ balanced for $r \gg 0$.

 $(Zhang \Rightarrow HM$ -stable, Chen-Tian \Rightarrow K-semistable.)

Partial result in converse direction: If $(X, L^r) \subset \mathbb{P}^{N(r)}$ balanced for $r \gg 0$ and resulting $\omega_{FS,r}$ convergent, then limit metric has csc. Also generalisation due to Mabuchi for arbitrary X. Donaldson and Fujiki also give an infinite dimensional GIT/moment map formulation. (Think of as $\lim r \to \infty$, where balanced condition has become cscK condition.)

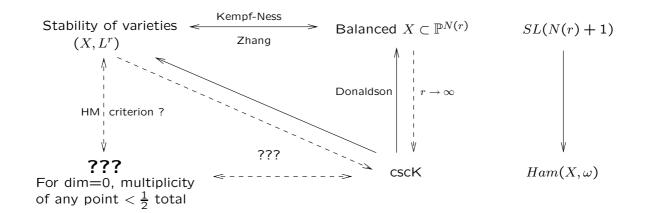
(Hamiltonian diffeomorphisms) $\curvearrowright (X, \omega = c_1(L))$ so \curvearrowright {compatible complex structures on X}.

Moment map = scalar curvature + const.

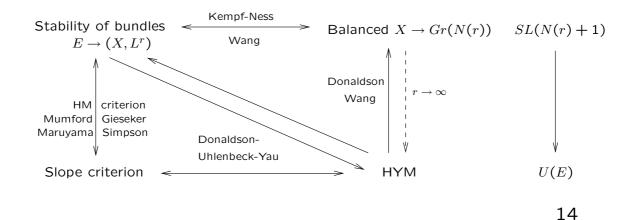
Zeros = cscK metrics.

(When $L = K_X^{\pm n}$, $\omega = \mp nc_1(X)$, cscK=KE. Yau suggested a relationship stability \leftrightarrow KE metrics. Tian proved this for surfaces and suggested the K-stability / cscK relationship.)

So we have the infinite dimensional analogue of the balanced condition for points in \mathbb{P}^1 (i.e. cscK metrics) and part of the relationship to stability, but not the algebro-geometric description of stability. I.e. the Hilbert-Mumford criterion, giving the analogue of the multiplicity < n/2 condition, is missing.



In the bundle case, all of this is worked out:



Moduli of bundles over (X, L)

Given $E \to X$, form $E(r) := E \otimes L^r$ for $r \gg 0$, $H^0(E(r)) \to E(r) \to 0$ on X. Gives map $X \to Gr$. $SL(H^0(E(r))) \curvearrowright Maps(X, Gr)$. $Gr \subset \mathfrak{su}(N_r + 1)^*$ $(N_r = \dim H^0(E(r)).)$

So can again talk about balanced $X \to Gr$ and asymptotics as $r, N_r \to \infty$. (Donaldson)

Gieseker stable bundles admit balanced maps $X \to Gr$. Pulling back the canonical quotient connection on Gr and taking $\lim_{r\to\infty}$, if it exists, gives a HYM connection (X.-W. Wang)

Atiyah-Bott gave an infinite dimensional GIT / moment map formulation. $U(E) = \{\text{unitary gauge transformations}\},\$ $\mathcal{A} = \{\text{connections } A \text{ with } F_A^{0,2} = 0\}.$ $U(E) \curvearrowright \mathcal{A}.$ Moment map = HYM = $\omega^{n-1} \land F_A^{1,1}.$ Donaldson-Uhlenbeck-Yau: E slope polystable \Rightarrow HYM. In this case HM-criterion can be manipulated (Gieseker, Maruyama, Simpson) to give an algebrogeometric understanding of stability.

Hilbert poly
$$h^{0}(E(r)) = a_{0}r^{n} + a_{1}r^{n-1} + \dots$$

 $a_{0} = \operatorname{rk} E \int_{X} \omega^{n}/n!, \quad a_{1} = \int_{X} c_{1}(E) \cdot \omega^{n-1}/(n-1)! + \varepsilon(X).$

Reduced Hilbert poly $p_E(r) = r^n + \frac{a_1}{a_0}r^{n-1} + \dots$

 $E \text{ stable } \iff \forall F \hookrightarrow E, \ p_F(r) < p_E(r) \quad r \gg 0.$

$$E \text{ slope-stable} \iff \frac{a_1(F)}{a_0(F)} < \frac{a_1(E)}{a_0(E)} \\ \iff \mu(F) < \mu(E).$$

 $(\mu(E) = \int_X c_1(E) . \omega^{n-1} / \operatorname{rk}(E)$. Corresponds to a different line bundle on moduli space – Jun Li.)

So bundles/sheaves destabilised by subsheaves $F \subset E$. Can $\mathbb{P}(F) \subset \mathbb{P}(E)$ destabilise as varieties ? Can subschemes $Z \subset (X, L)$ destabilise? (cf. length $\geq n/2$ subschemes of n points in \mathbb{P}^1 .)

A $\mathbb{C}^* \subset SL(M + 1, \mathbb{C})$ orbit of $X \in Hilb \subset \mathbb{P}^M$ gives a \mathbb{C}^* -equivariant flat family (test configuration) $\mathscr{X} \to \mathbb{C}$

For the HM-criterion one calculates the weight $w_{r,k}$ of the \mathbb{C}^* -action on

$$\wedge^{\max} H^{0}(\mathscr{X}_{0}, L^{rk}_{0})^{*} \otimes \wedge^{\max} S^{k} H^{0}(\mathscr{X}_{0}, L^{r}_{0}).$$

$$w_{r,k} = a_{n+1}(r)k^{n+1} + a_n(r)k^n + \dots,$$

where

$$a_i(r) = a_{in}r^n + a_{i,n-1}r^{n-1} + \dots$$

Definition 7 The $\mathbb{C}^* \subset SL(M + 1, \mathbb{C})$ destabilises (X, L) if $w_{r,k} \succ 0$ in the following sense:

- HM(r)-unstable: $w_{r,k} > 0$ for all $k \gg 0$,
- Asymptotically HM-unstable: for all $r \gg 0$, $w_{r,k} > 0$ for all $k \gg 0$,
- Chow(r)-unstable: leading k^{n+1} -coefficient $a_{n+1}(r) > 0$,
- Asymptotically Chow unstable: $a_{n+1}(r) > 0$ for $r \gg 0$,
- K-unstable: leading coefficient $a_{n+1,n} > 0$.

These correspond to different line bundles on Hilb: the standard one, the Chow line, and the Paul-Tian line.

 $a_{n+1,n}$ is the Donaldson-Futaki invariant of the \mathbb{C}^* -action on (\mathscr{X}_0, L) .

Slope for K-stability

$$Z \subset (X, L)$$

$$h^{0}(\mathcal{O}_{X}(r)) = a_{0}r^{n} + a_{1}r^{n-1} + \dots$$

$$h^{0}(\mathscr{I}_{Z}^{xr}(r)) = a_{0}(x)r^{n} + a_{1}(x)r^{n-1} + \dots$$

$$a_{i}(x) \text{ polynomials in } x \in \mathbb{Q} \cap [0, \epsilon(Z)) \text{ for } r \gg 0.$$
(Seshadri constant $\epsilon(Z)$ defined so that $\mathscr{I}_{Z}^{xr}(r)$ generated by global sections for $x < \epsilon(Z)$ for $r \gg 0$).

$$a_0(0) = a_0$$
, and $a_1(0) = a_1$ for X normal.
 $a_0 = \frac{\int_X \omega^n}{n!}, \ a_1 = \frac{\int_X c_1(X)\omega^{n-1}}{2(n-1)!}.$

For any $c \leq \epsilon(Z)$, define slope of Z to be

$$\mu_c(\mathscr{I}_Z) = \frac{\int_0^c a_1(x) + \frac{a'_0(x)}{2} dx}{\int_0^c a_0(x) dx}.$$

 $Z = \emptyset$ gives

$$\mu(X) = \frac{a_1}{a_0}.$$

Theorem 8

 $\begin{array}{ll} \mathsf{K-}(semi)stable \implies slope \ (semi)stable:\\ \mu_c(\mathscr{I}_Z) \leq \mu(X) \quad \forall \ closed \ subschemes \ Z \subset X.\\ (Slope \ stability: \ \mu_c(\mathscr{I}_Z) < \mu(X) \quad \forall c \in (0, \epsilon(Z)) \ \text{and} \ \forall c \in (0, \epsilon(Z)] \ if \\ \epsilon(Z) \in \mathbb{Q} \ and \ \mathscr{I}_Z^{\epsilon(Z)r}(r) \ saturated \ by \ global \ sections \ for \ r \gg 0. \end{array}$

Corollary 9

If $\mu_c(\mathscr{I}_Z) > \mu(X)$ then X admits no cscK metric in the class of $c_1(L)$. (Donaldson & Chen-Tian: cscK \implies K-semistable.)

Examples.

• $F \subset E$ destabilising subbundle $\implies \mathbb{P}(F) \subset \mathbb{P}(E)$ destabilises, for suitable polarisations $\pi^* L^m \otimes \mathcal{O}_{\mathbb{P}(E)}(1), m \gg 0.$ (Partial converse (Hong): E stable $\Rightarrow \mathbb{P}(E)$ cscK for $m \gg 0.$) And for **all** polarisations if the base is a curve, so in this case (modulo automorphisms)

 $\mathbb{P}(E)$ cscK $\iff E$ stable $\iff E$ HYM.

(\Leftarrow by Narasimhan-Seshadri, projectively flat connection.)

- -1-curves on del Pezzo surfaces for appropriate L. So Aut(X) reductive (or trivial) does not imply cscK (unless $L \neq K^{-1}$, by Tian).
- \mathbb{P}^2 blown up in one point. Aut (X) not reductive \implies not stable. Destabilised by the -1-curve for all polarisations.
- Generically stable varieties can specialise to unstable ones. Move two -1-curves together on a del Pezzo to give a limit -2curve.

(Blow up 2 "infinitely near" points: blow up one, then another on the exceptional curve.)

The -2-curve destabilises for suitable L.

• Calabi-Yau manifolds, and varieties with canonical singularities and $mK_X \sim 0$ are slope stable.

- Canonically polarised varieties with canonical singularities (i.e. the canonical models of Mori theory) are slope stable.
- Partial results towards converse (i.e. slope stability ⇒ K-stability) complete for curves. Gives geometric (rather than analytic) proof that curves are K-stable (P¹ is K-polystable).

Similarly Chow-slope results (below) and converse give geometric (rather than combinatorial) proof that curves are Chow stable (\mathbb{P}^1 is Chow polystable).

Slope for Chow stability

 $Z \subset (X, \mathcal{O}_X(1)) \subset (\mathbb{P}^N, \mathcal{O}(1))$ embedded by sections of $\mathcal{O}_X(1)$.

$$h^{0}(\mathcal{O}_{X}(r)) = a_{0}r^{n} + a_{1}r^{n-1} + \dots$$
$$h^{0}(\mathscr{I}_{Z}^{xr}(r)) = a_{0}(x)r^{n} + a_{1}(x)r^{n-1} + \dots$$
$$\forall c \leq \epsilon(Z) \text{ define Chow slope of } Z:$$

$$Ch_c(\mathscr{I}_Z) = \frac{\sum_{i=1}^c h^0(\mathscr{I}_Z^i(1))}{\int_0^c a_0(x) dx}.$$

 $Z = \emptyset$ gives

$$Ch(X) = \frac{h^0(\mathcal{O}_X(1))}{a_0} = \frac{N+1}{a_0}$$

Theorem 10

Chow (semi)stable \implies slope (semi)stable:

$$Ch_c(\mathscr{I}_Z) \underset{(\leq)}{<} Ch(X) \quad \forall Z \subset X.$$

23

•

Review of Hilbert-Mumford criterion for bundles or sheaves over (X, L)

Given $E \to X$, form $E(r) := E \otimes L^r$ for $r \gg 0$, making E(r) a quotient of a trivial bundle:

$$H^{0}(E(r)) \to E(r) \to 0$$
 on X. (11)
isomorphism $H^{0}(E(r)) \cong \mathbb{C}^{P(r)}$

Fix isomorphism $H^{\cup}(E(r))$ $\implies [E] \in \text{Quot}(\underline{\mathbb{C}}^{P(r)}).$

(Quot subset of a Grassmannian: quotient (11) classified by induced vector space quotient $H^0(E(r)) \otimes H^0(L^R) \twoheadrightarrow H^0(E(r+R))$.) Divide by $SL(P(r)) \implies$ moduli of sheaves.

HM-criterion gives (Gieseker, Maruyama, Simpson) algebro-geometric criterion for stability (dependent on choice of line bundle on Quot). A 1-PS $\mathbb{C}^* \subset SL(P(r))$ gives a filtration of E

$$F_0 \subset F_1 \subset \ldots \subset F_p \subset E$$
,

 $(F_i \subset E \text{ image of } i \text{th piece of weight filtration of } H^0(E(r)) \text{ under}$ map (11)) and a degeneration of E to

 $E_0 := F_0 \oplus F_1/F_0 \oplus \ldots \oplus F_p/F_{p-1} \oplus E/F_p.$ Different 1-PSs can give the same filtration. But to every filtration there are canonical 1-PSs with the most unstable (largest) weights (for filtration $F_i \subset E$ choose weight filtration $H^0(F_i(r)) \subset H^0(E(r))$).

So need only consider these 1-PSs. Weight = positive linear combination of weights of the canonical 1-PSs associated to the splittings

$$F_i \oplus E/F_i$$
.

So need only control the weights of these simpler splittings. So stability controlled by single subsheaves $F \subset E$.

Weight calculations give the following.

Hilbert poly
$$h^{0}(E(r)) = a_{0}r^{n} + a_{1}r^{n-1} + \dots$$

 $a_{0} = \operatorname{rk} E \int_{X} \omega^{n}/n!, \quad a_{1} = \int_{X} c_{1}(E) \cdot \omega^{n-1}/(n-1)! + \varepsilon(X).$

Reduced Hilbert poly $p_E(r) = r^n + \frac{a_1}{a_0}r^{n-1} + \dots$

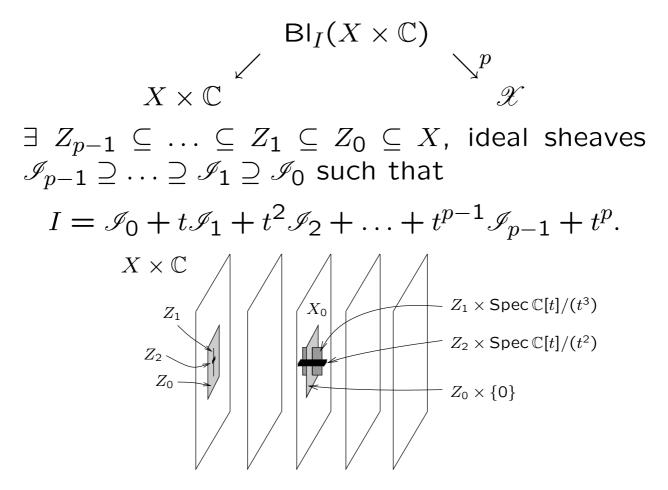
$$E \text{ stable } \iff \forall F \hookrightarrow E, \ p_F(r) < p_E(r) \quad r \gg 0.$$

$$E \text{ slope-stable} \iff \frac{a_1(F)}{a_0(F)} < \frac{a_1(E)}{a_0(E)} \\ \iff \mu(F) < \mu(E).$$

 $\mu(E) = \int_X c_1(E) \cdot \omega^{n-1} / \operatorname{rk}(E)$. Corresponds to a different line bundle on moduli space – Jun Li.

The proofs and converse for varieties

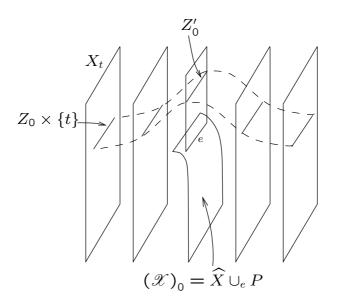
Any test configuration $(\mathscr{X}, \mathcal{L})$ is \mathbb{C}^* -birational to $(X \times \mathbb{C}, L)$, so is (a contraction p of) the blow up of $X \times \mathbb{C}$ in a \mathbb{C}^* -invariant ideal I supported on the central fibre. $p^*\mathcal{L} = L(-cE)$.



Show weights more stable than normalisation of blow up of $X \times \mathbb{C}$ in I, so consider only these.

 $p = 1 \implies I = \mathscr{I}_0 + t \implies$ blow up in $Z_0 \times \{0\} \subset X \times \mathbb{C}$ = deformation to normal cone of Z_0 .

Exceptional divisor P (= normal cone of Z_0 = $\mathbb{P}(\nu_{Z_0} \oplus \underline{\mathbb{C}}) \to Z_0$ if $Z_0 \subset X$ smooth).



 $\mathbb{C}^* \ni \lambda$ acts on blow up (as $[1 : \lambda] = [\lambda^{-1} : 1]$ on $\mathbb{P}(\nu_{Z_0} \oplus \underline{\mathbb{C}})$ in smooth case); equivariant line bundle $\pi^*L(-cP)$.

Deformation to normal cone of Z replaces $H^0_X(L^r)$ (filtered by $H^0(L^r \otimes \mathscr{I}^j_Z)$) by, on central fibre, associated graded of filtration:

$$H^0_X(\mathscr{I}^{cr}_Z(r))\oplus H^0_X\left(\mathscr{I}^{cr-1}_Z(r)/\mathscr{I}^{cr}_Z(r)\right)\oplus\ldots$$

 $\oplus H^0_X\left(\mathscr{I}_Z(r)/\mathscr{I}_Z^2(r)\right) \oplus H^0_X(\mathfrak{O}_Z(r)).$

This is the weight space decomposition \implies weight on top exterior power is

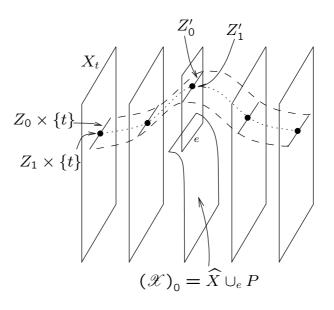
$$w_{r} = -\sum_{j=1}^{cr} jh_{X}^{0} \left(\mathscr{I}_{Z}^{cr-j}(r) / \mathscr{I}_{Z}^{cr-j+1}(r) \right)$$
$$= -\sum_{j=1}^{cr} h^{0} (\mathscr{I}_{Z}^{j}(r)) - crh^{0} (\mathfrak{O}_{X}(r)).$$

Trapezium rule \implies to $O(r^{n-1})$,

$$-\left(\int_{0}^{c} a_{0}(x)dx\right)r^{n+1} + \int_{0}^{c} \left(a_{1}(x) + \frac{a_{0}'(x)}{2}\right)dx r^{n}.$$

Normalising (to make 1-PS lie in $SL(H^0(\mathcal{O}_X(r))^*)$ instead of GL) gives slope criterion.

Proper transform $\overline{Z_0 \times \mathbb{C}}$ of $Z_0 \times \mathbb{C}$:



Gives $Z'_{p-1} \subseteq \ldots \subseteq Z'_1 \subset Z'_0$. Now blow up in Z'_1 , giving $Z''_{p-1} \subseteq \ldots \subseteq Z''_1$; next blow up Z''_2 etc.

Theorem 12 The blow up of $X \times \mathbb{C}$ in $I = \mathscr{I}_0 + t\mathscr{I}_1 + \ldots + t^{p-1}\mathscr{I}_{p-1} + t^p$ is a contraction of this iterated blow up.

Theorem 13 At *i*th stage, blow up $Z_i^{(i)}$. If all thickenings of $\overline{(Z_i \times \mathbb{C})}$ are flat over \mathbb{C} then this adds $w(Z_i)$ to the weight, to $O(r^n)$. $(w(Z_i)$ is weight on deformation to normal cone of Z_i .)

So if this flatness holds, total weight is $w(Z_0)$ + ...+ $w(Z_{p-1})$. Stability iff

 $w(Z_0) + \ldots + w(Z_{p-1}) \prec 0 \iff w(Z) \prec 0 \ \forall Z.$ (14)

Holds for Z_i smooth, or simple normal crossing (snc) divisors.

In general, resolution of singularities:

 $(X \supset Z_i) \xleftarrow{\pi} (\widehat{X} \supset m_i D_i), \quad D_i \text{ snc divisors.}$ Work with (\widehat{X}, π^*L) to give (14) for X normal (to equate $H^0(X, L)$ with $H^0(\widehat{X}, \pi^*L)$) so long as $m_i = 1 \quad \forall i$. D_i nonreduced ? E.g. $\mathscr{I}_0 = (x^2)$ so deformation to normal cone is blow up in (x^2, t) .

Square \mathbb{C}^* -action (then halve the weight) \implies blow up in (x^2, t^2) .

Take integral closure (normalise blow up) \implies get more unstable test configuration by blowing up in $(x^2, xt, t^2) = (x, t)^2$. I.e. just blow up in (x, t) with different line bundle $(E \mapsto 2E \text{ or } c \mapsto 2c)$.

So can deal with D_i with multiplicities m_i when they all have the same support.

So can show slope stability = stability for curves (K- and Chow).

Would like to combine two approaches to deal with, for instance, $D_0 = (x^2y = 0)$, $D_1 = (x = 0)$. ??