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Geometric Invariant Theory

G y X
∩ ∩ X/G ?

SL(n + 1, C) Pn

G-action not proper.

Quotient not Hausdorff (not separated).

GIT chooses certain “unstable” orbits to re-

move to give a projective quotient.

Also identifies some “semistable” orbits to compactify quotient.

(X, L = O(1)) ←→
⊕

r
H0(X, O(r)),

X/G ←→
⊕

r
H0(X, O(r))G.

(f1 = 0 = . . . = fk) ⊂ Pn ←→
C[x0, . . . , xn]

(f1, . . . , fk)
.

G acts on Cn+1 so on O(−1)→ Pn so on O(r)→ X.

H0(X, O(r)) = {degree r homogeneous polynomials on X̃ ⊂ Cn+1}.
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x ∈ X semistable iff ∃f ∈ H0(X, O(r))G such

that f(x) 6= 0.

So the Kodaira “embedding” of X/G,

X 99K P((H0(X, O(r))G)∗),

x 7→ evx (evx(f) := f(x)),

is well defined at x; i.e. evx 6= 0.

x is stable iff
⊕

r H0(X, O(r))G separates orbits

at x and the stabiliser of x is finite.

Theorem 1 [Mumford]

x is stable ⇐⇒ G.x̃ is closed in Cn+1 and

dimG.x̃ = dimG.

(G.x̃ just closed = polystable.)

x is semistable ⇐⇒ 0 6∈ G.x̃ .
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Theorem 2 [Hilbert-Mumford criterion]

The same result is true iff it is true for all one

parameter subgroups (1-PS) C∗ ⊂ SL(n+1, C).

So everything reduces to the C∗-action on the

line over the limit point x0 = limλ→0 λ.x.

x0 fixed point of C∗-action, so get action on Ox0
(−1).

Weight ρ ∈ Z of action, λ 7→ λρ,

• ρ < 0 stable

• ρ = 0 semistable

• ρ > 0 unstable

So “just” compute this weight for all C∗ ⊂
SL(n + 1, C); x is stable ⇐⇒ weight always

< 0.

stable

semistable

unstable

X
C∗.x

x̃

x

OX(−1)

C∗.x̃

x0
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Fundamental example – points in P1

n points in P1 ↔ 0-dim algebraic subvariety!

(Points with multiplicities ↔ length-n 0-dim subscheme)

SL(2, C) y P1 = P(C2)

⇒ SL(2, C) y Sn(C2)∗

= {degn polys on C2} = H0(OP1(n)).

But {n points} = P(H0(OP1(n))) as roots of

the degree n polynomial.

Theorem 3 n points in P1.

Semistable ⇐⇒ each multiplicity ≤ n/2.

Stable ⇐⇒ each multiplicity < n/2.
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Proof. Diagonalise a given C∗ ⊂ SL(2, C) :
(

λk 0

0 λ−k

)
w.r.t. [x : y] coords on P1. (k ≥ 0.)

Polynomial f =
∑n

i=0 aix
iyn−i.

λ.f tends to ∞ iff there are more ys than xs in

a nonzero summand.

I.e. stable unless ai = 0 for i < n/2.

I.e. stable so long as f does not vanish to or-

der ≥ n/2 at x = 0, ∀C∗ ⊂ SL(2, C). �

Alternatively, use Hilbert-Mumford criterion.

Proof. After rescaling, λ.f → f0 = ajx
jyn−j,

where j is smallest such that aj 6= 0.

(f = ajxjyn−j(1 + aj+1

aj
xy−1 + . . . .)

Weight on C.f0 is k(j − (n− j)) = k(2j − n).

So stable ⇐⇒ k(2j − n) < 0 ⇐⇒ j < n/2 as

before. �
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Subgroup moves all points to the “attractive”

fixed point at x = 0 (weight −k) except those

stuck at “repulsive” fixed point y = 0 (weight

+k).

So total weight negative unless ≥ half the points

are at y = 0.

So stability generic; unstable only if “too sin-

gular” – destabilised by high multiplicity singu-

larity.
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Symplectic reduction

G ⊂ SL(N + 1, C) has compact subgroup K =

G ∩ SU(N + 1). g = k + ik.

K acts on PN , preserves J and g, and so ω too.

So ∀v ∈ k = LK the infinitesimal action Xv is

Hamiltonian, Xv y ω = dmv. i.e. (Xv = J∇mv)

Gives moment map m : X → k∗.

(Collection of r hamiltonians mv, r = dimK.)

mv = derivative down (0,∞) ⊂ C∗ orbit of

log ||λx̃||
λ∈(0,∞)

, i.e. down JXv = Xiv.

X
C∗.x

m(v) = 0

C∗.x̃
OX(−1)

(Poly)Stable ⇐⇒ ||λx̃||

achieves min on all C∗-orbits

⇐⇒ m(v) = 0 somewhere

on orbit ∀v.
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Theorem 4 [Kempf-Ness]

X

G
∼=

m−1(0)

K
.

unstable G-orbit

K-orbit

m−1(0)

G-orbit

m−1(0) provides slice to ik ⊂ g = k + ik part of

orbit; K-equivariant.

(Nonlinear generalisation of V/W ∼= W⊥ for W ≤ V vector spaces.)

E.g. U(1) ⊂ C∗ y Cn, moment map = |z|2−a2.

Cn\{0}

C∗
∼=

S2n−1 = {z : |z|2 = a2}

U(1)
∼= Pn−1.
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E.g. n points in P1 again.

SL(2, C) ⊃ SU(2) y P1 m
−→ su(2)∗

is the inclusion S2 ⊂ R3.

Adding gives, for n points, m =
∑n

i=1 mi:

SnP1 −→ R3,

the sum of n points in R3 (“centre of mass”).

So m−1(0) = {Balanced configurations}

(Centre of mass 0 ∈ R3).

Stable ⇐⇒ ∃ SL(2, C) transformation of P1

such that points are balanced

⇐⇒ mass at each point < n/2.

n/2 n/2

P1

has dim 1 stabiliser.)(Note that balanced
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Polarised algebraic varieties (X, L)

X ↪→ P(H0(X, Lr)∗) = PN , r � 0.

Defines a point in Hilb⊂ Gr ⊂ PM by the sub-

space

H0(PN , IX(k)) ⊂ H0(PN , O(k)) = SkH0(X, Lr)

of deg k polys on PN vanishing on X.

I.e. point of ΛdimH0

PN(IX(k))SkH0(X, Lr), r, k � 0.

Divide by autos SL(N+1, C) of PN to get mod-

uli of polarised varieties.

Choice of line bundle on Hilb ⇒ notion of sta-

bility for (X, L).
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Moment map for appropriate ample line bun-

dle / symplectic structure on Hilb.

Fix metric on CN+1 and so gFS on PN .

Let m:PN → su(N + 1)∗ denote the usual mo-

ment map.

Then (Donaldson) moment map takes X ⊂ PN

to the centre of mass
∫

X
m volFS ∈ su(N + 1)∗.

Zeros of moment map = Balanced varieties

X ⊂ PN . (Equivalently, orthonormal basis for CN+1 ∼= H0(OX(1))∗

is orthonormal in L2-metric induced by gFS|X.)

Theorem 5 [Zhang/Luo/Paul/Wang] Balanced

+ finite automorphism group ⇒ HM stable.
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si ∈ H0(OX(1)) = H0(X, Lr) L2-orthonormal

basis. Bergman kernel (defines projection of sections of

OX(1) onto holomorphic sections)

Br(x) =
∑

i

si(x)
∗ ⊗ si(x)

is const.id⇐⇒ X ⊂ PN is balanced

(⇐⇒ si orthonormal in original metric on CN+1 ∼= H0(X, Lr)).

As r →∞ (⇒ N →∞) B has an asymptotic ex-

pansion (Catlin, Z. Lu, W.-D. Ruan, Tian, Zelditch)

Br(x) ∼ rn +
1

2π
s(gFS)rn−1 + O(rn−2),

where s is the scalar curvature of gFS.

Roughly, balanced metrics “tend towards” cscK

metrics with [ω] = [c1(L)].

Theorem 6 [Donaldson] (Aut(X) discrete.)

(X, L) admits cscK metric in [c1(L)] ⇒ (X, Lr)

balanced for r � 0.

(Zhang⇒ HM-stable, Chen-Tian⇒ K-semistable.)

Partial result in converse direction: If (X, Lr) ⊂ PN(r) balanced for

r � 0 and resulting ωFS,r convergent, then limit metric has csc.

Also generalisation due to Mabuchi for arbitrary X.
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Donaldson and Fujiki also give an infinite di-

mensional GIT/moment map formulation.

(Think of as lim r → ∞, where balanced condition has

become cscK condition.)

(Hamiltonian diffeomorphisms) y (X, ω = c1(L))

so y {compatible complex structures on X}.

Moment map = scalar curvature + const.

Zeros = cscK metrics.

(When L = K±n
X , ω = ∓nc1(X), cscK=KE. Yau suggested a rela-

tionship stability ↔ KE metrics. Tian proved this for surfaces and

suggested the K-stability / cscK relationship.)

13



So we have the infinite dimensional analogue

of the balanced condition for points in P1 (i.e.

cscK metrics) and part of the relationship to

stability, but not the algebro-geometric descrip-

tion of stability. I.e. the Hilbert-Mumford cri-

terion, giving the analogue of the multiplicity

< n/2 condition, is missing.

(X, Lr)

Kempf-Ness

Zhang
Balanced X ⊂ PN(r)Stability of varieties

Donaldson

cscK

r →∞

SL(N(r) + 1)

Ham(X, ω)

In the bundle case, all of this is worked out:

U(E)

SL(N(r) + 1)
Kempf-Ness

Wang
Balanced X → Gr(N(r))Stability of bundles

r →∞
Wang

E → (X, Lr)

Slope criterion

Uhlenbeck-Yau

Donaldson-

Donaldson

HYM

HM criterion

Mumford Gieseker

Maruyama Simpson

For dim=0, multiplicity

of any point < 1
2

total

???
???

HM criterion ?

14



Moduli of bundles over (X, L)

Given E → X, form E(r) := E ⊗ Lr for r � 0,

H0(E(r))→ E(r)→ 0 on X.

Gives map X → Gr.
SL(H0(E(r))) y Maps(X, Gr).
Gr ⊂ su(Nr + 1)∗ (Nr = dimH0(E(r)).)

So can again talk about balanced X → Gr and
asymptotics as r, Nr →∞. (Donaldson)

Gieseker stable bundles admit balanced maps
X → Gr. Pulling back the canonical quotient
connection on Gr and taking limr→∞, if it ex-
ists, gives a HYM connection (X.-W. Wang)

Atiyah-Bott gave an infinite dimensional GIT
/ moment map formulation.
U(E) = {unitary gauge transformations},
A = {connections A with F

0,2
A = 0}.

U(E) y A.
Moment map = HYM = ωn−1 ∧ F

1,1
A .

Donaldson-Uhlenbeck-Yau: E slope polystable
⇒ HYM.
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In this case HM-criterion can be manipulated

(Gieseker, Maruyama, Simpson) to give an algebro-

geometric understanding of stability.

Hilbert poly h0(E(r)) = a0rn + a1rn−1 + . . .

a0 = rk E
∫

X
ωn/n!, a1 =

∫
X

c1(E).ωn−1/(n− 1)! + ε(X).

Reduced Hilbert poly pE(r) = rn+ a1
a0

rn−1+ . . ..

E stable ⇐⇒ ∀F ↪→ E, pF (r) < pE(r) r � 0.

E slope-stable
⇐⇒ a1(F)

a0(F)
< a1(E)

a0(E)

⇐⇒ µ(F ) < µ(E).

(µ(E) =
∫

X
c1(E).ωn−1/ rk (E). Corresponds to a different line bun-

dle on moduli space – Jun Li.)

So bundles/sheaves destabilised by subsheaves

F ⊂ E. Can P(F ) ⊂ P(E) destabilise as vari-

eties ? Can subschemes Z ⊂ (X, L) destabilise?

(cf. length ≥ n/2 subschemes of n points in P1.)
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A C∗ ⊂ SL(M + 1, C) orbit of X ∈Hilb⊂ PM

gives a C∗-equivariant flat family (test con-

figuration) X → C

C

(X0, L0) (Xt, Lt)
∼= (X, L)

∀t 6= 0X

For the HM-criterion one calculates the weight

wr,k of the C∗-action on

ΛmaxH0(X0, Lrk
0 )∗ ⊗ ΛmaxSkH0(X0, Lr

0).

wr,k = an+1(r)k
n+1 + an(r)k

n + . . . ,

where

ai(r) = ainrn + ai,n−1rn−1 + . . . .
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Definition 7 The C∗ ⊂ SL(M + 1, C) desta-

bilises (X, L) if wr,k � 0 in the following sense:

• HM(r)-unstable: wr,k > 0 for all k � 0,

• Asymptotically HM-unstable: for all r �

0, wr,k > 0 for all k � 0,

• Chow(r)-unstable: leading kn+1-coefficient

an+1(r) > 0,

• Asymptotically Chow unstable: an+1(r) >

0 for r � 0,

• K-unstable: leading coefficient an+1,n > 0.

These correspond to different line bundles on Hilb: the standard

one, the Chow line, and the Paul-Tian line.

an+1,n is the Donaldson-Futaki invariant of the C∗-action on (X0, L).
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Slope for K-stability

Z ⊂ (X, L)

h0(OX(r)) = a0rn + a1rn−1 + . . .

h0(I xr
Z (r)) = a0(x)r

n + a1(x)r
n−1 + . . .

ai(x) polynomials in x ∈ Q∩ [0, ε(Z)) for r � 0.

(Seshadri constant ε(Z) defined so that I xr
Z (r) generated by global

sections for x < ε(Z) for r � 0).

a0(0) = a0, and a1(0) = a1 for X normal.

a0 =

∫
X

ωn

n!
, a1 =

∫
X

c1(X)ωn−1

2(n− 1)!
.

For any c ≤ ε(Z), define slope of Z to be

µc(IZ) =

∫ c
0 a1(x) +

a′0(x)
2 dx

∫ c
0 a0(x)dx

.

Z = ∅ gives

µ(X) =
a1

a0
.
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Theorem 8

K-(semi)stable =⇒ slope (semi)stable:

µc(IZ) ≤ µ(X) ∀ closed subschemes Z ⊂ X.

(Slope stability: µc(IZ) < µ(X) ∀c ∈ (0, ε(Z)) and ∀c ∈ (0, ε(Z)] if

ε(Z) ∈ Q and I
ε(Z)r
Z (r) saturated by global sections for r � 0.)

Corollary 9

If µc(IZ) > µ(X) then X admits no cscK met-

ric in the class of c1(L).

(Donaldson & Chen-Tian: cscK =⇒ K-semistable.)

Examples.

• F ⊂ E destabilising subbundle =⇒ P(F ) ⊂

P(E) destabilises, for suitable polarisations

π∗Lm ⊗ OP(E)(1), m� 0.

(Partial converse (Hong): E stable ⇒ P(E) cscK for m� 0.)

And for all polarisations if the base is a

curve, so in this case (modulo automorphisms)

P(E) cscK ⇐⇒ E stable ⇐⇒ E HYM.

(⇐ by Narasimhan-Seshadri, projectively flat connection.)
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• −1-curves on del Pezzo surfaces for appro-

priate L. So Aut (X) reductive (or trivial)

does not imply cscK (unless L 6= K−1, by

Tian).

• P2 blown up in one point. Aut (X) not

reductive =⇒ not stable. Destabilised by

the −1-curve for all polarisations.

• Generically stable varieties can specialise to

unstable ones. Move two −1-curves to-

gether on a del Pezzo to give a limit −2-

curve.

(Blow up 2 “infinitely near” points: blow up one,

then another on the exceptional curve.)

The −2-curve destabilises for suitable L.

• Calabi-Yau manifolds, and varieties with canon-

ical singularities and mKX ∼ 0 are slope

stable.
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• Canonically polarised varieties with canon-

ical singularities (i.e. the canonical models

of Mori theory) are slope stable.

• Partial results towards converse (i.e. slope

stability⇒ K-stability) complete for curves.

Gives geometric (rather than analytic) proof

that curves are K-stable (P1 is K-polystable).

Similarly Chow-slope results (below) and

converse give geometric (rather than com-

binatorial) proof that curves are Chow sta-

ble (P1 is Chow polystable).
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Slope for Chow stability

Z ⊂ (X, OX(1)) ⊂ (PN , O(1)) embedded by sec-

tions of OX(1).

h0(OX(r)) = a0rn + a1rn−1 + . . .

h0(I xr
Z (r)) = a0(x)r

n + a1(x)r
n−1 + . . .

∀c ≤ ε(Z) define Chow slope of Z:

Chc(IZ) =

∑c
i=1 h0(I i

Z(1))
∫ c
0 a0(x)dx

.

Z = ∅ gives

Ch(X) =
h0(OX(1))

a0
=

N + 1

a0
.

Theorem 10

Chow (semi)stable =⇒ slope (semi)stable:

Chc(IZ) <
(≤)

Ch(X) ∀Z ⊂ X.
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Review of Hilbert-Mumford criterion for bun-

dles or sheaves over (X, L)

Given E → X, form E(r) := E ⊗ Lr for r � 0,

making E(r) a quotient of a trivial bundle:

H0(E(r))→ E(r)→ 0 on X. (11)

Fix isomorphism H0(E(r)) ∼= CP(r)

=⇒ [E] ∈ Quot (CP(r)).

(Quot subset of a Grassmannian: quotient (11) classified by in-

duced vector space quotient H0(E(r))⊗H0(LR) � H0(E(r + R)).)

Divide by SL(P (r)) =⇒ moduli of sheaves.

HM-criterion gives (Gieseker, Maruyama, Simpson)

algebro-geometric criterion for stability (depen-

dent on choice of line bundle on Quot).
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A 1-PS C∗ ⊂ SL(P (r)) gives a filtration of E

F0 ⊂ F1 ⊂ . . . ⊂ Fp ⊂ E,

(Fi ⊂ E image of ith piece of weight filtration of H0(E(r)) under

map (11)) and a degeneration of E to

E0 := F0 ⊕ F1/F0 ⊕ . . . ⊕ Fp/Fp−1 ⊕ E/Fp.

Different 1-PSs can give the same filtration.

But to every filtration there are canonical 1-

PSs with the most unstable (largest) weights

(for filtration Fi ⊂ E choose weight filtration H0(Fi(r)) ⊂ H0(E(r))).

So need only consider these 1-PSs. Weight =

positive linear combination of weights of the

canonical 1-PSs associated to the splittings

Fi ⊕ E/Fi.

So need only control the weights of these sim-

pler splittings. So stability controlled by single

subsheaves F ⊂ E.
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Weight calculations give the following.

Hilbert poly h0(E(r)) = a0rn + a1rn−1 + . . .

a0 = rk E
∫

X
ωn/n!, a1 =

∫
X

c1(E).ωn−1/(n− 1)! + ε(X).

Reduced Hilbert poly pE(r) = rn+ a1
a0

rn−1+ . . ..

E stable ⇐⇒ ∀F ↪→ E, pF (r) < pE(r) r � 0.

E slope-stable
⇐⇒ a1(F)

a0(F)
< a1(E)

a0(E)

⇐⇒ µ(F ) < µ(E).

µ(E) =
∫

X
c1(E).ωn−1/ rk (E). Corresponds to a differ-

ent line bundle on moduli space – Jun Li.
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The proofs and converse for varieties

Any test configuration (X ,L) is C∗-birational

to (X×C, L), so is (a contraction p of) the blow

up of X ×C in a C∗-invariant ideal I supported

on the central fibre. p∗L = L(−cE).

BlI(X × C)
↙ ↘p

X × C X

∃ Zp−1 ⊆ . . . ⊆ Z1 ⊆ Z0 ⊆ X, ideal sheaves

Ip−1 ⊇ . . . ⊇ I1 ⊇ I0 such that

I = I0 + tI1 + t2I2 + . . . + tp−1
Ip−1 + tp.

 

Z1

Z2

Z0

Z1 × Spec C[t]/(t3)

Z2 × Spec C[t]/(t2)

Z0 × {0}

X0

X × C

Show weights more stable than normalisation

of blow up of X×C in I, so consider only these.
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p = 1 =⇒ I = I0+t =⇒ blow up in Z0×{0} ⊂

X × C = deformation to normal cone of Z0.

Exceptional divisor P (= normal cone of Z0 =

P(νZ0
⊕ C)→ Z0 if Z0 ⊂ X smooth).

Xt

Z ′0

e

Z0 × {t}

(X )0 = X̂ ∪e P

C∗ 3 λ acts on blow up (as [1 : λ] = [λ−1 : 1]

on P(νZ0
⊕C) in smooth case); equivariant line

bundle π∗L(−cP ).
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Deformation to normal cone of Z replaces H0
X(Lr)

(filtered by H0(Lr ⊗ I
j
Z)) by, on central fibre,

associated graded of filtration:

H0
X(I cr

Z (r))⊕H0
X

(
I

cr−1
Z (r)/I

cr
Z (r)

)
⊕ . . .

⊕ H0
X

(
IZ(r)/I

2
Z(r)

)
⊕H0

X(OZ(r)).

This is the weight space decomposition =⇒

weight on top exterior power is

wr = −
cr∑

j=1

jh0
X

(
I

cr−j
Z (r)/I

cr−j+1
Z (r)

)

= −
cr∑

j=1

h0(I
j
Z(r))− crh0(OX(r)).

Trapezium rule =⇒ to O(rn−1),

−
(∫ c

0
a0(x)dx

)
rn+1 +

∫ c

0

(
a1(x) +

a′0(x)

2

)
dx rn.

Normalising (to make 1-PS lie in SL(H0(OX(r))∗)

instead of GL) gives slope criterion.
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Proper transform Z0 × C of Z0 × C:

�� � ��

��
� �� � �	

Xt

Z ′1
Z ′0

e

Z1 × {t}

Z0 × {t}

(X )0 = X̂ ∪e P

Gives Z ′p−1 ⊆ . . . ⊆ Z ′1 ⊂ Z ′0. Now blow up in

Z ′1, giving Z ′′p−1 ⊆ . . . ⊆ Z ′′1; next blow up Z ′′2
etc.

Theorem 12 The blow up of X × C in I =

I0 + tI1 + . . . + tp−1Ip−1 + tp is a contraction

of this iterated blow up.
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Theorem 13 At ith stage, blow up Z
(i)
i . If all

thickenings of (Zi × C) are flat over C then this

adds w(Zi) to the weight, to O(rn).

(w(Zi) is weight on deformation to normal cone of Zi.)

So if this flatness holds, total weight is w(Z0)+

. . . + w(Zp−1). Stability iff

w(Z0) + . . . + w(Zp−1) ≺ 0 ⇐⇒ w(Z) ≺ 0 ∀Z.

(14)

Holds for Zi smooth, or simple normal crossing

(snc) divisors.

In general, resolution of singularities:

(X ⊃ Zi)
π
←− (X̂ ⊃ miDi), Di snc divisors.

Work with (X̂, π∗L) to give (14) for X nor-

mal (to equate H0(X, L) with H0(X̂, π∗L)) so long

as mi = 1 ∀i.
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Di nonreduced ? E.g. I0 = (x2) so deforma-

tion to normal cone is blow up in (x2, t).

Square C∗-action (then halve the weight) =⇒

blow up in (x2, t2).

Take integral closure (normalise blow up) =⇒

get more unstable test configuration by blow-

ing up in (x2, xt, t2) = (x, t)2. I.e. just blow up

in (x, t) with different line bundle (E 7→ 2E or

c 7→ 2c).

So can deal with Di with multiplicities mi when

they all have the same support.

So can show slope stability = stability for curves

(K- and Chow).

Would like to combine two approaches to deal

with, for instance, D0 = (x2y = 0), D1 = (x =

0). ??
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