MICHAEL SOLOMYAK

Weizmann Institute, Rehovot

ON THE SPECTRUM IN SMILANSKY'S MODEL OF IRREVERSIBLE QUANTUM GRAPHS

- Smilansky's model
- One-oscillator case: 1. Self-adjointness
 - 2. Small α
 - 3. Large α
- References

SMILANSKY'S MODEL

Interaction between a quantum graph $\{\Gamma; \Delta\}$ and a system of $K \geq 1$ harmonic oscillators (describing "environment")

CLASS OF METRIC GRAPHS: $\Gamma \in \mathcal{G}$ if

 Γ is connected; Γ is a compact graph, plus may be a finite number of infinite leads . (each isometric to the half-line).

 $M=M(\Gamma)$ notation for the number of leads; $M\geq 0$.

MODEL CASE: $\Gamma = \Gamma_d - {
m star}$ graph with $d \geq 1$ infinite edges. $M(\Gamma_d) = d.$

OPERATOR A

The space: $H = L^2(\Gamma \times \mathbb{R}^K)$. Notation: $x \in \Gamma$, $q = (q_1, \dots, q_K) \in \mathbb{R}^K$ – generic point; $o_1, \dots, o_K \in \Gamma$ – pts chosen (*k-th oscillator is attached at o_k *)

The operator: on each edge

$$\mathbf{A}_{\alpha}U(x,q) = -U_{xx}^{n} + \sum_{k=1}^{K} \frac{\nu_{k}^{2}}{2} (-U_{q_{k}q_{k}}^{n} + q_{k}^{2}U);$$

Kirchhoff conditions $[U'_x](v) = 0$ at the vertices $v \neq o_k$; Dirichlet, or Neumann condition at $\partial \Gamma$; Conditions at $x = o_k$ (they describe the interaction):

$$[U'_x](o_k, q) = \alpha_k q_k U(\mathbf{0}, q), \qquad q \in \mathbb{R}^K.$$

 $\alpha = (\alpha_1, \dots, \alpha_K) -$ the coupling parameters, $\alpha_k \geq 0$.

The value of α_k expresses the strength of interaction between the graph and the k-th oscillator.

lpha is involved only in the conditions at o_k ; the action of ${f A}_lpha$ is the same for all lpha.

$$[f'](o) = \sum_{j=1}^{d(o)} f'_k(o)$$

$$\mathbf{e_3}$$

$$\mathbf{e_2}$$

$$\mathbf{f_2} = \mathbf{f} \mathbf{e_k}$$

PROBLEM:

TO DESCRIBE THE SPECTRUM OF A_{α} FOR ALL α The leading case: K=1.

$$\mathbf{A}_{\alpha, \nu} U(x, q) = -U''_{wx} + rac{arphi^2}{2} (-U''_{q^2} + q^2 U);$$
 $[U'_w](o, q) = \alpha q U(o, q), \qquad q \in \mathbb{R}.$

Scaling reduces the general case to $\nu = 1$.

Main parameters: $d = \deg(o) \ge 1$; $M = M(\Gamma) \ge 0$.

BELOW THE RESULTS ARE FORMULATED FOR THE GENERAL CASE, BUT CALCULATIONS (IF ANY) ARE GIVEN FOR $\nu=1$.

THE OPERATOR A_0 : separation of variables. Everything can be described in the explicit terms.

For $\alpha \neq 0$ it is natural to try perturbation theory.

HOWEVER, THE PERTURBATION IS TOO STRONG!!!

In terms of quadratic forms it is only form-bounded but not form-compact.

The standard approaches do not work.

REDUCTION TO AN INFINITE SYSTEM OF ODE

 $\chi_n(q)$ – Hermite functions, normalized in $L^2(\mathbb{R})$.

$$U(x,q) = \sum_{n \in \mathbb{N}_0} u_n(x) \chi_n(q) \qquad (U \sim \{u_n\}).$$

Then $\Lambda_{\alpha}U \sim \{(-u_n'' + (1/2 + n)u_n)\}$ on each edge, with the prescribed boundary cond. at vertices $v \neq o$.

Matching condition at o turns into

$$[u'_n](o) = \frac{\alpha}{\sqrt{2}} \left(\sqrt{n+1} u_{n+1}(o) + \sqrt{n} u_{n+1}(o) \right). \tag{1}$$

For $\alpha = 0$ this is Kirchhoff cond., and for GENERAL ν

$$\mathbf{A}_0 = \sum_{n \in \mathbb{N}_0}^{\oplus} (-\Delta_{\Gamma} + \nu^2 (1/2 + n))$$

where Δ_{Γ} is the Laplacian on Γ .

HENCE: If M = 0 (compact Γ), then $\sigma(\mathbf{A}_0)$ is DISCRETE

$$\mathbf{H} \; M>0 \; \text{(non-compact Γ), then} \qquad \quad \sigma_{a,c_*}(\mathbf{A}_0)=[\nu^2/2,\infty);$$

$$\mathfrak{m}_{n,c_0}(\lambda;\mathbf{A}_0)\simeq Mn \qquad \text{ for } |\lambda-n
u^2|<
u^2/2,\,\,n\in\mathbb{N}.$$

Also, $\sigma(\mathbf{A}_0) = [\nu^2/2, \infty)$; embedded eigenvalues are possible.

SELF-ADJOINT REALIZATION OF A_{α}

THEOREM 1. THE OPERATOR \mathbf{A}_{α} IS SELF-ADJOINT ON THE DOMAIN \mathcal{D}_{α} DEFINED AS FOLLOWS:

$$U \sim \{u_n\} \in \mathcal{D}_{\alpha} IFF$$

- I. $u_n \in H^2(e)$ ON EACH EDGE OF Γ ;
- 2. u_n IS CONTINUOUS ON Γ_i BDRY COND. ON $\partial \Gamma$ AND THE CONDITIONS (1) ARE SATISFIED FOR ALL n_i

3.
$$\sum_{n \in \mathbb{N}_0} \int_{\Gamma} \left| -u_n^n + \nu^2 (n+1/2) u_n \right|^2 dx < \infty.$$

IDEA OF PROOF: v.Neumann procedure (calculation of the deficiency indices)

We have to show that U=0 is the only L^2 -solution of the equation $\mathbf{A}_{\alpha}U=\Lambda U,\ \Lambda\not\in\mathbb{R}$. This reduces to

$$-u_n'' + (n+1/2 - \Lambda)u_n = 0$$

on each edge.

If $\Gamma = \Gamma_d$ (STAR GRAPH WITH ALL ITS d EDGES OF INFINITE LENGTH), then on each edge

$$u_n(t) = C_n e^{-t\sqrt{n+1/2-\Lambda}}.$$

Due to the condition at x = a, this leads to

$$\sqrt{n+1}C_{n+3} + d\alpha^{-1}\sqrt{2n+1} - 2\Lambda C_n + \sqrt{n}C_{n+1} = 0.$$

This is a recurrence system, with a Jacobi matrix.

For any $\Gamma \in \mathcal{G}$, we come to a similar system,

with d replaced by $M(\Gamma)$ and an

EXPONENTIALLY SMALL correction in the coefficient

The system is analyzed with the help of Birkhoff – Adams theorem which gives the desired result

SPECTRUM OF A_{α} for $\alpha > 0$

For $\alpha\sqrt{2} < d\nu$ (small α) and for $\alpha\sqrt{2} > d\nu$ (large α) THE RESULTS ARE DIFFERENT

(in the talk I skip the borderline case $\alpha\sqrt{2}=d\nu$)

I. SMALL α : VARIATIONAL APPROACH (for $\nu = 1$)

Quadratic form of \mathbf{A}_{α} : $\mathbf{a}_{\alpha}[U] = \mathbf{a}_{0}[U] - \alpha \mathbf{b}[U];$

$$\mathbf{a}_0[U] = \int_{\Gamma} (|u_n'|^2 + (n+1/2)|u_n|^2) dx,$$

$$\mathbf{b}[U] = \sum_{n \in \mathbb{N}} \sqrt{2n} \operatorname{Re}(u_n(o) \overline{u_{n-1}(o)}).$$

 $\mathbf{a}_0[U]$ is positive definite and closed on its natural domain \mathfrak{d} . The corresponding s.a. operator is \mathbf{A}_0 .

LEMMA.

$$d|\mathbf{b}_{\alpha}[U]| \le \sqrt{2}\mathbf{a}_0[U] + C||U||_{L^2}^2, \qquad \forall \ U \in \mathfrak{d},$$

WITH C DEPENDING ON THE STRUCTURE OF Γ AND ON THE BDRY COND. ON $\partial \Gamma$.

IN PARTICULAR, C = 0 FOR $\Gamma = \Gamma_d$.

THE CONSTANT $\sqrt{2}$ IS SHARP.

THEREFORE, FOR α SMALL THE Q. FORM

 $\mathbf{a}_{\alpha}[U]$

IS BOUNDED BELOW AND CLOSED ON \mathfrak{d} .

THE CORRESP. S.A. OPERATOR IS Λ_{α} .

For α large, the operator \mathbf{A}_{α} is unbounded below

THEOREM 2. LET $\alpha\sqrt{2} < d\nu$. THEN

1.
$$\sigma_{a.c.}(\mathbf{A}_{\alpha}) = \sigma_{a.c.}(\mathbf{A}_0), \quad m_{a.c.}(\lambda; \mathbf{A}_{\alpha}) = m_{a.c.}(\lambda; \mathbf{A}_0).$$

MOREOVER, FOR THE PAIR $(\mathbf{A}_{\alpha}, \mathbf{A}_0)$ THERE EXIST

THE COMPLETE ISOMETRIC WAVE OPERATORS,

AND THE SAME IS TRUE FOR THE PAIR $(\mathbf{A}_0, \mathbf{A}_{\alpha}).$

2. SPECTRUM of \mathbf{A}_{α} BELOW $\nu^2/2$ IS FINITE AND

$$N_{-}(\nu^{2}/2; \mathbf{A}_{\alpha}) \sim C(d\nu - \alpha\sqrt{2})^{-1/2},$$
 (2)

WITH AN EXPLICITLY GIVEN CONSTANT C.

IDEA OF PROOF OF (2):

reduction to the eigenvalue asymptotics for a certain zero-diagonal Jacobi matrix J with the non-diagonal entries

$$j_{m,n+1} = j_{m+1,m} = 1/2 + b_m, \qquad b_m \to 0,$$

 $b_n = b_n(d) + \exp$, small error depending on Γ .

The spectrum of J consists of [-1,1] (a.c. part) and of eigenvalues $\pm \lambda_n$, $\lambda_n \setminus 1$.

It turns out that
$$N_{+}(\nu^{2}/2; \mathbf{A}_{\alpha}) = N_{+}(\frac{d\nu}{\alpha\sqrt{2}}; \mathbf{J})$$
 (+1).

H. LARGE α (for $\Gamma = \mathbb{R}$ in cooperation with S.N. Naboko) THEOREM 3. LET $\alpha\sqrt{2} > d\nu$. THEN $\sigma_{\rho}(\mathbf{A}_{i\epsilon}) \cap (-\infty, \nu^2/2) = \emptyset$; $\sigma_{\alpha,\alpha}(\mathbf{A}_{i\epsilon}) = \mathbb{R}$, $\mathfrak{m}_{\alpha,\alpha}(\lambda; \mathbf{A}_{\alpha}) = \mathfrak{m}_{\alpha,\alpha}(\lambda; \mathbf{A}_{0}) + 1$

PHASE TRANSITION: σ_p below $\nu^2/2$ disappears.

An additional branch of $\sigma_{a.c.}$ appears instead.

This effect was interpreted by Smilansky as IRREVERSIBILITY OF THE SYSTEM.

IDEA OF PROOF: analysis of $(\mathbf{A}_{\alpha} - \Lambda)^{-1}$ for $\Lambda \notin \mathbb{R}$.

We use the connection between the a.c. spectrum of a s.a. operator and the jump of its (bordered) resolvent when A crosses the real line.

KEY FORMULA

$$(\mathbf{A}_m - \Lambda)^{-1} + (\mathbf{A}_0 - \Lambda)^{-1} = \mathbf{T}(\Lambda) \bigg(\mu \mathbf{J}(\Lambda; \alpha)^{-1} + (d\mathbf{P}(\Lambda))^{-1} \bigg) \mathbf{T}(\overline{\Lambda})^*$$

Here $\Upsilon(\Lambda): \ell^2 \to L^2(\Gamma \times \mathbb{R}) = a$ nice operator-valued function, analytic in the upper and in the lower half-planes.

 $\mathbf{J}(\Lambda; a) + n$ Jacobi analytic matrix-valued function $\mathbf{P}(\Lambda) = an$ analytic diagonal matrix-valued function.

Key formula reduces study of the jump of $(A_n - \Lambda)^{-1}$ to the analysis of the jump of $J(\lambda; \alpha)^{-1}$.

THE ENTRIES OF $J(A;\alpha)$ AND OF P(A) FOR AN ARBITRARY $\Gamma\in\mathcal{G}$ DIFFER FROM THOSE FOR $\Gamma=\Gamma_{\mathcal{S}}$ BY EXPONENTIALLY SMALL TERMS

For a small the jump of $\mathbf{J}(\Lambda;\alpha)^{-1}$ is 0 a.e.,

For a large it is a rank one operator a.e. -

this leads to the result of Theorem 3.

Analysis of the boundary behaviour of $J(\Lambda; \alpha)$ is the most difficult part of the work. Subtle results of the theory of operator-valued analytic functions are used, including some older Naboko's results.

CONCLUSIONS (for K = 1)

- 1. For A_0 the point spectrum is unstable. The structure of $\sigma_{a.e.}(A_0)$ is determined ONLY by the numbers ν and $M=M(\Gamma)$.
- 2. The point α^* of the phase transition is determined ONLY by the numbers ν and $d = \deg(o)$:

$$\alpha^*\sqrt{2} = d\nu.$$

3. The behaviour of $N_{-}(\nu^{2}/2; \mathbf{A}_{\alpha})$ as $\alpha \nearrow \alpha^{*}$ is determined ONLY by ν , d and does not depend on the edge lengths.

LOCALITY PRINCIPLE:

only the numbers $\nu,\ M(\Gamma)$ and $d=\deg(o)$

are responsible for the stable characteristics of $\sigma(\mathbf{A}_{\alpha})$.

LIST OF REFERENCES

- U. Smilansky, Waves in Random Media, 14 (2004), 143 + 153.
 - M. S., Waves in Random Media, 14 (2004), 173-185.
 - M. S., Funct. Analysis and its appl., 38 (2004), 217-223
 - M. S., St.-Petersburg Math. J., 17 (2005), in press.
- S. N. Naboko and M. S., Proc. LMS, in press; arXive: math.SP/0504190.