Matrix Models and D-Branes in Twistor String Theory

Christian Sämann

Dublin Institute for Advanced Studies

LMS Durham Symposium 2007

Based on:

- JHEP 0603 (2006) 002, O. Lechtenfeld and CS.
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?

⇒ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.

Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes. The presented results are only a very preliminary step towards answering the above questions.
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?

⇒ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.

Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes.

The presented results are only a very preliminary step towards answering the above questions.
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?

⇒ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.

Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes.

The presented results are only a very preliminary step towards answering the above questions.
Well-known motivation for studying twistor strings:
- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:
- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?

⇒ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.

Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes.
The presented results are only a very preliminary step towards answering the above questions.
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?
 - Relationship between topological and physical D-branes?
 - Rôle of Calabi-Yau supermanifolds in mirror symmetry?

⇒ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.

Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes.

The presented results are only a very preliminary step towards answering the above questions.
Well-known motivation for studying twistor strings:
- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:
- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?

⇒ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.

Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes.

The presented results are only a very preliminary step towards answering the above questions.
Motivation
Extending understanding of topological/super D-branes and mirror symmetry

Well-known motivation for studying twistor strings:
- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:
- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?

⇒ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.

Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes.

The presented results are only a very preliminary step towards answering the above questions.
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?

⇒ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.

Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes. The presented results are only a very preliminary step towards answering the above questions.
Well-known motivation for studying twistor strings:

- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:

- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?

⇒ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.

Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes.

The presented results are only a very preliminary step towards answering the above questions.
Motivation
Extending understanding of topological/super D-branes and mirror symmetry

Well-known motivation for studying twistor strings:
- Alternative description of the AdS/CFT correspondence
- New tools for calculating gluon scattering amplitudes
- Alternative descriptions of supergravity

My motivation here:
- Description of super D-branes?
- Relationship between topological and physical D-branes?
- Rôle of Calabi-Yau supermanifolds in mirror symmetry?

⇒ Study variations of the usual twistor geometries and the associated Penrose-Ward transform.

Here: Full dimensional reductions yielding matrix models with interesting interpretations in terms of D-branes.

The presented results are only a very preliminary step towards answering the above questions.
Outline

1. Notation: Twistors and Penrose-Ward transform
2. Construction of the matrix models
3. D-Brane interpretation and completion for
 - ADHM construction
 - Nahm construction
4. Conclusions
Outline

1. Notation: Twistors and Penrose-Ward transform
2. Construction of the matrix models
3. D-Brane interpretation and completion for
 - ADHM construction
 - Nahm construction
4. Conclusions
Outline

1. Notation: Twistors and Penrose-Ward transform
2. Construction of the matrix models
3. D-Brane interpretation and completion for
 - ADHM construction
 - Nahm construction

Conclusions
Outline

1. Notation: Twistors and Penrose-Ward transform
2. Construction of the matrix models
3. D-Brane interpretation and completion for
 - ADHM construction
 - Nahm construction
4. Conclusions
Outline

1. Notation: Twistors and Penrose-Ward transform
2. Construction of the matrix models
3. D-Brane interpretation and completion for
 - ADHM construction
 - Nahm construction
4. Conclusions
Outline

1. Notation: Twistors and Penrose-Ward transform
2. Construction of the matrix models
3. D-Brane interpretation and completion for
 - ADHM construction
 - Nahm construction
4. Conclusions
The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.

Incidence Relation: $\omega^\alpha = x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^i = (\omega^\alpha, \lambda_{\dot{\alpha}}) \in \mathbb{C}P^3$

Twistor Correspondence

Point $x^{\alpha \dot{\alpha}}$ corresponds to sphere $\mathbb{C}P^1 \ni \lambda_{\dot{\alpha}}$

A twistor Z^i is incident to a plane of points $x^{\alpha \dot{\alpha}} = x_0^{\alpha \dot{\alpha}} + \kappa^\alpha \lambda_{\dot{\alpha}}$.

Decompactification

$\mathbb{C}P^3$ is the twistor space of S^4 or S_∞^4

$\mathbb{C}P^1$ take out ∞

\mathbb{P}^3 is the twistor space of \mathbb{R}^4 or \mathbb{C}^4

$\mathbb{C}P^1_\infty$ is described by $\lambda_{\dot{\alpha}} = 0$, therefore:

$\mathbb{P}^3 := \mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathbb{C}P^1$

Homog. coords. $\lambda_{\dot{\alpha}}$ on $\mathbb{C}P^1$ and ω^α in fibres

Moduli of sections of \mathbb{P}^3: $x^{\alpha \dot{\alpha}} \in \mathbb{C}^4$
The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.

Incidence Relation: $\omega^\alpha = x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^i = (\omega^\alpha, \lambda_{\dot{\alpha}}) \in \mathbb{C}P^3$

Twistor Correspondence

Point $x^{\alpha \dot{\alpha}}$ corresponds to sphere $\mathbb{C}P^1 \ni \lambda_{\dot{\alpha}}$

A twistor Z^i is incident to a plane of points $x^{\alpha \dot{\alpha}} = x^{\alpha \dot{\alpha}}_0 + \kappa^\alpha \lambda_{\dot{\alpha}}$.

Decompactification

$\mathbb{C}P^3$ is the twistor space of S^4 or S^4_c take out ∞

$\mathbb{C}P^1$ is the twistor space of \mathbb{R}^4 or \mathbb{C}^4

$\mathbb{C}P^1_\infty$ is described by $\lambda_{\dot{\alpha}} = 0$, therefore:

$\mathcal{P}^3 := \mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathbb{C}P^1$

Homog. coords. $\lambda_{\dot{\alpha}}$ on $\mathbb{C}P^1$ and ω^α in fibres

Moduli of sections of \mathcal{P}^3: $x^{\alpha \dot{\alpha}} \in \mathbb{C}^4$
The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.

Incidence Relation: $\omega^\alpha = x^{\alpha\dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^i = (\omega^\alpha, \lambda_{\dot{\alpha}}) \in \mathbb{C}P^3$

Twistor Correspondence

Point $x^{\alpha\dot{\alpha}}$ corresponds to sphere $\mathbb{C}P^1 \ni \lambda_{\dot{\alpha}}$

A twistor Z^i is incident to a plane of points $x^{\alpha\dot{\alpha}} = x_0^{\alpha\dot{\alpha}} + \kappa^\alpha \lambda_{\dot{\alpha}}$.

Decompactification

$\mathbb{C}P^3$ is the twistor space of S^4 or S^4_c

$\mathbb{C}P^1$ take out ∞

\mathbb{P}^3 is the twistor space of \mathbb{R}^4 or \mathbb{C}^4

$\mathbb{C}P^1_\infty$ is described by $\lambda_{\dot{\alpha}} = 0$, therefore:

$\mathbb{P}^3 := \mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathbb{C}P^1$

Homog. coords. $\lambda_{\dot{\alpha}}$ on $\mathbb{C}P^1$ and ω^α in fibres

Moduli of sections of \mathbb{P}^3: $x^{\alpha\dot{\alpha}} \in \mathbb{C}^4$
The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.

Incidence Relation: \(\omega^\alpha = x^{\alpha\dot{\alpha}} \lambda_{\dot{\alpha}} \), Twistor: \(Z^i = (\omega^\alpha, \lambda_{\dot{\alpha}}) \in \mathbb{C}P^3 \)

Twistor Correspondence

Point \(x^{\alpha\dot{\alpha}} \) corresponds to sphere \(\mathbb{C}P^1 \ni \lambda_{\dot{\alpha}} \)

A twistor \(Z^i \) is incident to a plane of points \(x^{\alpha\dot{\alpha}} = x^{\alpha\dot{\alpha}}_0 + \kappa^\alpha \lambda_{\dot{\alpha}} \).

Decompactification

\(\mathbb{C}P^3 \) is the twistor space of \(S^4 \) or \(S^4_c \)

\(\mathbb{C}P^1 \) take out \(\infty \)

\(\mathcal{P}^3 \) is the twistor space of \(\mathbb{R}^4 \) or \(\mathbb{C}^4 \)

\(\mathbb{C}P^1_\infty \) is described by \(\lambda_{\dot{\alpha}} = 0 \), therefore:

\(\mathcal{P}^3 := \mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathbb{C}P^1 \)

Homog. coords. \(\lambda_{\dot{\alpha}} \) on \(\mathbb{C}P^1 \) and \(\omega^\alpha \) in fibres

Moduli of sections of \(\mathcal{P}^3 \): \(x^{\alpha\dot{\alpha}} \in \mathbb{C}^4 \)
The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.

Incidence Relation: \(\omega^\alpha = x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}} \), Twistor: \(Z^i = (\omega^\alpha, \lambda_{\dot{\alpha}}) \in \mathbb{C}P^3 \)

Twistor Correspondence

Point \(x^{\alpha \dot{\alpha}} \) corresponds to sphere \(\mathbb{C}P^1 \ni \lambda_{\dot{\alpha}} \)

A twistor \(Z^i \) is incident to a plane of points \(x^{\alpha \dot{\alpha}} = x^{\alpha \dot{\alpha}}_{0} + \kappa^\alpha \lambda_{\dot{\alpha}} \).

Decompactification

\(\mathbb{C}P^3 \) is the twistor space of \(S^4 \) or \(S^4_c \)

\(\mathbb{C}P^1 \) take out \(\infty \)

\(\mathcal{P}^3 \) is the twistor space of \(\mathbb{R}^4 \) or \(\mathbb{C}^4 \)

\(\mathbb{C}P^1_\infty \) is described by \(\lambda_{\dot{\alpha}} = 0 \), therefore:

\[\mathcal{P}^3 := \mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathbb{C}P^1 \]

Homog. coords. \(\lambda_{\dot{\alpha}} \) on \(\mathbb{C}P^1 \) and \(\omega^\alpha \) in fibres

Moduli of sections of \(\mathcal{P}^3 \): \(x^{\alpha \dot{\alpha}} \in \mathbb{C}^4 \)
The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.

Incidence Relation: $\omega^{\alpha} = x^{\alpha\dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^i = (\omega^{\alpha}, \lambda_{\dot{\alpha}}) \in \mathbb{C}P^3$

Twistor Correspondence

Point $x^{\alpha\dot{\alpha}}$ corresponds to sphere $\mathbb{C}P^1 \ni \lambda_{\dot{\alpha}}$

A twistor Z^i is incident to a plane of points $x^{\alpha\dot{\alpha}} = x^{\alpha\dot{\alpha}}_0 + \kappa^{\alpha} \lambda_{\dot{\alpha}}$.

Decompactification

$\mathbb{C}P^3$ is the twistor space of S^4 or S_c^4

$\mathbb{C}P^1$ take out ∞

\mathcal{P}^3 is the twistor space of \mathbb{R}^4 or \mathbb{C}^4

$\mathbb{C}P^1_{\infty}$ is described by $\lambda_{\dot{\alpha}} = 0$, therefore:

$\mathcal{P}^3 := \mathcal{O}(1) \oplus \mathcal{O}(1) \to \mathbb{C}P^1$

Homog. coords. $\lambda_{\dot{\alpha}}$ on $\mathbb{C}P^1$ and ω^{α} in fibres

Moduli of sections of \mathcal{P}^3: $x^{\alpha\dot{\alpha}} \in \mathbb{C}^4$
The Twistor Correspondence

The twistor correspondence is a relation between subsets of twistor space and spacetime.

Incidence Relation: \(\omega^\alpha = x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}} \), Twistor: \(Z^i = (\omega^\alpha, \lambda_{\dot{\alpha}}) \in \mathbb{C}P^3 \)

Twistor Correspondence

- Point \(x^{\alpha \dot{\alpha}} \) corresponds to sphere \(\mathbb{C}P^1 \ni \lambda_{\dot{\alpha}} \)
- A twistor \(Z^i \) is incident to a plane of points \(x^{\alpha \dot{\alpha}} = x_0^{\alpha \dot{\alpha}} + \kappa^\alpha \lambda_{\dot{\alpha}} \).

Decompactification

- \(\mathbb{C}P^3 \) is the twistor space of \(S^4 \) or \(S^4_c \)
- Take out \(\infty \)
- \(\mathbb{C}P^1 \) is the twistor space of \(\mathbb{R}^4 \) or \(\mathbb{C}^4 \)
- \(\mathbb{C}P^1_\infty \) is described by \(\lambda_{\dot{\alpha}} = 0 \), therefore:
 \[
 \mathcal{P}^3 := \mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathbb{C}P^1
 \]

Homog. coords. \(\lambda_{\dot{\alpha}} \) on \(\mathbb{C}P^1 \) and \(\omega^\alpha \) in fibres

Moduli of sections of \(\mathcal{P}^3 \): \(x^{\alpha \dot{\alpha}} \in \mathbb{C}^4 \)
The Twistor Correspondence
The twistor correspondence is a relation between subsets of twistor space and spacetime.

Incidence Relation: $\omega^\alpha = x^{\alpha\dot{\alpha}} \lambda_{\dot{\alpha}}$, Twistor: $Z^i = (\omega^\alpha, \lambda_{\dot{\alpha}}) \in \mathbb{C}P^3$

Twistor Correspondence
Point $x^{\alpha\dot{\alpha}}$ corresponds to sphere $\mathbb{C}P^1 \ni \lambda_{\dot{\alpha}}$
A twistor Z^i is incident to a plane of points $x^{\alpha\dot{\alpha}} = x_0^{\alpha\dot{\alpha}} + \kappa^\alpha \lambda_{\dot{\alpha}}$.

Decompactification
$\mathbb{C}P^3$ is the twistor space of S^4 or S_c^4
$\mathbb{C}P^1$ take out ∞
\mathcal{P}^3 is the twistor space of \mathbb{R}^4 or \mathbb{C}^4
$\mathbb{C}P^1_\infty$ is described by $\lambda_{\dot{\alpha}} = 0$, therefore:
$\mathcal{P}^3 := \mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathbb{C}P^1$

Homog. coords. $\lambda_{\dot{\alpha}}$ on $\mathbb{C}P^1$ and ω^α in fibres
Moduli of sections of \mathcal{P}^3: $x^{\alpha\dot{\alpha}} \in \mathbb{C}^4$
Marrying **Twistor**- and **Calabi-Yau** geometry

... with **supermanifolds**: Witten, hep-th/0312171
Supertwistor Space

The supertwistor space $\mathcal{P}^{3|\mathcal{N}}$ is a holomorphic vector bundle of rank $3|4\mathcal{N}$ over $\mathbb{C}P^1$.

The Supertwistor Space $\mathcal{P}^{3|\mathcal{N}}$

Start from $\mathbb{C}P^{3|\mathcal{N}}$, take out $\mathbb{C}P^{1|\mathcal{N}}$ at infinity:

$$\mathcal{P}^{3|\mathcal{N}} := \mathbb{C}^2 \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \to \mathbb{C}P^1$$

Incidence Relations

$$\omega^\alpha = x^\alpha \dot{\alpha} \lambda_{\dot{\alpha}}$$
$$\eta_i = \eta_i \dot{\alpha} \lambda_{\dot{\alpha}}$$

Double Fibration

First Chern Class of $\mathcal{P}^{3|4}$

$T\mathbb{C}P^1$ 2, $\mathcal{O}(1)$ 1, $\Pi \mathcal{O}(1)$ -1, in total: $c_1 = 0$.

Therefore, there exists a holomorphic measure $\Omega^{3,0|4,0}$.
Supertwistor Space

The supertwistor space $\mathcal{P}^{3|\mathcal{N}}$ is a holomorphic vector bundle of rank $3|4\mathcal{N}$ over $\mathbb{C}P^1$.

The Supertwistor Space $\mathcal{P}^{3|\mathcal{N}}$

Start from $\mathbb{C}P^{3|\mathcal{N}}$, take out $\mathbb{C}P^{1|\mathcal{N}}$ at infinity:

$$\mathcal{P}^{3|\mathcal{N}} := \mathbb{C}^2 \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \to \mathbb{C}P^1$$

Incidence Relations

$$\omega^\alpha = x^{\alpha\dot{\alpha}} \lambda_{\dot{\alpha}}$$
$$\eta_i = \eta^i_{\dot{\alpha}} \lambda_{\dot{\alpha}}$$

First Chern Class of $\mathcal{P}^{3|4}$

$T\mathbb{C}P^1$ 2, $\mathcal{O}(1)$ 1, $\Pi \mathcal{O}(1)$ -1, in total: $c_1 = 0$.

Therefore, there exists a holomophic measure $\Omega^{3,0|4,0}$.

Double Fibration

$\mathbb{C}^4|2\mathcal{N} \times \mathbb{C}P^1$

$\mathcal{P}^{3|\mathcal{N}}$ $\mathbb{C}^4|2\mathcal{N}$
The supertwistor space $\mathcal{P}^{3|\mathcal{N}}$ is a holomorphic vector bundle of rank $3|4\mathcal{N}$ over $\mathbb{C}P^1$.

The Supertwistor Space $\mathcal{P}^{3|\mathcal{N}}$

Start from $\mathbb{C}P^{3|\mathcal{N}}$, take out $\mathbb{C}P^{1|\mathcal{N}}$ at infinity:

$$\mathcal{P}^{3|\mathcal{N}} := \mathbb{C}^2 \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \to \mathbb{C}P^1$$

Incidence Relations

$$\omega^\alpha = x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$$

$$\eta_i = \eta_i^{\dot{\alpha}} \lambda_{\dot{\alpha}}$$

Double Fibration

$$\mathbb{C}^4|2\mathcal{N} \times \mathbb{C}P^1$$

First Chern Class of $\mathcal{P}^{3|4}$

$T\mathbb{C}P^1$ 2, $\mathcal{O}(1)$ 1, $\Pi \mathcal{O}(1)$ -1, in total: $c_1 = 0$.

Therefore, there exists a holomorphic measure $\Omega^{3,0|4,0}$.
The supertwistor space $\mathcal{P}^{3|N}$ is a holomorphic vector bundle of rank $3|4N$ over $\mathbb{C}P^1$.

The Supertwistor Space $\mathcal{P}^{3|N}$

Start from $\mathbb{C}P^{3|N}$, take out $\mathbb{C}P^{1|N}$ at infinity:

$$\mathcal{P}^{3|N} := \mathbb{C}^2 \otimes \mathcal{O}(1) \oplus \mathbb{C}^N \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C}P^1$$

Incidence Relations

$$\omega^\alpha = x^\alpha \lambda_\dot{\alpha}$$

$$\eta_i = \eta_{i\dot{\alpha}} \lambda_\dot{\alpha}$$

Double Fibration

First Chern Class of $\mathcal{P}^{3|4}$

2, $\mathcal{O}(1)$, $\Pi \mathcal{O}(1)$ -1, in total: $c_1 = 0$. Therefore, there exists a holomorphic measure $\Omega^{3,0|4,0}$.

Christian Sämann

Matrix Models and D-Branes in Twistor String Theory
The supertwistor space $\mathcal{P}^{3|\mathcal{N}}$ is a holomorphic vector bundle of rank $3|4\mathcal{N}$ over $\mathbb{C}P^1$.

\[\mathcal{P}^{3|\mathcal{N}} := \mathbb{C}^2 \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C}P^1 \]

Incidence Relations

\[\omega^\alpha = x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}} \]
\[\eta_i = \eta^{\dot{\alpha}}_i \lambda_{\dot{\alpha}} \]

Double Fibration

\[\mathbb{C}^{4|2\mathcal{N}} \times \mathbb{C}P^1 \]

First Chern Class of $\mathcal{P}^{3|4}$

$T\mathbb{C}P^1$ 2, $\mathcal{O}(1)$ 1, $\Pi \mathcal{O}(1)$ -1, in total: $c_1 = 0$.

Therefore, there exists a holomorphic measure $\Omega^{3,0|4,0}$.
The Supertwistor Space $\mathcal{P}^{3|N}$

Start from $\mathbb{C}P^{3|N}$, take out $\mathbb{C}P^{1|N}$ at infinity:

$$\mathcal{P}^{3|N} := \mathbb{C}^2 \otimes \mathcal{O}(1) \oplus \mathbb{C}^N \otimes \Pi \mathcal{O}(1) \to \mathbb{C}P^{1}$$

Incidence Relations

$$\omega^\alpha = x^\alpha \dot{\lambda}$$
$$\eta_i = \eta^i \dot{\lambda}$$

Double Fibration

$$\mathbb{C}^{4|2N} \times \mathbb{C}P^{1}$$

First Chern Class of $\mathcal{P}^{3|4}$

$T\mathbb{C}P^{1}$ 2, $\mathcal{O}(1)$ 1, $\Pi \mathcal{O}(1)$ -1, in total: $c_1 = 0$.

Therefore, there exists a holomorphic measure $\Omega^{3,0|4,0}$.
Supertwistor Space

The supertwistor space $\mathcal{P}^{3|N}$ is a holomorphic vector bundle of rank $3|4N$ over $\mathbb{C}P^1$.

The Supertwistor Space $\mathcal{P}^{3|N}$

Start from $\mathbb{C}P^{3|N}$, take out $\mathbb{C}P^{1|N}$ at infinity:

$$\mathcal{P}^{3|N} := \mathbb{C}^2 \otimes \mathcal{O}(1) \oplus \mathbb{C}^N \otimes \Pi \mathcal{O}(1) \to \mathbb{C}P^1$$

Incidence Relations

$$\omega^\alpha = x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$$

$$\eta_i = \eta_i^{\dot{\alpha}} \lambda_{\dot{\alpha}}$$

Double Fibration

$$\mathbb{C}^{4|2N} \times \mathbb{C}P^1$$

First Chern Class of $\mathcal{P}^{3|4}$

$T\mathbb{C}P^1$ 2, $\mathcal{O}(1)$ 1, $\Pi \mathcal{O}(1)$ -1, in total: $c_1 = 0$.

Therefore, there exists a holomorphic measure $\Omega^{3,0|4,0}$.

Christian Sämann

Matrix Models and D-Branes in Twistor String Theory
The Supertwistor Space $\mathcal{P}^{3|\mathcal{N}}$

Start from $\mathbb{C}P^{3|\mathcal{N}}$, take out $\mathbb{C}P^{1|\mathcal{N}}$ at infinity:

$$\mathcal{P}^{3|\mathcal{N}} := \mathbb{C}^2 \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \rightarrow \mathbb{C}P^1$$

Incidence Relations

$$\omega^\alpha = x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$$
$$\eta_i = \eta_i^{\dot{\alpha}} \lambda_{\dot{\alpha}}$$

Double Fibration

$$\mathbb{C}^{4|2\mathcal{N}} \times \mathbb{C}P^1$$

First Chern Class of $\mathcal{P}^{3|4}$

$T\mathbb{C}P^1$ 2, $\mathcal{O}(1)$ 1, $\Pi \mathcal{O}(1)$ -1, in total: $c_1 = 0$.

Therefore, there exists a holomorphic measure $\Omega^{3,0|4,0}$.
Supertwistor Space

The supertwistor space $\mathcal{P}^{3|\mathcal{N}}$ is a holomorphic vector bundle of rank $3|4\mathcal{N}$ over $\mathbb{C}P^1$.

The Supertwistor Space $\mathcal{P}^{3|\mathcal{N}}$

Start from $\mathbb{C}P^{3|\mathcal{N}}$, take out $\mathbb{C}P^{1|\mathcal{N}}$ at infinity:

$$\mathcal{P}^{3|\mathcal{N}} := \mathbb{C}^2 \otimes \mathcal{O}(1) \oplus \mathbb{C}^\mathcal{N} \otimes \Pi \mathcal{O}(1) \to \mathbb{C}P^1$$

Incidence Relations

$$\omega^\alpha = x^{\alpha \dot{\alpha}} \lambda_{\dot{\alpha}}$$
$$\eta_i = \eta_{i \dot{\alpha}} \lambda_{\dot{\alpha}}$$

Double Fibration

$$\mathbb{C}^{4|2\mathcal{N}} \times \mathbb{C}P^1$$

First Chern Class of $\mathcal{P}^{3|4}$

$T\mathbb{C}P^1$ 2, $\mathcal{O}(1)$ 1, $\Pi \mathcal{O}(1)$ -1, in total: $c_1 = 0$.

Therefore, there exists a holomorphic measure $\Omega^{3,0|4,0}$.

Christian Sämann

Matrix Models and D-Branes in Twistor String Theory
The supertwistor space $\mathcal{P}^{3|\mathcal{N}}$ is a holomorphic vector bundle of rank $3|4\mathcal{N}$ over $\mathbb{C}P^1$.

The Supertwistor Space $\mathcal{P}^{3|\mathcal{N}}$

Start from $\mathbb{C}P^{3|\mathcal{N}}$, take out $\mathbb{C}P^{1|\mathcal{N}}$ at infinity:

$$\mathcal{P}^{3|\mathcal{N}} := \mathbb{C}^2 \otimes \mathcal{O}(1) \oplus \mathbb{C}^{\mathcal{N}} \otimes \Pi \mathcal{O}(1) \to \mathbb{C}P^1$$

Incidence Relations

$$\omega^\alpha = x^\alpha \dot{\lambda}^\alpha$$

$$\eta_i = \eta^i \dot{\lambda}^\alpha$$

Double Fibration

$$\mathbb{C}^{4|2\mathcal{N}} \times \mathbb{C}P^1$$

First Chern Class of $\mathcal{P}^{3|4}$

$T\mathbb{C}P^1$ 2, $\mathcal{O}(1)$ 1, $\Pi \mathcal{O}(1)$ -1, in total: $c_1 = 0$.

Therefore, there exists a holomorphic measure $\Omega^{3,0|4,0}$.

Christian Sämann

Matrix Models and D-Branes in Twistor String Theory
Outline of the Penrose-Ward Transform on $\mathcal{P}^{3|4}$

The PW-transform takes us from the topological B-model to SDYM theory.

topological B-model on $\mathcal{P}^{3|4}$

\uparrow

holomorphic Chern-Simons theory on $E \to \mathcal{P}^{3|4}$:

$$\int \Omega^{3,0|4,0} \wedge \text{tr} (A^{0,1} \wedge \bar{\partial} A^{0,1} + \frac{2}{3} A^{0,1} \wedge A^{0,1} \wedge A^{0,1})$$

with eom $\bar{\partial} A^{0,1} + A^{0,1} \wedge A^{0,1} = 0$

\uparrow

holomorphic vector bundles over $\mathcal{P}^{3|4}$

\uparrow

solutions to the $\mathcal{N} = 4$ SDYM equations on $\mathbb{C}^{4|8}$

Field contents: $(f_{\dot{\alpha}\dot{\beta}}, \chi^{\alpha i}, \phi^{[ij]}, \tilde{\chi}^{[ijk]}, G^{[ijkl]})$

$$f_{\dot{\alpha}\dot{\beta}} = 0 \ , \quad \nabla_{\dot{\alpha}} \tilde{\chi}^{\dot{\alpha}ijk} - [\chi_{\dot{\alpha}}, \phi^{jk}] = 0 \ ,$$

$$\nabla_{\dot{\alpha}} \chi^{\alpha i} = 0 \ , \quad \varepsilon^{\dot{\alpha}\dot{\gamma}} \nabla_{\dot{\alpha}} G^{[ijkl]} + ... = 0 \ ,$$

$$\Box \phi^{ij} + 2\{\chi^{\alpha i}, \chi^{j}_{\dot{\alpha}}\} = 0 \ ,$$
The PW-transform takes us from the topological B-model to SDYM theory.

topological B-model on $\mathcal{P}^{3|4}$

\[\uparrow \]

holomorphic Chern-Simons theory on $\mathcal{E} \rightarrow \mathcal{P}^{3|4}$:

\[\int \Omega^{3,0|4,0} \wedge \text{tr} \left(A^{0,1} \wedge \bar{\partial} A^{0,1} + \frac{2}{3} A^{0,1} \wedge A^{0,1} \wedge A^{0,1} \right) \]

with eom $\bar{\partial} A^{0,1} + A^{0,1} \wedge A^{0,1} = 0$

\[\uparrow \]

holomorphic vector bundles over $\mathcal{P}^{3|4}$

\[\uparrow \]

solutions to the $\mathcal{N} = 4$ **SDYM equations on** $\mathbb{C}^{4|8}$

Field contents: $(f_{\alpha\beta}, \chi^{\alpha i}, \phi[ij], \tilde{\chi}[ijk], G[ijkl])$

\[f_{\hat{\alpha}\hat{\beta}} = 0 \, , \quad \nabla_{\alpha\hat{\alpha}}\tilde{\chi}^{\hat{a}ijk} - [\chi_{\alpha}^{i}, \phi^{jk}] = 0 \, , \]

\[\nabla_{\alpha\hat{\alpha}}\chi^{\alpha i} = 0 \, , \quad \varepsilon^{\hat{\alpha}\hat{\gamma}}\nabla_{\alpha\hat{\alpha}}G^{ij[kl]}_{\hat{\gamma}\hat{\delta}} + ... = 0 \, . \]

\[\Box \phi^{ij} + 2\{\chi^{\alpha i}, \chi^{j}_{\alpha}\} = 0 \, . \]
The PW-transform takes us from the topological B-model to SDYM theory.

topological B-model on $\mathcal{P}^{3|4}$

\Leftrightarrow

holomorphic Chern-Simons theory on $\mathcal{E} \rightarrow \mathcal{P}^{3|4}$:

$$\int \Omega^{3,0|4,0} \wedge \text{tr} (A^{0,1} \wedge \bar{\partial} A^{0,1} + \frac{2}{3} A^{0,1} \wedge A^{0,1} \wedge A^{0,1})$$

with eom $\bar{\partial} A^{0,1} + A^{0,1} \wedge A^{0,1} = 0$

\Leftrightarrow

holomorphic vector bundles over $\mathcal{P}^{3|4}$

\Leftrightarrow

solutions to the $\mathcal{N} = 4$ SDYM equations on $\mathbb{C}^{4|8}$

Field contents: $(f_{\dot{\alpha} \dot{\beta}}, \chi^\alpha_i, \phi^{[ij]}, \tilde{\chi}^{[ijk]}, G^{[ijkl]})$

$$f_{\dot{\alpha} \dot{\beta}} = 0, \quad \nabla_{\alpha \dot{\alpha}} \tilde{\chi}^{\dot{\alpha}ijk} - [\chi^i_{\alpha}, \phi^{jk}] = 0, \quad \nabla_{\alpha \dot{\alpha}} \chi^{\alpha i} = 0, \quad \varepsilon^{\dot{\alpha} \dot{\gamma}} \nabla_{\alpha \dot{\alpha}} G^{[ijkl]}_{\dot{\dot{\gamma} \dot{\phi}}} + ... = 0,$$

$$\Box \phi^{ij} + 2\{\chi^\alpha_i, \chi_{\alpha}^j\} = 0.$$
Abstract of the Penrose-Ward Transform on $\mathcal{P}^{3|4}$

The PW-transform takes us from the topological B-model to SDYM theory.

topological B-model on $\mathcal{P}^{3|4}$

\[\Leftrightarrow \]

holomorphic Chern-Simons theory on $\mathcal{E} \rightarrow \mathcal{P}^{3|4}$:

\[\int \Omega^{3,0|4,0} \wedge \text{tr} (\mathcal{A}^{0,1} \wedge \overline{\partial} \mathcal{A}^{0,1} + \frac{2}{3} \mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1}) \]

with eom $\overline{\partial} \mathcal{A}^{0,1} + \mathcal{A}^{0,1} \wedge \mathcal{A}^{0,1} = 0$

\[\Leftrightarrow \]

holomorphic vector bundles over $\mathcal{P}^{3|4}$

\[\Leftrightarrow \]

solutions to the $\mathcal{N} = 4$ SDYM equations on $\mathbb{C}^{4|8}$

Field contents: $(f_{\dot{\alpha} \dot{\beta}}, \chi^{\alpha i}, \phi^{[ij]}, \tilde{\chi}^{[ijk]}, G^{[ijkl]}_{\dot{\alpha} \dot{\beta}})$

\[f_{\dot{\alpha} \dot{\beta}} = 0 , \quad \nabla_{\alpha \dot{\alpha}} \tilde{\chi}^{\dot{\alpha}ijkl} - [X^i_{\dot{\alpha}}, \phi^{jk}] = 0 , \]

\[\nabla_{\alpha \dot{\alpha}} \chi^{\alpha i} = 0 , \quad \epsilon^{\dot{\alpha} \dot{\gamma}} \nabla_{\alpha \dot{\alpha}} G^{[ijkl]}_{\dot{\gamma} \dot{\delta}} + ... = 0 . \]

\[\Box \phi^{ij} + 2\{\chi^{\alpha i}, \chi^{j}_{\alpha}\} = 0 , \]
Introducing a **real structure**, the double fibration collapses:

\[
\mathbb{C}^4|2\mathcal{N} \times \mathbb{C} P^1 \xrightarrow{\mathcal{P}_3|\mathcal{N}} \mathbb{P}^{3|\mathcal{N}} \to \mathbb{R}_\tau^{4|2\mathcal{N}}
\]

\((\tau_{\pm 1} \text{ related to Kleinian and Euclidean metrics on } \mathbb{R}_\tau^{4|2\mathcal{N}}.)\)

Now: **Field expansion** of hCS gauge potential \(A^{0,1}\) available:

\[
A_\alpha = \lambda^\dot{\alpha} A_{\alpha\dot{\alpha}}(x) + \eta_i \chi_\alpha^i(x) + \gamma \frac{1}{2!} \eta_i \eta_j \hat{\lambda}^\dot{\alpha} \phi^{ij}_{\alpha\dot{\alpha}}(x) + \gamma^2 \frac{1}{3!} \eta_i \eta_j \eta_k \hat{\chi}^{ijk}_{\alpha\dot{\alpha}\dot{\beta}}(x) + \gamma^3 \frac{1}{4!} \eta_i \eta_j \eta_k \eta_l \hat{\lambda}^\dot{\alpha} \hat{\lambda}^\dot{\beta} \hat{\lambda}^\dot{\gamma} \hat{G}^{ijkl}_{\alpha\dot{\alpha}\dot{\beta}\dot{\gamma}}(x)
\]

\[
A_{\dot{\alpha}} = \gamma^2 \eta_i \eta_j \phi^{ij}(x) - \gamma^3 \eta_i \eta_j \eta_k \hat{\chi}^{ijk}_{\dot{\alpha}}(x) + 2\gamma^4 \eta_i \eta_j \eta_k \eta_l \hat{\lambda}^\dot{\alpha} \hat{\lambda}^\dot{\beta} \hat{G}^{ijkl}_{\dot{\alpha}\dot{\beta}}(x)
\]

Popov, CS, ATMP 9 (2005) 931

This field expansion makes the equivalence hCS\(\leftrightarrow\)SDYM manifest.
Introducing a real structure, the double fibration collapses:

\[\mathbb{CP}^1 \times \mathbb{C}^4|2\mathcal{N} \]

\[\mathcal{P}_\mathcal{T}^{3|\mathcal{N}} \rightarrow \mathbb{R}_\mathcal{T}^{4|2\mathcal{N}} \]

\((\tau_{\pm 1} \text{ related to Kleinian and Euclidean metrics on } \mathbb{R}_\mathcal{T}^{4|2\mathcal{N}}.)\)

Now: Field expansion of hCS gauge potential \(A^{0,1} \) available:

\[
A_\alpha = \lambda^{\dot{\alpha}} \hat{A}_{\alpha \dot{\alpha}}(x) + \eta_i \chi^i_\alpha(x) + \gamma \frac{1}{2!} \eta_i \eta_j \hat{\lambda}^{\dot{\alpha}} \phi^{ij}_{\alpha \dot{\alpha}}(x) + \\
\gamma^2 \frac{1}{3!} \eta_i \eta_j \eta_k \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \chi^{ijk}_{\alpha \dot{\alpha} \dot{\beta}}(x) + \gamma^3 \frac{1}{4!} \eta_i \eta_j \eta_k \eta_l \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \hat{\lambda}^{\dot{\gamma}} G^{ijkl}_{\alpha \dot{\alpha} \dot{\beta} \dot{\gamma}}(x)
\]

\[
A_{\dot{\alpha}} = \gamma^2 \eta_i \eta_j \phi^{ij}(x) - \gamma^3 \eta_i \eta_j \eta_k \hat{\chi}^{ijk}_{\alpha \dot{\alpha}}(x) + 2 \gamma^4 \eta_i \eta_j \eta_k \eta_l \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} G^{ijkl}_{\alpha \dot{\alpha} \dot{\beta}}(x)
\]

Popov, CS, ATMP 9 (2005) 931

This field expansion makes the equivalence hCS\(\leftrightarrow\) SDYM manifest.
Matrix Models
Matrix models are obtained by dim. reduction or from spacetime noncommutativity.

Two ways of obtaining the matrix models:

- Dimensionally reducing the moduli space $\mathbb{R}^{4|8} \to \mathbb{R}^{0|8}$.
- Making the moduli space $\mathbb{R}^{4|8}$ noncommutative.
Matrix Models

Matrix models are obtained by dim. reduction or from spacetime noncommutativity.

Two ways of obtaining the matrix models:

- **Dimensionally reducing** the moduli space $\mathbb{R}^{4|8} \rightarrow \mathbb{R}^{0|8}$:

- **Making the moduli space** $\mathbb{R}^{4|8}$ noncommutative:
Matrix Models
Matrix models are obtained by dim. reduction or from spacetime noncommutativity.

Two ways of obtaining the matrix models:

- **Dimensionally reducing** the moduli space $\mathbb{R}^{4|8} \rightarrow \mathbb{R}^{0|8}$:

- Making the moduli space $\mathbb{R}^{4|8}$ noncommutative:
Matrix Models via Dimensional Reduction

Full dimensional reduction yields equivalence between SDYM MM and hCS MQM.

Matrix Model from $\mathcal{N} = 4$ SDYM theory:

$$S := \text{tr} \left(G^{\dot{\alpha}\dot{\beta}} \left(-\frac{1}{2} \varepsilon^{\alpha\beta} [A_{\alpha\dot{\alpha}}, A_{\beta\dot{\beta}}] + \frac{\varepsilon}{2} \phi^{ij} [A_{\alpha\dot{\alpha}}, [A^{\alpha\dot{\alpha}}, \phi_{ij}]] + \ldots \right) \right)$$

Matrix Model from $\mathcal{N} = 4$ hCS theory (MQM):

$$S := \int_{\mathbb{C}P^1_{ch}} \Omega_{\text{red}} \wedge \text{tr} \varepsilon^{\alpha\beta} \chi_{\alpha} \left(\bar{\partial} \chi_{\beta} + [A_{0,1}, \chi_{\beta}] \right)$$

$$\Omega_{\text{red}} := \Omega^{3,0|4,0}_{\mathbb{C}P^1_{ch}} \quad \Omega_{\text{red}}^\pm = \pm d\lambda_\pm \wedge d\eta_1^\pm \ldots d\eta_4^\pm$$

Equivalence explicitly via:

$$\chi_{\alpha} = \chi^{\dot{\alpha}} A_{\alpha\dot{\alpha}} + \eta_i \chi^i_{\alpha} + \gamma \frac{1}{2!} \eta_i \eta_j \hat{\chi}^{\dot{\alpha}} \phi^{ij}_{\alpha\dot{\alpha}} + \gamma^2 \frac{1}{3!} \eta_i \eta_j \eta_k \hat{\chi}^{\dot{\alpha}} \hat{\chi}^{\dot{\beta}} \chi^{ijk}_{\alpha\dot{\alpha}\dot{\beta}} + \gamma^3 \frac{1}{4!} \eta_i \eta_j \eta_k \eta_l \hat{\chi}^{\dot{\alpha}} \hat{\chi}^{\dot{\beta}} \hat{\chi}^{\dot{\gamma}} G^{ijkl}_{\alpha\dot{\alpha}\dot{\beta}\dot{\gamma}}$$

$$A_{\dot{\chi}} = \gamma^2 \eta_i \eta_j \phi^{ij} - \gamma^3 \eta_i \eta_j \eta_k \hat{\chi}^{\dot{\alpha}} \chi^{ijk}_{\dot{\alpha}} + 2 \gamma^4 \eta_i \eta_j \eta_k \eta_l \hat{\chi}^{\dot{\alpha}} \hat{\chi}^{\dot{\beta}} \hat{\chi}^{\dot{\gamma}} G^{ijkl}_{\alpha\dot{\alpha}\dot{\beta}\dot{\gamma}}$$
Matrix Models via Dimensional Reduction

Full dimensional reduction yields equivalence between SDYM MM and hCS MQM.

- **Matrix Model from** $\mathcal{N} = 4$ **SDYM theory**:

 $$S := \text{tr} \left(G^{\dot{\alpha}\dot{\beta}} \left(-\frac{1}{2} \varepsilon^{\alpha\beta} [A_{\alpha\dot{\alpha}}, A_{\beta\dot{\beta}}] + \frac{\varepsilon}{2} \phi^{ij} [A_{\alpha\dot{\alpha}}, [A^{\alpha\dot{\alpha}}, \phi_{ij}]] + \ldots \right) \right)$$

- **Matrix Model from** $\mathcal{N} = 4$ **hCS theory** (MQM):

 $$S := \int_{\mathbb{C}P^1_{\text{ch}}} \Omega_{\text{red}} \wedge \text{tr} \varepsilon^{\alpha\beta} \chi_{\alpha} \left(\bar{\partial} \chi_{\beta} + \left[\mathcal{A}^{0,1}_{\mathbb{C}P^1}, \chi_{\beta} \right] \right)$$

 $$\Omega_{\text{red}} := \Omega^{3,0|4,0}_{\mathbb{C}P^1_{\text{ch}}} \quad \Omega_{\text{red}^\pm} = \pm d\lambda_{\pm} \wedge d\eta_{1}^{\pm} \ldots d\eta_{4}^{\pm}$$

- **Equivalence explicitly via**:

 $$\chi_{\alpha} = \lambda^{\dot{\alpha}} A_{\alpha\dot{\alpha}} + \eta_{i} \chi_{i}^{\dot{\alpha}} + \gamma \frac{1}{2!} \eta_{i} \eta_{j} \hat{\chi}_{\alpha}^{\dot{\alpha} \dot{\beta} \dot{\gamma}} + \gamma^{2} \frac{1}{3!} \eta_{i} \eta_{j} \eta_{k} \hat{\chi}_{\alpha}^{\dot{\alpha} \dot{\beta} \dot{\gamma}} + \gamma^{3} \frac{1}{4!} \eta_{i} \eta_{j} \eta_{k} \eta_{l} \hat{\chi}_{\alpha}^{\dot{\alpha} \dot{\beta} \dot{\gamma} \dot{\delta}} G^{ijkl}_{\alpha\dot{\alpha} \dot{\beta} \dot{\gamma} \dot{\delta}}$$

 $$A_{\chi} = \gamma^{2} \eta_{i} \eta_{j} \phi^{ij} - \gamma^{3} \eta_{i} \eta_{j} \eta_{k} \hat{\chi}_{\alpha}^{\dot{\alpha} \dot{\beta} \dot{\gamma}} + 2 \gamma^{4} \eta_{i} \eta_{j} \eta_{k} \eta_{l} \hat{\chi}_{\alpha}^{\dot{\alpha} \dot{\beta} \dot{\gamma} \dot{\delta}} G^{ijkl}_{\alpha\dot{\alpha} \dot{\beta} \dot{\gamma} \dot{\delta}}$$
Matrix Models via Dimensional Reduction

Full dimensional reduction yields equivalence between SDYM MM and hCS MQM.

Matrix Model from $\mathcal{N} = 4$ SDYM theory:

$$S := \text{tr} \left(G^{\dot{\alpha}\dot{\beta}} \left(-\frac{1}{2}\varepsilon^{\alpha\beta} [A_{\alpha\dot{\alpha}}, A_{\beta\dot{\beta}}] + \frac{\varepsilon}{2} \phi^{ij} [A_{\alpha\dot{\alpha}}, [A^{\alpha\dot{\alpha}}, \phi_{ij}]] + \ldots \right) \right)$$

Matrix Model from $\mathcal{N} = 4$ hCS theory (MQM):

$$S := \int_{\mathbb{C}P^1_{\text{ch}}} \Omega_{\text{red}} \wedge \text{tr} \varepsilon^{\alpha\beta} x_\alpha \left(\bar{\partial} x_\beta + \left[A^{0,1}_{\mathbb{C}P^1}, x_\beta \right] \right)$$

$$\Omega_{\text{red}} := \Omega^{3,0|4,0}_{\mathbb{C}P^1_{\text{ch}}} \quad \Omega_{\text{red}}^\pm = \pm d\lambda_\pm \wedge d\eta^\pm_1 \ldots d\eta^\pm_4$$

Equivalence explicitly via:

$$x_\alpha = \lambda^{\dot{\alpha}} A_{\alpha\dot{\alpha}} + \eta_i x_i^\alpha + \gamma \frac{1}{2!} \eta_i \eta_j \hat{\lambda}^\dot{\alpha} \phi^{ij}_{\alpha\dot{\alpha}} + \ldots$$

$$A_{\dot{\alpha}} = \gamma^2 \eta_i \eta_j \phi^{ij} - \gamma^3 \eta_i \eta_j \eta_k \hat{\lambda}^\dot{\alpha} \hat{\lambda}^{\dot{\alpha} \dot{\beta}} \hat{\lambda}^{\dot{\gamma}} G^{ijkl}_{\alpha\dot{\alpha} \dot{\beta} \dot{\gamma}}$$

Christian Sämann
Matrix Models and D-Branes in Twistor String Theory
Noncommutativity on the moduli space

\[[\hat{x}^{\alpha \dot{\alpha}}, \hat{x}^{\beta \dot{\beta}}] = i\theta^{\alpha \dot{\alpha} \beta \dot{\beta}} \]

with: \((\kappa = \pm 1)\)

\[\theta^{1i2\dot{2}} = -\theta^{2\dot{2}1i} = -2i\kappa \varepsilon \theta \quad \text{and} \quad \theta^{1\dot{2}2i} = -\theta^{2i1\dot{2}} = 2i\varepsilon \theta \]

• representation space: two oscillator Fock space with \(|0, 0\rangle\)

\[\hat{a}_1 \sim \hat{x}^{2\dot{1}} + \hat{x}^{1\dot{2}} \quad \text{and} \quad \hat{a}_2 \sim \hat{x}^{2\dot{2}} - \hat{x}^{1\dot{1}} \]

• derivatives become inner derivations of the above algebra:

\[\frac{\partial}{\partial \hat{x}^{1\dot{1}}} f \sim [\hat{x}^{2\dot{2}}, f] , \quad \text{etc.} \]

• integral becomes trace:

\[\int d^4x \ f \mapsto (2\pi \theta)^2 \text{tr}_{ \mathcal{H} } \hat{f} \]
Functions on the noncommutative moduli space are infinite-dimensional matrices.

Noncommutativity on the moduli space

\[
[\hat{x}^{\alpha \dot{\alpha}}, \hat{x}^{\beta \dot{\beta}}] = i \theta^{\alpha \dot{\alpha} \beta \dot{\beta}}
\]

with: \((\kappa = \pm 1)\)

\[
\theta^{1i2\dot{2}} = -\theta^{2\dot{2}1i} = -2i \kappa \varepsilon \theta \quad \text{and} \quad \theta^{1\dot{2}2i} = -\theta^{2i1\dot{2}} = 2i \varepsilon \theta
\]

- representation space: two oscillator Fock space with \(|0, 0\rangle\)

 \[
 \hat{a}_1 \sim \hat{x}^{2\dot{1}} + \hat{x}^{1\dot{2}} \quad \text{and} \quad \hat{a}_2 \sim \hat{x}^{2\dot{2}} - \hat{x}^{1\dot{1}}
 \]

- derivatives become inner derivations of the above algebra:

\[
\frac{\partial}{\partial \hat{x}^{1\dot{1}}} f \sim [\hat{x}^{2\dot{2}}, f], \quad \text{etc.}
\]

- integral becomes trace:

\[
\int d^4 x \ f \mapsto (2\pi \theta)^2 \mathrm{tr} \hat{f}\]
Matrix Models from Noncommutativity

Functions on the noncommutative moduli space are infinite-dimensional matrices.

Noncommutativity on the moduli space

\[[\hat{x}^{\alpha\dot{\alpha}}, \hat{x}^{\beta\dot{\beta}}] = i\theta^{\alpha\dot{\alpha}\beta\dot{\beta}} \]

with: \((\kappa = \pm 1)\)

\[\theta^{1\dot{1}2\dot{2}} = -\theta^{2\dot{2}1\dot{1}} = -2i\kappa\epsilon\theta \quad \text{and} \quad \theta^{1\dot{2}2\dot{1}} = -\theta^{2\dot{1}1\dot{2}} = 2i\epsilon\theta \]

- representation space: two oscillator Fock space with \(|0, 0\rangle\)

 \[\hat{a}_1 \sim \hat{x}^{2\dot{1}} + \hat{x}^{1\dot{2}} \quad \text{and} \quad \hat{a}_2 \sim \hat{x}^{2\dot{2}} - \hat{x}^{1\dot{1}} \]

- derivatives become inner derivations of the above algebra:

 \[\frac{\partial}{\partial \hat{x}^{1\dot{1}}} f \sim [\hat{x}^{2\dot{2}}, f] \quad \text{etc.} \]

- integral becomes trace:

 \[\int d^4x f \mapsto (2\pi\theta)^2 \text{tr} \hat{f} \]
Functions on the noncommutative moduli space are infinite-dimensional matrices.

Noncommutativity on the moduli space

\[
[\hat{x}^{\alpha\dot{\alpha}}, \hat{x}^{\beta\dot{\beta}}] = i \theta^{\alpha\dot{\alpha}\beta\dot{\beta}}
\]

with: \((\kappa = \pm 1)\)

\[
\theta^{1i22} = -\theta^{221i} = -2i\kappa \varepsilon \theta \quad \text{and} \quad \theta^{122i} = -\theta^{2i12} = 2i\varepsilon \theta
\]

- representation space: two oscillator Fock space with \(|0, 0\rangle\)

\[
\hat{a}_1 \sim \hat{x}^{2\dot{1}} + \hat{x}^{1\dot{2}} \quad \text{and} \quad \hat{a}_2 \sim \hat{x}^{2\dot{2}} - \hat{x}^{1\dot{1}}
\]

- derivatives become inner derivations of the above algebra:

\[
\frac{\partial}{\partial \hat{x}^{1\dot{1}}} f \sim [\hat{x}^{2\dot{2}}, f], \quad \text{etc.}
\]

- integral becomes trace:

\[
\int d^4x \ f \mapsto (2\pi \theta)^2 \text{tr}_\mathcal{H} \hat{f}
\]
Matrix Models from Noncommutativity

Sections ω of the bundle defining supertwistor space are now matrix valued.

Noncommutativity on the twistor space

Induced algebra:

\[
\begin{align*}
[\hat{\omega}^1_\pm, \hat{\omega}^2_\pm] &= 2(\kappa - 1)\varepsilon\lambda_\pm \theta, \\
[\hat{\omega}^1_\pm, \hat{\omega}^1_\pm] &= 2(\kappa\varepsilon - \lambda_+ \bar{\lambda}_+) \theta, \\
[\hat{\omega}^2_\pm, \hat{\omega}^2_\pm] &= 2(1 - \varepsilon\kappa \lambda_+ \bar{\lambda}_+) \theta, \\
[\hat{\omega}^1_\pm, \hat{\omega}^2_\pm] &= -2(\kappa - 1)\varepsilon\bar{\lambda}_\pm \theta, \\
[\hat{\omega}^1_\pm, \hat{\omega}^1_\pm] &= 2(\kappa\varepsilon\lambda_- \bar{\lambda}_- - 1) \theta, \\
[\hat{\omega}^2_\pm, \hat{\omega}^2_\pm] &= 2(\lambda_- \bar{\lambda}_- - \varepsilon\kappa) \theta,
\end{align*}
\]

Matrix Models

All operators can be seen as infinite dimensional matrices.

\Rightarrow Matrix models from SDYM and hCS theory explicit equivalence again via field expansion.

Large N limit

N: rank of gauge group, limit $N \to \infty$: all MMs equivalent.
Sections ω of the bundle defining supertwistor space are now matrix valued.

Noncommutativity on the twistor space

Induced algebra:

\[
\begin{align*}
[\hat{\omega}_\pm^1, \hat{\omega}_\pm^2] &= 2(\kappa - 1)\varepsilon \lambda_\pm \theta, \\
[\hat{\omega}_\pm^1, \hat{\omega}_\mp^1] &= 2(\kappa \varepsilon - \lambda_+ \bar{\lambda}_+) \theta, \\
[\hat{\omega}_\pm^2, \hat{\omega}_\pm^2] &= 2(1 - \varepsilon \kappa \lambda_+ \bar{\lambda}_+) \theta, \\
[\hat{\omega}_\pm^1, \hat{\omega}_\pm^2] &= -2(\kappa - 1)\varepsilon \bar{\lambda}_\pm \theta, \\
[\hat{\omega}_\pm^1, \hat{\omega}_\mp^1] &= 2(\kappa \varepsilon \lambda_- \bar{\lambda}_- - 1) \theta, \\
[\hat{\omega}_\mp^2, \hat{\omega}_\mp^2] &= 2(\lambda_- \bar{\lambda}_- - \varepsilon \kappa) \theta.
\end{align*}
\]

Matrix Models

All operators can be seen as infinite dimensional matrices.

\Rightarrow Matrix models from SDYM and hCS theory explicit equivalence again via field expansion.

Large N limit

N: rank of gauge group, limit $N \to \infty$: all MMs equivalent.
Matrix Models from Noncommutativity

Sections ω of the bundle defining supertwistor space are now matrix valued.

Noncommutativity on the twistor space

Induced algebra:

\[
\begin{align*}
[\hat{\omega}_1^\pm, \hat{\omega}_2^\pm] &= 2(\kappa - 1)\varepsilon\lambda_\pm\theta, & [\hat{\omega}_1^\pm, \hat{\omega}_2^\mp] &= -2(\kappa - 1)\varepsilon\bar{\lambda}_\pm\theta, \\
[\hat{\omega}_1^\pm, \hat{\omega}_1^\pm] &= 2(\kappa\varepsilon - \lambda_+\bar{\lambda}_+)\theta, & [\hat{\omega}_1^\pm, \hat{\omega}_2^\pm] &= 2(\kappa\varepsilon\lambda_+\bar{\lambda}_+ - 1)\theta, \\
[\hat{\omega}_2^\pm, \hat{\omega}_2^\pm] &= 2(1 - \varepsilon\kappa\lambda_+\bar{\lambda}_+)\theta, & [\hat{\omega}_2^\pm, \hat{\omega}_2^\pm] &= 2(\lambda_+\bar{\lambda}_+ - \varepsilon\kappa)\theta,
\end{align*}
\]

Matrix Models

All operators can be seen as infinite dimensional matrices.

\Rightarrow Matrix models from SDYM and hCS theory

explicit equivalence again via field expansion.

Large N limit

N: rank of gauge group, limit $N \to \infty$: all MMs equivalent
Noncommutativity on the twistor space

Induced algebra:

\[
\begin{align*}
[\hat{\omega}_\pm^1, \hat{\omega}_\pm^2] &= 2(\kappa - 1)\varepsilon\lambda_\pm\theta, \\
[\hat{\omega}_\pm^1, \hat{\omega}_\mp^1] &= 2(\kappa\varepsilon - \lambda_+\bar{\lambda}_+)\theta, \\
[\hat{\omega}_\pm^2, \hat{\omega}_\mp^2] &= 2(1 - \varepsilon\kappa\lambda_+\bar{\lambda}_+)\theta,
\end{align*}
\]

Matrix Models

All operators can be seen as infinite dimensional matrices.

\[\Rightarrow\] Matrix models from SDYM and hCS theory explicit equivalence again via field expansion.

Large N limit

N: rank of gauge group, limit $N \to \infty$: all MMs equivalent.
Matrix Models from Noncommutativity

Sections ω of the bundle defining supertwistor space are now matrix valued.

Noncommutativity on the twistor space

Induced algebra:

$$
[\hat{\omega}^1_{\pm}, \hat{\omega}^2_{\pm}] = 2(\kappa - 1)\varepsilon\lambda_{\pm}\theta , \quad [\hat{\omega}^1_{\pm}, \hat{\omega}^2_{\pm}] = -2(\kappa - 1)\varepsilon\bar{\lambda}_{\pm}\theta ,
$$

$$
[\hat{\omega}^1_{+}, \hat{\omega}^1_{+}] = 2(\kappa\varepsilon - \lambda_+\bar{\lambda}_+)\theta , \quad [\hat{\omega}^1_{-}, \hat{\omega}^1_{-}] = 2(\kappa\varepsilon\lambda_-\bar{\lambda}_- - 1)\theta ,
$$

$$
[\hat{\omega}^2_{+}, \hat{\omega}^2_{+}] = 2(1 - \varepsilon\kappa\lambda_+\bar{\lambda}_+)\theta , \quad [\hat{\omega}^2_{-}, \hat{\omega}^2_{-}] = 2(\lambda_-\bar{\lambda}_- - \varepsilon\kappa)\theta ,
$$

Matrix Models

All operators can be seen as infinite dimensional matrices.

\Rightarrow Matrix models from SDYM and hCS theory explicit equivalence again via field expansion.

Large N limit

N: rank of gauge group, limit $N \to \infty$: all MMs equivalent
B-Type Topological Branes

- **D(-1)-, D1-, D3-, and D5-branes**
- Stack of N D-branes comes with rank N vector bundle
- Effective action: $\text{GL}(N, \mathbb{C})$ holomorphic Chern-Simons theory
- I.e. $F^{0,2} = F^{2,0} = 0$ (stability missing: $k^{d+1} \wedge F^{1,1} = \gamma k^d$)

hCS MM: Stack of n D1|4-branes wrapping $\mathbb{C}P^{1|4} \hookrightarrow \mathcal{P}^{3|4}$.

Expand Higgs-fields $\mathcal{X}_\alpha = \mathcal{X}_\alpha^0 + \mathcal{X}_\alpha^i \eta_i + \mathcal{X}_\alpha^{ij} \eta_i \eta_j + \ldots$

$$
\begin{align*}
[\mathcal{X}_1^0, \mathcal{X}_2^0] &= 0, \\
[\mathcal{X}_1^i, \mathcal{X}_2^0] + [\mathcal{X}_1^0, \mathcal{X}_2^i] &= 0, \\
\{\mathcal{X}_1^i, \mathcal{X}_2^j\} - \{\mathcal{X}_1^j, \mathcal{X}_2^i\} + [\mathcal{X}_1^{ij}, \mathcal{X}_2^0] + [\mathcal{X}_1^0, \mathcal{X}_2^{ij}] &= 0,
\end{align*}
$$

Bodies \mathcal{X}_α^0 can be diagonalized: positions of the D1|4-branes.

Fermionic directions are "smeared out" even classically.
D-Brane Interpretation
There is an obvious interpretation of the hCS MM in terms of topological B-branes.

B-Type Topological Branes

- $D(-1)$-, $D1$-, $D3$-, and $D5$-branes
- stack of N D-branes comes with rank N vector bundle
 - effective action: $GL(N, \mathbb{C})$ holomorphic Chern-Simons theory
 - i.e. $F^{0,2} = F^{2,0} = 0$ (stability missing: $k^d+1 \wedge F^{1,1} = \gamma k^d$)

hCS MM: stack of n $D1|4$-branes wrapping $\mathbb{C}P^{1|4} \hookrightarrow P^{3|4}$.
expand Higgs-fields $\chi_\alpha = \chi^0_\alpha + \chi^i_\alpha \eta_i + \chi^{ij}_\alpha \eta_i \eta_j + \ldots$

$$[\chi^0_1, \chi^0_2] = 0 ,$$

$$[\chi^i_1, \chi^0_2] + [\chi^0_1, \chi^i_2] = 0 ,$$

$$\{\chi^i_1, \chi^j_2\} - \{\chi^j_1, \chi^i_2\} + [\chi^{ij}_1, \chi^0_2] + [\chi^0_1, \chi^{ij}_2] = 0 ,$$

bodies χ^0_α can be diagonalized: positions of the $D1|4$-branes

Fermionic directions are “smeared out” even classically.
D-Brane Interpretation
There is an obvious interpretation of the hCS MM in terms of topological B-branes.

B-Type Topological Branes
- D(-1)-, D1-, D3-, and D5-branes
- stack of \(N \) D-branes comes with rank \(N \) vector bundle
- effective action: \(\text{GL}(N, \mathbb{C}) \) holomorphic Chern-Simons theory
 - i.e. \(F^{0,2} = F^{2,0} = 0 \) (stability missing: \(k^{d+1} \wedge F^{1,1} = \gamma k^d \))

hCS MM: stack of \(n \) D1|4-branes wrapping \(\mathbb{C}P^{1|4} \rightarrow \mathcal{P}^{3|4} \).
expand Higgs-fields \(X_\alpha = X^0_\alpha + X^i_\alpha \eta_i + X^{ij}_\alpha \eta_i \eta_j + \ldots \)

\[[X^0_1, X^0_2] = 0, \]
\[[X^i_1, X^0_2] + [X^0_1, X^i_2] = 0, \]
\[\{X^i_1, X^j_2\} - \{X^j_1, X^i_2\} + [X^{ij}_1, X^0_2] + [X^0_1, X^{ij}_2] = 0, \]

bodies \(X^0_\alpha \) can be diagonalized: positions of the D1|4-branes
Fermionic directions are “smeared out” even classically.
D-Brane Interpretation

There is an obvious interpretation of the hCS MM in terms of topological B-branes.

B-Type Topological Branes

- $D(-1)$-, $D1$-, $D3$-, and $D5$-branes
- stack of N D-branes comes with rank N vector bundle
- effective action: $\text{GL}(N, \mathbb{C})$ holomorphic Chern-Simons theory
- i.e. $F^{0,2} = F^{2,0} = 0$ (stability missing: $k^{d+1} \wedge F^{1,1} = \gamma k^{d}$)

hCS MM: stack of n $D1|4$-branes wrapping $\mathbb{C}P^{1|4} \hookrightarrow \mathcal{P}^{3|4}$.

expand Higgs-fields $x_{\alpha} = x_{\alpha}^{0} + x_{\alpha}^{i} \eta_{i} + x_{\alpha}^{ij} \eta_{i} \eta_{j} + \ldots$

$$[x_{1}^{0}, x_{2}^{0}] = 0 ,$$

$$[x_{1}^{i}, x_{2}^{0}] + [x_{1}^{0}, x_{2}^{i}] = 0 ,$$

$$\{x_{1}^{i}, x_{2}^{j}\} - \{x_{1}^{j}, x_{2}^{i}\} + [x_{1}^{ij}, x_{2}^{0}] + [x_{1}^{0}, x_{2}^{ij}] = 0 ,$$

bodies x_{α}^{0} can be diagonalized: positions of the $D1|4$-branes

Fermionic directions are “smeared out” even classically.
D-Brane Interpretation

There is an obvious interpretation of the hCS MM in terms of topological B-branes.

B-Type Topological Branes

- D(-1)-, D1-, D3-, and D5-branes
- stack of \(N \) D-branes comes with rank \(N \) vector bundle
- effective action: \(\text{GL}(N, \mathbb{C}) \) holomorphic Chern-Simons theory
- i.e. \(F^{0,2} = F^{2,0} = 0 \) (stability missing: \(k^{d+1} \wedge F^{1,1} = \gamma k^d \))

hCS MM: stack of \(n \) D1|4-branes wrapping \(\mathbb{C}P^{1|4} \rightarrow \mathcal{P}^{3|4} \).

Expand Higgs-fields \(\chi_\alpha = \chi_\alpha^0 + \chi_\alpha^i \eta_i + \chi_\alpha^{ij} \eta_i \eta_j + \ldots \)

\[
\begin{align*}
[\chi_1^0, \chi_2^0] &= 0, \\
[\chi_1^i, \chi_2^0] + [\chi_1^0, \chi_2^i] &= 0, \\
\{\chi_1^i, \chi_2^j\} - \{\chi_1^j, \chi_2^i\} + [\chi_1^{ij}, \chi_2^0] + [\chi_1^0, \chi_2^{ij}] &= 0,
\end{align*}
\]

Bodies \(\chi_\alpha^0 \) can be diagonalized: positions of the D1|4-branes

Fermionic directions are “smeared out” even classically.
D-Brane Interpretation
There is an obvious interpretation of the hCS MM in terms of topological B-branes.

B-Type Topological Branes
- D(-1)-, D1-, D3-, and D5-branes
- stack of N D-branes comes with rank N vector bundle
- effective action: $\text{GL}(N, \mathbb{C})$ holomorphic Chern-Simons theory
- i.e. $F^{0,2} = F^{2,0} = 0$ (stability missing: $k^{d+1} \wedge F^{1,1} = \gamma k^d$)

hCS MM: stack of n D1|4-branes wrapping $\mathbb{C}P^{1|4} \hookrightarrow \mathcal{P}^{3|4}$.
expand Higgs-fields $\chi_\alpha = \chi_0^\alpha + \chi_0^i \eta_i + \chi_0^{ij} \eta_i \eta_j + \ldots$

$$[\chi_1^0, \chi_2^0] = 0 ,$$

$$[\chi_1^i, \chi_2^0] + [\chi_1^0, \chi_2^i] = 0 ,$$

$$\{\chi_1^i, \chi_2^j\} - \{\chi_1^j, \chi_2^i\} + [\chi_1^{ij}, \chi_2^0] + [\chi_1^0, \chi_2^{ij}] = 0 ,$$

bodies χ_α^0 can be diagonalized: positions of the D1|4-branes
Fermionic directions are “smeared out” even classically.
D-Brane Interpretation

There is an obvious interpretation of the hCS MM in terms of topological B-branes.

B-Type Topological Branes
- D(-1)-, D1-, D3-, and D5-branes
- stack of N D-branes comes with rank N vector bundle
- effective action: $\text{GL}(N, \mathbb{C})$ holomorphic Chern-Simons theory
- i.e. $F^{0,2} = F^{2,0} = 0$ (stability missing: $k^{d+1} \wedge F^{1,1} = \gamma k^d$)

hCS MM: stack of n D1|4-branes wrapping $\mathbb{C}P^{1|4} \hookrightarrow \mathcal{P}^{3|4}$.

expand Higgs-fields $\mathcal{X}_\alpha = \mathcal{X}_\alpha^0 + \mathcal{X}_\alpha^i \eta_i + \mathcal{X}_\alpha^{ij} \eta_i \eta_j + \ldots$

$$[\mathcal{X}_1^0, \mathcal{X}_2^0] = 0,$$

$$[\mathcal{X}_1^i, \mathcal{X}_2^0] + [\mathcal{X}_1^0, \mathcal{X}_2^i] = 0,$$

$$\{\mathcal{X}_1^i, \mathcal{X}_2^j\} - \{\mathcal{X}_1^j, \mathcal{X}_2^i\} + [\mathcal{X}_1^{ij}, \mathcal{X}_2^0] + [\mathcal{X}_2^0, \mathcal{X}_2^{ij}] = 0,$$

bodies \mathcal{X}_α^0 can be diagonalized: positions of the D1|4-branes

Fermionic directions are “smeared out” even classically.
D-Brane Interpretation
There is an obvious interpretation of the hCS MM in terms of topological B-branes.

B-Type Topological Branes
- D(-1)-, D1-, D3-, and D5-branes
- stack of N D-branes comes with rank N vector bundle
- effective action: $\text{GL}(N, \mathbb{C})$ holomorphic Chern-Simons theory
- i.e. $F^{0,2} = F^{2,0} = 0$ (stability missing: $k^{d+1} \wedge F^{1,1} = \gamma k^d$)

hCS MM: stack of n D1|4-branes wrapping $\mathbb{C}P^{1|4} \hookrightarrow \mathcal{P}^{3|4}$.

expand Higgs-fields $\chi_\alpha = \chi^0_\alpha + \chi^i_\alpha \eta_i + \chi^{ij}_\alpha \eta_i \eta_j + \ldots$

$$[\chi^0_1, \chi^0_2] = 0 ,$$
$$[\chi^i_1, \chi^0_2] + [\chi^0_1, \chi^i_2] = 0 ,$$
$$\{\chi^i_1, \chi^j_2\} - \{\chi^j_1, \chi^i_2\} + [\chi^{ij}_1, \chi^0_2] + [\chi^0_1, \chi^{ij}_2] = 0 ,$$

bodies χ^0_α can be diagonalized: positions of the D1|4-branes

Fermionic directions are “smeared out” even classically.
D-Brane Interpretation
Physical D-branes: topological D-branes + stability condition.

D-Brane Interpretation
Physical D-branes: topological D-branes + stability condition.

D-Branes in Type IIB String Theory
- $D(-1)$-, $D1$-, $D3$-, ... branes
- stack of N D-branes comes with rank N vector bundle
- effective action: $U(N)$ SYM reduced from 10 to $p + 1$
- curved spaces: $F^{0,2} = F^{2,0} = 0$ and $k^{d+1} \wedge F^{1,1} = \gamma k^d$
- arising Higgs fields: normal fluctuations of D-branes
D-Brane Interpretation
Physical D-branes: topological D-branes + stability condition.

D-Brane Interpretation
Physical D-branes: topological D-branes + stability condition.

D-Branes in Type IIB String Theory
- D(-1)-, D1-, D3-, ... branes
- stack of N D-branes comes with rank N vector bundle
- effective action: $U(N)$ SYM reduced from 10 to $p + 1$
- curved spaces: $F^{0,2} = F^{2,0} = 0$ and $k^{d+1} \wedge F^{1,1} = \gamma k^d$
- arising Higgs fields: normal fluctuations of D-branes
D-Brane Interpretation
Physical D-branes: topological D-branes + stability condition.

D-Branes in Type IIB String Theory
- D(-1)-, D1-, D3-, ... branes
- stack of N D-branes comes with rank N vector bundle
- effective action: $U(N)$ SYM reduced from 10 to $p + 1$
- curved spaces: $F^{0,2} = F^{2,0} = 0$ and $k^{d+1} \wedge F^{1,1} = \gamma k^d$
- arising Higgs fields: normal fluctuations of D-branes
D-Brane Interpretation
Physical D-branes: topological D-branes + stability condition.

D-Branes in Type IIB String Theory
- D(-1)-, D1-, D3-, ... branes
- stack of N D-branes comes with rank N vector bundle
- effective action: $U(N)$ SYM reduced from 10 to $p + 1$
- curved spaces: $F^{0,2} = F^{2,0} = 0$ and $k^{d+1} \wedge F^{1,1} = \gamma k^d$
- arising Higgs fields: normal fluctuations of D-branes
D-Brane Interpretation

Physical D-branes: topological D-branes + stability condition.

D-Branes in Type IIB String Theory

- D(-1)-, D1-, D3-, ... branes
- stack of N D-branes comes with rank N vector bundle
- effective action: $U(N)$ SYM reduced from 10 to $p + 1$
- curved spaces: $F^{0,2} = F^{2,0} = 0$ and $k^{d+1} \wedge F^{1,1} = \gamma k^d$
- arising Higgs fields: normal fluctuations of D-branes
Bound state of $\text{D3-D}(-1)$-branes ($\text{D9-D5-branes + dim. reduction}$)

Perspective of D3-brane

D3-D3-strings + BPS condition: SDYM equations

D(-1)-brane: instanton, nontrivial ch_2

Perspective of D(-1)-brane

D(-1)-D(-1)-strings:

$\mathcal{N} = (0, 1)$ hypmult., adj. $(A_{\alpha \dot{\alpha}}, \chi^i_{\alpha})$

D(-1)-D3-strings:

$\mathcal{N} = (0, 1)$ hypmult., bifund. (w_α, ψ^i)

D-flatness condition/ADHM eqns.:

$$\frac{i}{16\pi^2} \bar{\sigma}^{\dot{\alpha}}_{\dot{\beta}} (\bar{w}^{\dot{\beta}} w_\alpha + \bar{A}^{\dot{\alpha} \dot{\beta}} A_{\alpha \dot{\alpha}}) = 0$$

Witten, hep-th/9510135, Douglas, hep-th/9512077, ...
ADHM Construction and D-Brane Bound States

There is a nice interpretation of the ADHM construction in terms of D-branes. Bound state of D3-D(-1)-branes (D9-D5-branes + dim. reduction)

Perspective of D3-brane

D3-D3-strings + BPS condition:
SDYM equations
D(-1)-brane: instanton, nontrivial ch2

Perspective of D(-1)-brane

D(-1)-D(-1)-strings:
\(\mathcal{N} = (0, 1) \) hypmult., adj. \((A_{\alpha \dot{\alpha}}, \chi^{i}_{\alpha}) \)
D(-1)-D3-strings:
\(\mathcal{N} = (0, 1) \) hypmult., bifund. \((w_{\dot{\alpha}}, \psi^{i}) \)
\(D \)-flatness condition/ADHM eqns.:
\[
\frac{i}{16\pi^2} \sigma^{\dot{\alpha} \dot{\beta}} (\bar{w}^{\dot{\beta}} w_{\dot{\alpha}} + \bar{A}^{\alpha \dot{\beta}} A_{\alpha \dot{\alpha}}) = 0
\]

Witten, hep-th/9510135, Douglas, hep-th/9512077,...
ADHM Construction and D-Brane Bound States

There is a nice interpretation of the ADHM construction in terms of D-branes.

Bound state of D3-D(-1)-branes ($\text{D9-D5-branes} + \text{dim. reduction}$)

Perspective of D3-brane

$\text{D3-D3-strings} + \text{BPS condition: SDYM equations}$

$\text{D(-1)-brane: instanton, nontrivial } ch_2$

Perspective of D(-1)-brane

$\text{D(-1)-D(-1)-strings: }$
$\mathcal{N} = (0, 1) \text{ hypmult., adj. } (A_{\alpha\dot{\alpha}}, \chi^i_\dot{\alpha})$

$\text{D(-1)-D3-strings: }$
$\mathcal{N} = (0, 1) \text{ hypmult., bifund. } (w_\dot{\alpha}, \psi^i)$

D-flatness condition/ADHM eqns.:
$$\frac{i}{16\pi^2} \bar{\sigma}^{\dot{\alpha}}_\beta (\bar{w}^\beta w_\dot{\alpha} + \bar{A}^\alpha_\beta A_{\alpha\dot{\alpha}}) = 0$$

Witten, hep-th/9510135, Douglas, hep-th/9512077, ...
ADHM Construction and D-Brane Bound States

There is a nice interpretation of the ADHM construction in terms of D-branes.

Bound state of D3-D(-1)-branes (D9-D5-branes + dim. reduction)

Perspective of D3-brane

D3-D3-strings + BPS condition:

SDYM equations

D(-1)-brane: instanton, nontrivial ch_2

Perspective of D(-1)-brane

D(-1)-D(-1)-strings:

$\mathcal{N} = (0, 1)$ hypmult., adj. $(A_{\alpha \dot{\alpha}}, \chi_\alpha)$

D(-1)-D3-strings:

$\mathcal{N} = (0, 1)$ hypmult., bifund. $(w_\dot{\alpha}, \psi^i)$

D-flatness condition/ADHM eqns.:

$$\frac{i}{16\pi^2} \bar{\sigma}^{\dot{\alpha}}{}_{\dot{\beta}} \bar{w}^{\dot{\beta}} w_\dot{\alpha} + \bar{A}^{\alpha \dot{\beta}} A_{\alpha \dot{\alpha}} = 0$$

Witten, hep-th/9510135, Douglas, hep-th/9512077,...
Bound state of D3-D(-1)-branes ($\text{D9-D5-branes + dim. reduction}$)

Perspective of D3-brane

- **D3-D3-strings + BPS condition:**
 - **SDYM equations**
 - **D(-1)-brane:** instanton, nontrivial ch_2

Perspective of D(-1)-brane

- **D(-1)-D(-1)-strings:**
 - $\mathcal{N} = (0,1)$ hypmult., adj. $(A_{\alpha \dot{\alpha}}, \chi^i_{\alpha})$
- **D(-1)-D3-strings:**
 - $\mathcal{N} = (0,1)$ hypmult., bifund. $(w_{\dot{\alpha}}, \psi^i)$
- **D-flatness condition/ADHM eqns.**:
 \[
 \frac{i}{16\pi^2} \bar{\sigma}^{\dot{\alpha}}_{\beta} (\bar{w}^\beta w_{\dot{\alpha}} + \bar{A}^{\alpha \beta} A_{\alpha \dot{\alpha}}) = 0
 \]

Witten, hep-th/9510135, Douglas, hep-th/9512077, ...
There is a nice interpretation of the ADHM construction in terms of D-branes. Bound state of D3-D(-1)-branes (D9-D5-branes + dim. reduction)

Perspective of D3-brane

D3-D3-strings + BPS condition: SDYM equations

D(-1)-brane: instanton, nontrivial ch_2

Perspective of D(-1)-brane

D(-1)-D(-1)-strings:

$\mathcal{N} = (0, 1)$ hypmult., adj. $(A_{\alpha \dot{\alpha}}, \chi^i_{\dot{\alpha}})$

D(-1)-D3-strings:

$\mathcal{N} = (0, 1)$ hypmult., bifund. $(w_{\dot{\alpha}}, \psi^i)$

D-flatness condition/ADHM eqns.:

$$\frac{i}{16\pi^2} \bar{\sigma}^{\dot{\alpha}}_\beta (\bar{w}^\beta w_{\dot{\alpha}} + \bar{A}_{\alpha \dot{\beta}} A_{\alpha \dot{\alpha}}) = 0$$

Witten, hep-th/9510135, Douglas, hep-th/9512077,...
Bound state of $D3$-$D(-1)$-branes ($D9$-$D5$-branes + dim. reduction)

Perspective of D3-brane

- $D3$-$D3$-strings + BPS condition: SDYM equations
- $D(-1)$-brane: instanton, nontrivial ch_2

Perspective of D(-1)-brane

- $D(-1)$-$D(-1)$-strings:
 - $\mathcal{N} = (0, 1)$ hypmult., adj. $(A_{\dot{\alpha}\dot{\alpha}}, \chi^i_{\dot{\alpha}})$
- $D(-1)$-$D3$-strings:
 - $\mathcal{N} = (0, 1)$ hypmult., bifund. $(w_{\dot{\alpha}}, \psi^i)$
- D-flatness condition/ADHM eqns.:
 \[\frac{i}{16\pi^2} \overline{\sigma}^\dot{\alpha}_{\dot{\beta}} (\bar{w}^\dot{\beta} w_{\dot{\alpha}} + \bar{A}^{\dot{\alpha}\dot{\beta}} A_{\dot{\alpha}\dot{\beta}}) = 0 \]

Witten, hep-th/9510135, Douglas, hep-th/9512077, ...
The SDYM Matrix Model is almost equivalent to the ADHM equations.

Perspective of D(-1)-branes

- Supersymmetrically extend ADHM eqns.:
 \[A_{\alpha\dot{\alpha}} \rightarrow A_{\alpha\dot{\alpha}} + \eta_i^{i\dot{i}} \chi_{i\dot{\alpha}} \quad \text{and} \quad w_{\dot{\alpha}} \rightarrow w_{\dot{\alpha}} + \eta_{\dot{\alpha}}^{i\dot{i}} \psi_i \]

- Drop the D(-1)-D3-strings, i.e. \(w_{\dot{\alpha}} \equiv 0 \)

- \(\Rightarrow \) SDYM MM equations

- How to obtain the full picture?

- Incorporate D(-1)-D3-strings in MM in hCS: D1-D5-strings.
ADHM and the SDYM Matrix Model

The SDYM Matrix Model is almost equivalent to the ADHM equations.

- Perspective of D(-1)-branes
- Supersymmetrically extend ADHM eqns.:
 \[A_{\alpha\dot{\alpha}} \rightarrow A_{\alpha\dot{\alpha}} + \eta^{i}_{\dot{\alpha}} \chi_{i\alpha} \quad \text{and} \quad w_{\dot{\alpha}} \rightarrow w_{\dot{\alpha}} + \eta^{i}_{\dot{\alpha}} \psi_{i} \]
- Drop the D(-1)-D3-strings, i.e. \(w_{\dot{\alpha}} = 0 \)
- \(\Rightarrow \) SDYM MM equations
- How to obtain the full picture?
- Incorporate D(-1)-D3-strings in MM in hCS: D1-D5-strings.
ADHM and the SDYM Matrix Model
The SDYM Matrix Model is almost equivalent to the ADHM equations.

- Perspective of $D(-1)$-branes
- Supersymmetrically extend ADHM eqns.:
 \[A_{\alpha \dot{\alpha}} \rightarrow A_{\alpha \dot{\alpha}} + \eta^i_{\dot{\alpha}} \chi_i \alpha \]
 \[w_{\dot{\alpha}} \rightarrow w_{\dot{\alpha}} + \eta^i_{\dot{\alpha}} \psi_i \]
- Drop the $D(-1)$-$D3$-strings, i.e. $w_{\dot{\alpha}} \neq 0$
 \[\Rightarrow \quad \text{SDYM MM equations} \]
- How to obtain the full picture?
 \[\Rightarrow \quad \text{Incorporate } D(-1)$-$D3$-strings in MM in hCS: $D1$-$D5$-strings. \]
Perspective of $\text{D}(-1)$-branes

Supersymmetrically extend ADHM eqns.:

$$A_{\alpha \dot{\alpha}} \rightarrow A_{\alpha \dot{\alpha}} + \eta^{i}_{\alpha} \chi_{i \alpha} \quad \text{and} \quad w_{\dot{\alpha}} \rightarrow w_{\dot{\alpha}} + \eta^{i}_{\dot{\alpha}} \psi_{i}$$

Drop the $\text{D}(-1)$-$\text{D}3$-strings, i.e. $w_{\dot{\alpha}} \neq 0$

\Rightarrow SDYM MM equations

How to obtain the full picture?

Incorporate $\text{D}(-1)$-$\text{D}3$-strings in MM
in hCS: $\text{D}1$-$\text{D}5$-strings.
ADHM and the SDYM Matrix Model
The SDYM Matrix Model is almost equivalent to the ADHM equations.

- Perspective of $D(-1)$-branes
- Supersymmetrically extend ADHM eqns.:
 \[A_{\alpha\dot{\alpha}} \rightarrow A_{\alpha\dot{\alpha}} + \eta^i_{\dot{\alpha}} \chi_{i\alpha} \text{ and } w_{\dot{\alpha}} \rightarrow w_{\dot{\alpha}} + \eta^i_{\dot{\alpha}} \psi_i \]
- Drop the $D(-1)$-$D3$-strings, i.e. $w_{\dot{\alpha}} \neq 0$
- \Rightarrow SDYM MM equations
- How to obtain the full picture?
 - Incorporate $D(-1)$-$D3$-strings in MM in hCS: $D1$-$D5$-strings.
ADHM and the SDYM Matrix Model

The SDYM Matrix Model is almost equivalent to the ADHM equations.

- Perspective of $D(-1)$-branes
- Supersymmetrically extend ADHM eqns.:
 \[A_{\dot{\alpha}\dot{\alpha}} \rightarrow A_{\dot{\alpha}\dot{\alpha}} + \eta_i^{\dot{\alpha}} \chi_{i\dot{\alpha}} \quad \text{and} \quad w_{\dot{\alpha}} \rightarrow w_{\dot{\alpha}} + \eta_{\dot{\alpha}}^{\dot{i}} \psi_i \]
- Drop the $D(-1)$-$D3$-strings, i.e. $w_{\dot{\alpha}} \neq 0$
- \Rightarrow SDYM MM equations
- How to obtain the full picture?
- Incorporate $D(-1)$-$D3$-strings in MM in hCS: $D1$-$D5$-strings.
ADHM and the Extended Matrix Models
The hCS MM can be extended to be equivalent to the ADHM equations.

Extended action

\[S_{\text{ext}} = S_{\text{hCS MM}} + \int_{\mathbb{C}P_1} \Omega_{\text{red}} \wedge \text{tr} \left(\beta \bar{\partial} \alpha + \beta A^{0,1}_{\mathbb{C}P_1} \alpha \right) \]

\(\alpha = \beta^* \), sections of \(\mathcal{O}(1) \), fund. and antifund. of \(\text{GL}(N, \mathbb{C}) \)
(\(\alpha \) and \(\beta \) bosons not fermions as in Witten, hep-th/0312171)

Equations of motion:

\[\bar{\partial} \chi_\alpha + [A^{0,1}_{\mathbb{C}P_1}, \chi_\alpha] = 0 \]
\[[\chi_1, \chi_2] + \alpha \beta = 0 \]
\[\bar{\partial} \alpha + A^{0,1}_{\mathbb{C}P_1} \alpha = 0 \text{ and } \bar{\partial} \beta + \beta A^{0,1}_{\mathbb{C}P_1} = 0 \]
ADHM and the Extended Matrix Models

The hCS MM can be extended to be equivalent to the ADHM equations.

Extended action

\[S_{\text{ext}} = S_{\text{hCS MM}} + \int_{\mathbb{C}P^{1}_{\text{ch}}} \Omega_{\text{red}} \wedge \text{tr} (\beta \bar{\alpha} + \beta A_{\mathbb{C}P^{1}}^{0,1} \alpha) \]

\[\alpha = \beta^*, \text{ sections of } \mathcal{O}(1), \text{ fund. and antifund. of } \text{GL}(N, \mathbb{C}) \]

(\(\alpha \) and \(\beta \) bosons not fermions as in Witten, hep-th/0312171)

Equations of motion:

\[\bar{\partial}x_{\alpha} + [A_{\mathbb{C}P^{1}}^{0,1}, x_{\alpha}] = 0 \]

\[[x_{1}, x_{2}] + \alpha \beta = 0 \]

\[\bar{\partial} \alpha + A_{\mathbb{C}P^{1}}^{0,1} \alpha = 0 \text{ and } \bar{\partial} \beta + \beta A_{\mathbb{C}P^{1}}^{0,1} = 0 \]
ADHM and the Extended Matrix Models

The hCS MM can be extended to be equivalent to the ADHM equations.

\[S_{\text{ext}} = S_{\text{hCS MM}} + \int_{\mathbb{C}P^1_{\text{ch}}} \Omega_{\text{red}} \wedge \text{tr} (\beta \bar{\alpha} + \beta A_{\mathbb{C}P^1}^{0,1} \alpha) \]

\(\alpha = \beta^* \), sections of \(\mathcal{O}(1) \), fund. and antifund. of \(\text{GL}(N, \mathbb{C}) \)
(\(\alpha \) and \(\beta \) bosons not fermions as in Witten, hep-th/0312171)

Equations of motion:

\[\bar{\partial}x_\alpha + [A_{\mathbb{C}P^1}^{0,1}, x_\alpha] = 0 \]
\[[x_1, x_2] + \alpha \beta = 0 \]
\[\bar{\partial}\alpha + A_{\mathbb{C}P^1}^{0,1} \alpha = 0 \quad \text{and} \quad \bar{\partial}\beta + \beta A_{\mathbb{C}P^1}^{0,1} = 0 \]
ADHM and the Extended Matrix Models
The hCS MM can be extended to be equivalent to the ADHM equations.

Extended action

\[
S_{\text{ext}} = S_{\text{hCS MM}} + \int_{\mathbb{C}P^1_{ch}} \Omega_{\text{red}} \wedge \text{tr} (\beta \bar{\partial} \alpha + \beta A_{\mathbb{C}P^1}^{0,1} \alpha)
\]

\(\alpha = \beta^\ast\), sections of \(\mathcal{O}(1)\), fund. and antifund. of \(\text{GL}(N, \mathbb{C})\)
(\(\alpha\) and \(\beta\) bosons not fermions as in Witten, hep-th/0312171)

Equations of motion:

\[
\bar{\partial} x_\alpha + [A_{\mathbb{C}P^1}^{0,1}, x_\alpha] = 0
\]

\[
[x_1, x_2] + \alpha \beta = 0
\]

\[
\bar{\partial} \alpha + A_{\mathbb{C}P^1}^{0,1} \alpha = 0 \quad \text{and} \quad \bar{\partial} \beta + \beta A_{\mathbb{C}P^1}^{0,1} = 0
\]
ADHM and the Extended Matrix Models

Again, the equivalence can be made manifest by a field expansion.

Extended Penrose-Ward transform explicitly

\[
\begin{align*}
\beta &= \lambda^{\dot{\alpha}} w_{\dot{\alpha}} + \psi^i \eta_i + \gamma \frac{1}{2!} \eta_i \eta_j \hat{\lambda}^{\dot{\alpha}} \rho^{ij}_{\dot{\alpha}} + \gamma^2 \frac{1}{3!} \eta_i \eta_j \eta_k \hat{\lambda}^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \sigma^{ijk}_{\dot{\alpha}\dot{\beta}} + \ldots \\
\alpha &= \lambda^{\dot{\alpha}} \varepsilon_{\dot{\alpha}\dot{\beta}} \bar{w}^{\dot{\beta}} + \ldots
\end{align*}
\]

Truncate the SDYM field content \((\phi^{ij}, \tilde{\chi}^{ijk}_{\dot{\alpha}}, G^{ijkl}_{\dot{\alpha}\dot{\beta}} = 0)\):

- Higher fields in extension also vanish
- This expansion and the hCS MM equations yield the full ADHM-equations.

Conclusions:

- Extended hCS MM dual to full hCS (as SDYM\(\leftrightarrow\)ADHM).
- D(-1)-D3-brane bound states correspond to topological D1-D5-brane systems!
ADHM and the Extended Matrix Models

Again, the equivalence can be made manifest by a field expansion.

Extended Penrose-Ward transform explicitly

\[\beta = \lambda \dot{\alpha} w_\dot{\alpha} + \psi^i \eta_i + \gamma \frac{1}{2!} \eta_i \eta_j \dot{\lambda} \rho^{ij}_{\dot{\alpha}} + \gamma^2 \frac{1}{3!} \eta_i \eta_j \eta_k \dot{\lambda} \dot{\lambda} \dot{\beta} \sigma^{ijk}_{\dot{\alpha} \dot{\beta}} + \ldots \]

\[\alpha = \lambda \dot{\alpha} \varepsilon_{\dot{\alpha} \dot{\beta}} w_{\dot{\beta}} + \ldots \]

Truncate the SDYM field content \((\phi^{ij}, \tilde{\chi}^{ijk}_{\dot{\alpha}}, G^{ijkl}_{\dot{\alpha} \dot{\beta}} = 0)\):

- Higher fields in extension also vanish
- This expansion and the hCS MM equations yield the full ADHM-equations.

Conclusions:

- Extended hCS MM dual to full hCS (as SDYM ↔ ADHM).
- D(-1)-D3-brane bound states correspond to topological D1-D5-brane systems!
ADHM and the Extended Matrix Models

Again, the equivalence can be made manifest by a field expansion.

Extended Penrose-Ward transform explicitly

\[\beta = \lambda^{\dot{\alpha}} w_{\dot{\alpha}} + \psi^i \eta_i + \gamma \frac{1}{2!} \eta_i \eta_j \lambda^{\dot{\alpha}} \rho^{ij}_{\dot{\alpha}} + \gamma^2 \frac{1}{3!} \eta_i \eta_j \eta_k \lambda^{\dot{\alpha}} \hat{\lambda}^{\dot{\beta}} \sigma_{\dot{\alpha} \dot{\beta}}^{ijk} + \ldots \]

\[\alpha = \lambda^{\dot{\alpha}} \varepsilon_{\dot{\alpha} \dot{\beta}} \bar{w}^{\dot{\beta}} + \ldots \]

Truncate the SDYM field content \((\phi^{ij}, \tilde{\chi}^{ijk}_{\dot{\alpha}}, G^{ijkl}_{\dot{\alpha} \dot{\beta}} = 0)\):

- Higher fields in extension also vanish
- This expansion and the hCS MM equations yield the full ADHM-equations.

Conclusions:

- Extended hCS MM dual to full hCS (as SDYM \(\leftrightarrow\) ADHM).
- D(-1)-D3-brane bound states correspond to topological D1-D5-brane systems!
ADHM and the Extended Matrix Models

Again, the equivalence can be made manifest by a field expansion.

Extended Penrose-Ward transform explicitly

\[\beta = \lambda^{\dot{\alpha}} w_{\dot{\alpha}} + \psi^i \eta_i + \gamma \frac{1}{2!} \eta_i \eta_j \lambda^{\dot{\alpha}} \rho_{\dot{\alpha}}^{ij} + \gamma^2 \frac{1}{3!} \eta_i \eta_j \eta_k \lambda^{\dot{\alpha}} \lambda^{\dot{\beta}} \sigma_{\dot{\alpha} \dot{\beta}}^{ijk} + \ldots \]

\[\alpha = \lambda^{\dot{\alpha}} \epsilon_{\dot{\alpha} \dot{\beta}} \tilde{w}_{\dot{\beta}} + \ldots \]

Truncate the **SDYM** field content \((\phi^{ij}, \tilde{\chi}_{\dot{\alpha}}^{ijk}, G^{ijkl}_{\dot{\alpha} \dot{\beta}} = 0)\):

- Higher fields in extension also vanish
- This expansion and the **hCS MM** equations yield the full **ADHM**-equations.

Conclusions:

- Extended **hCS MM** dual to full **hCS** (as **SDYM** \(\leftrightarrow\) **ADHM**).
- **D(-1)-D3**-brane bound states correspond to topological **D1-D5**-brane systems!
Again, the equivalence can be made manifest by a field expansion.

Extended Penrose-Ward transform explicitly

\[\beta = \lambda^{\dot{\alpha}} w_{\dot{\alpha}} + \psi^{i} \eta_{i} + \gamma \frac{1}{2!} \eta_{i} \eta_{j} \lambda^{\dot{\alpha}} \rho_{\dot{\alpha}}^{ij} + \gamma^{2} \frac{1}{3!} \eta_{i} \eta_{j} \eta_{k} \lambda^{\dot{\alpha}} \lambda^{\dot{\beta}} \sigma^{ijk}_{\dot{\alpha} \dot{\beta}} + \ldots \]

\[\alpha = \lambda^{\dot{\alpha}} \varepsilon_{\dot{\alpha} \dot{\beta}} \bar{w}^{\dot{\beta}} + \ldots \]

Truncate the SDYM field content \((\phi^{ij}, \tilde{\chi}^{ijk}_{\dot{\alpha}}, G^{ijkl}_{\dot{\alpha} \dot{\beta}} = 0)\):

- Higher fields in extension also vanish
- This expansion and the hCS MM equations yield the full ADHM-equations.

Conclusions:

- Extended hCS MM dual to full hCS (as SDYM\(\leftrightarrow\)ADHM).
- D(-1)-D3-brane bound states correspond to topological D1-D5-brane systems!
Again, the equivalence can be made manifest by a field expansion.

Extended Penrose-Ward transform explicitly

\[
\begin{align*}
\beta &= \lambda^{\dot{\alpha}} w_{\dot{\alpha}} + \psi^i \eta_i + \gamma \frac{1}{2!} \eta_i \eta_j \lambda^{\dot{\alpha}} \rho_{\dot{\alpha}}^{ij} + \gamma^2 \frac{1}{3!} \eta_i \eta_j \eta_k \lambda^{\dot{\alpha}} \lambda^{\dot{\beta}} \sigma_{\dot{\alpha} \dot{\beta}}^{ijk} + \ldots \\
\alpha &= \lambda^{\dot{\alpha}} \varepsilon_{\dot{\alpha} \dot{\beta}}^{\dot{\gamma}} \bar{w}^{\dot{\beta}} + \ldots
\end{align*}
\]

Truncate the SDYM field content \((\phi^{ij}, \tilde{\chi}^{ijk}, G^{ijkl}_{\dot{\alpha} \dot{\beta}} = 0)\):

- Higher fields in extension also vanish
- This expansion and the hCS MM equations yield the full ADHM-equations.

Conclusions:

- Extended hCS MM dual to full hCS (as SDYM\(\leftrightarrow\)ADHM).
- D(-1)-D3-brane bound states correspond to topological D1-D5-brane systems!
Reduction of SDYM eqns. $\mathbb{R}^4 \rightarrow \mathbb{R}^3$: Bogomolny monopole eqns.

(static) pair of D3 branes with D1-branes in normal directions

Perspective of D3-brane
- static D3-D3-strings + BPS cond.:
 - Bogomolny equations
 - (three-dimensional SDYM)
 - D1-branes: monopoles

Perspective of D1-brane
- D1-D1-strings: Nahm equations (one-dimensional SDYM)
- D1-D3-strings: Nahm boundary conditions

Diaconescu, hep-th/9608163
Dimensional Reductions and the Nahm equations

Also for the Nahm Equations, there is a nice interpretation in terms of D-branes.

Reduction of **SDYM eqns.** $\mathbb{R}^4 \rightarrow \mathbb{R}^3$: Bogomolny monopole eqns.

(static) pair of **D3** branes with **D1**-branes in normal directions

Perspective of D3-brane

static D3-D3-strings + BPS cond.:
Bogomolny equations
(three-dimensional SDYM)
D1-branes: monopoles

Perspective of D1-brane

D1-D1-strings: Nahm equations (one-dimensional SDYM)
D1-D3-strings: Nahm boundary conditions

Diaconescu, hep-th/9608163
Dimensional Reductions and the Nahm equations
Also for the Nahm Equations, there is a nice interpretation in terms of D-branes.

Reduction of SDYM eqns. $\mathbb{R}^4 \to \mathbb{R}^3$: Bogomolny monopole eqns.

(static) pair of D3 branes with D1-branes in normal directions

Perspective of D3-brane

- static D3-D3-strings + BPS cond.:
 - Bogomolny equations
 - (three-dimensional SDYM)
 - D1-branes: monopoles

Perspective of D1-brane

- D1-D1-strings: Nahm equations (one-dimensional SDYM)
- D1-D3-strings: Nahm boundary conditions

Diaconescu, hep-th/9608163
Dimensional Reductions and the Nahm equations

Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.

Reduction of SDYM eqns. \(\mathbb{R}^4 \rightarrow \mathbb{R}^3 \): Bogomolny monopole eqns.

(static) pair of D3 branes with D1-branes in normal directions

Perspective of D3-brane

- static D3-D3-strings + BPS cond.:
- Bogomolny equations
 (three-dimensional SDYM)
- D1-branes: monopoles

Perspective of D1-brane

- D1-D1-strings: Nahm equations (one-dimensional SDYM)
- D1-D3-strings: Nahm boundary conditions

Diaconescu, hep-th/9608163
Dimensional Reductions and the Nahm equations
Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.

Reduction of SDYM eqns. $\mathbb{R}^4 \to \mathbb{R}^3$: Bogomolny monopole eqns.

(static) pair of D3 branes with D1-branes in normal directions

Perspective of D3-brane

static D3-D3-strings + BPS cond.:
Bogomolny equations
(three-dimensional SDYM)
D1-branes: monopoles

Perspective of D1-brane

D1-D1-strings: Nahm equations (one-dimensional SDYM)
D1-D3-strings: Nahm boundary conditions

Diaconescu, hep-th/9608163
Dimensional Reductions and the Nahm equations
Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.

Reduction of SDYM eqns. $\mathbb{R}^4 \rightarrow \mathbb{R}^3$: Bogomolny monopole eqns.

(static) pair of D3 branes with D1-branes in normal directions

Perspective of D3-brane

static D3-D3-strings + BPS cond.: Bogomolny equations (three-dimensional SDYM)
D1-branes: monopoles

Perspective of D1-brane

D1-D1-strings: Nahm equations (one-dimensional SDYM)
D1-D3-strings: Nahm boundary conditions

Diaconescu, hep-th/9608163
Dimensional Reductions and the Nahm equations
Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.

Reduction of SDYM eqns. $\mathbb{R}^4 \to \mathbb{R}^3$: Bogomolny monopole eqns.

(static) pair of D3 branes with D1-branes in normal directions

Perspective of D3-brane

- static D3-D3-strings + BPS cond.: Bogomolny equations
 - (three-dimensional SDYM)
 - D1-branes: monopoles

Perspective of D1-brane

- D1-D1-strings: Nahm equations (one-dimensional SDYM)
- D1-D3-strings: Nahm boundary conditions

Diaconescu, hep-th/9608163
Dimensional Reductions and the Nahm equations
For treating the Nahm eqns., one has to change slightly the geometry of twistor space.

Recall
All our MM considerations are based upon $P^3|\cdots = \mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \cdots \rightarrow \mathbb{C}P^1$ and its dim. red. $\mathbb{C}P^1|4$.

The twistor space for the Bogomolny equations is $\mathcal{O}(2) \rightarrow \mathbb{C}P^1$.

New Calabi-Yau supermanifold
Start from $Q^3|4 = \mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi\mathcal{O}(1)$
Restrict sections $\hat{Q}^3|4$: $w^1 = y^{\dot{\alpha}\dot{\beta}} \lambda_{\dot{\alpha}} \lambda_{\dot{\beta}}$, $w^2 = y^{i\bar{j}}$

Dimensional reductions
$\hat{Q}^3|4 \rightarrow \begin{cases} P^2|4 := \mathcal{O}(2) \oplus \mathbb{C}^4 \otimes \Pi\mathcal{O}(1) \\ \hat{Q}^2|4 := \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi\mathcal{O}(1) \\ CP^1|4 := \mathbb{C}^4 \otimes \Pi\mathcal{O}(1) \end{cases}$
Dimensional Reductions and the Nahm equations
For treating the Nahm eqns., one has to change slightly the geometry of twistor space.

Recall
All our MM considerations are based upon
\[\mathcal{P}^{3|\cdots} = \mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \cdots \to \mathbb{C}P^1 \] and its dim. red. \(\mathbb{C}P^{1|4} \).

The twistor space for the Bogomolny equations is \(\mathcal{O}(2) \to \mathbb{C}P^1 \).

New Calabi-Yau supermanifold
Start from \(\hat{\mathcal{Q}}^{3|4} = \mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \)
Restrict sections \(\hat{\mathcal{Q}}^{3|4} : w^1 = y^{\dot{\alpha} \beta} \lambda_{\dot{\alpha}} \lambda_{\beta}, w^2 = y^{i j} \)

Dimensional reductions
\[\hat{\mathcal{Q}}^{3|4} \to \begin{cases} \mathcal{P}^{2|4} : = \mathcal{O}(2) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \\ \hat{\mathcal{Q}}^{2|4} : = \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \\ \mathbb{C}P^{1|4} : = \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \end{cases} \]
Dimensional Reductions and the Nahm equations

For treating the Nahm eqns., one has to change slightly the geometry of twistor space.

Recall

All our MM considerations are based upon
\[\mathcal{P}^{3|\cdots} = \mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \cdots \to \mathbb{C}P^1 \] and its dim. red. \(\mathbb{C}P^{1|4} \).

The twistor space for the Bogomolny equations is \(\mathcal{O}(2) \to \mathbb{C}P^1 \).

New Calabi-Yau supermanifold

Start from \(\hat{Q}^{3|4} = \mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \)

Restrict sections \(\hat{Q}^{3|4} : w^1 = y^{\dot{\alpha} \dot{\beta}} \lambda_{\dot{\alpha}} \lambda_{\dot{\beta}} \), \(w^2 = y^{1 \dot{2}} \)

Dimensional reductions

\[\hat{Q}^{3|4} \to \begin{cases}
\mathcal{P}^{2|4} := \mathcal{O}(2) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \\
\hat{Q}^{2|4} := \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \\
\mathbb{C}P^{1|4} := \mathbb{C}^4 \otimes \Pi \mathcal{O}(1)
\end{cases} \]
Dimensional Reductions and the Nahm equations
For treating the Nahm eqns., one has to change slightly the geometry of twistor space.

Recall
All our MM considerations are based upon
\[\mathcal{P}^{3|\cdots} = \mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \cdots \rightarrow \mathbb{C}P^1 \] and its dim. red. \(\mathbb{C}P^{1|4} \).

The twistor space for the Bogomolny equations is \(\mathcal{O}(2) \rightarrow \mathbb{C}P^1 \).

New Calabi-Yau supermanifold
Start from \(\hat{\mathcal{Q}}^{3|4} = \mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \)
Restrict sections \(\hat{\mathcal{Q}}^{3|4} \): \(w^1 = y^\dot{\alpha} \dot{\beta} \lambda^{\dot{\alpha}} \lambda_{\dot{\beta}} \), \(w^2 = y^{i\dot{2}} \)

Dimensional reductions
\[\hat{\mathcal{Q}}^{3|4} \rightarrow \left\{ \begin{array}{l} \mathcal{P}^{2|4} := \mathcal{O}(2) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \\ \hat{\mathcal{Q}}^{2|4} := \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \\ \mathbb{C}P^{1|4} := \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \end{array} \right\} \]
For treating the Nahm eqns., one has to change slightly the geometry of twistor space.

Recall

All our MM considerations are based upon
\[\mathcal{P}^3|\ldots = \mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \ldots \rightarrow \mathbb{C}P^1 \] and its dim. red. \[\mathbb{C}P^{1|4}. \]

The twistor space for the Bogomolny equations is \[\mathcal{O}(2) \rightarrow \mathbb{C}P^1. \]

New Calabi-Yau supermanifold

Start from \[\hat{Q}^3|4 = \mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]

Restrict sections \[\hat{Q}^3|4: \ w^1 = y^{\dot{\alpha}\dot{\beta}} \lambda^{\dot{\alpha}} \lambda_{\dot{\beta}}, \ w^2 = y^{i\dot{j}} \]

Dimensional reductions

\[\hat{Q}^3|4 \rightarrow \begin{cases} \mathcal{P}^{2|4} := \mathcal{O}(2) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \\ \hat{Q}^{2|4} := \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \\ \mathbb{C}P^{1|4} := \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \end{cases} \]
Dimensional Reductions and the Nahm equations

Different dimensional reductions yield the various field theories in the Nahm construction.

\[\hat{\mathcal{Q}}^{3|4} = \mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \big|_{\text{res}} \]

Upon imposing a reality condition, hCS theory turns into partially hCS theory (\(\rightarrow\) CR manifolds, etc.): Equiv. to Bogomolny eqns.

Popov, CS, Wolf, JHEP 10 (2005) 058

\[\mathcal{P}^{2|4} := \mathcal{O}(2) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]

hCS equations from a holomorphic BF-theory: \(\int \Omega \wedge BF^{0,2} \)

equivalent to Bogomolny equations

\[\hat{\mathcal{Q}}^{2|4} := \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]

hCS equations from a holomorphic BF-theory: \(\int \Omega \wedge BF^{0,2} \)

equivalent to Nahm equations

\[\mathbb{C}P^{1|4} := \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]: again hCS and SDYM matrix models
Dimensional Reductions and the Nahm equations
Different dimensional reductions yield the various field theories in the Nahm construction.

\[\hat{Q}^{3|4} = \mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) |_{\text{res}} \]

Upon imposing a reality condition, hCS theory turns into partially hCS theory (→ CR manifolds, etc.): Equiv. to Bogomolny eqns.
Popov, CS, Wolf, JHEP 10 (2005) 058

\[P^{2|4} := \mathcal{O}(2) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]

hCS equations from a holomorphic BF-theory: \[\int \Omega \wedge BF^{0,2} \]
equivalent to Bogomolny equations

\[\hat{Q}^{2|4} := \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]

hCS equations from a holomorphic BF-theory: \[\int \Omega \wedge BF^{0,2} \]
equivalent to Nahm equations

\[\mathbb{C}P^{1|4} := \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]: again hCS and SDYM matrix models
Dimensional Reductions and the Nahm equations
Different dimensional reductions yield the various field theories in the Nahm construction.

\[\hat{Q}^{3|4} = \mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \big|_{\text{res}} \]

Upon imposing a reality condition, hCS theory turns into partially hCS theory (→ CR manifolds, etc.): Equiv. to Bogomolny eqns.

Popov, CS, Wolf, JHEP 10 (2005) 058

\[\mathcal{P}^{2|4} := \mathcal{O}(2) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]

hCS equations from a holomorphic BF-theory: \(\int \Omega \wedge BF^{0,2} \)
equivalent to Bogomolny equations

\[\hat{Q}^{2|4} := \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]

hCS equations from a holomorphic BF-theory: \(\int \Omega \wedge BF^{0,2} \)
equivalent to Nahm equations

\[\mathbb{C}P^{1|4} := \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]: again hCS and SDYM matrix models
Different dimensional reductions yield the various field theories in the Nahm construction.

\[\hat{Q}^{3|4} = \mathcal{O}(2) \oplus \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1)|_{\text{res}} \]

Upon imposing a reality condition, hCS theory turns into partially hCS theory (\(\rightarrow\) CR manifolds, etc.): Equiv. to Bogomolny eqns.

Popov, CS, Wolf, JHEP 10 (2005) 058

\[P^{2|4} := \mathcal{O}(2) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]

hCS equations from a holomorphic BF-theory: \(\int \Omega \wedge BF^{0,2}\)
equivalent to Bogomolny equations

\[\hat{Q}^{2|4} := \mathcal{O}(0) \oplus \mathbb{C}^4 \otimes \Pi \mathcal{O}(1) \]

hCS equations from a holomorphic BF-theory: \(\int \Omega \wedge BF^{0,2}\)
equivalent to Nahm equations

\[\mathbb{C} P^{1|4} := \mathbb{C}^4 \otimes \Pi \mathcal{O}(1)\]: again hCS and SDYM matrix models
D-Brane correspondences
We find a list of correspondences between topological and physical D-branes.

Summing up, we have

\[
\text{D}5|4\text{-branes in } \mathcal{P}^{3|4} \leftrightarrow \text{D}3|8\text{-branes in } \mathbb{R}^{4|8}
\]

D3|4-branes wr. \(\mathcal{P}^{2|4} \) in \(\mathcal{P}^{3|4} \) or \(\hat{\mathcal{Q}}^{3|4} \) ↔ static D3|8-branes in \(\mathbb{R}^{4|8} \)

D3|4-branes wr. \(\hat{\mathcal{Q}}^{2|4} \) in \(\hat{\mathcal{Q}}^{3|4} \) ↔ static D1|8-branes in \(\mathbb{R}^{4|8} \)

D1|4-branes in \(\mathcal{P}^{3|4} \) ↔ D(-1|8)-branes in \(\mathbb{R}^{4|8} \).

straightforward: add diagonal line bundle \(\mathcal{D}^{2|4} \), defined by \(\omega^1 = \omega^2 \)

D3|4-branes wrapping \(\mathcal{D}^{2|4} \) in \(\mathcal{P}^{3|4} \) ↔ D1|8-branes in \(\mathbb{R}^{4|8} \).

Note:

- Branes extend only into chiral fermionic dimensions
- Branes appear in bound state configurations.
D-Brane correspondences
We find a list of correspondences between topological and physical D-branes.

Summing up, we have

\begin{align*}
\text{D}5|4\text{-branes in } \mathcal{P}^3|4 & \leftrightarrow \text{D}3|8\text{-branes in } \mathbb{R}^4|8 \\
\text{D}3|4\text{-branes wr. } \mathcal{P}^2|4 \text{ in } \mathcal{P}^3|4 \text{ or } \hat{Q}^3|4 & \leftrightarrow \text{static D}3|8\text{-branes in } \mathbb{R}^4|8 \\
\text{D}3|4\text{-branes wr. } \hat{Q}^2|4 \text{ in } \hat{Q}^3|4 & \leftrightarrow \text{static D}1|8\text{-branes in } \mathbb{R}^4|8 \\
\text{D}1|4\text{-branes in } \mathcal{P}^3|4 & \leftrightarrow \text{D}(-1|8)\text{-branes in } \mathbb{R}^4|8
\end{align*}

straightforward: add diagonal line bundle \(\mathcal{D}^2|4 \), defined by \(\omega^1 = \omega^2 \)

\begin{align*}
\text{D}3|4\text{-branes wrapping } \mathcal{D}^2|4 \text{ in } \mathcal{P}^3|4 & \leftrightarrow \text{D}1|8\text{-branes in } \mathbb{R}^4|8
\end{align*}

Note:
- Branes extend only into chiral fermionic dimensions
- Branes appear in bound state configurations.
D-Brane correspondences
We find a list of correspondences between topological and physical D-branes.

Summing up, we have

\[\text{D}5|4\text{-branes in } \mathcal{P}^3|4 \leftrightarrow \text{D}3|8\text{-branes in } \mathbb{R}^4|8 \]

\[\text{D}3|4\text{-branes wr. } \mathcal{P}^2|4 \text{ in } \mathcal{P}^3|4 \text{ or } \hat{\mathcal{Q}}^3|4 \leftrightarrow \text{static D}3|8\text{-branes in } \mathbb{R}^4|8 \]

\[\text{D}3|4\text{-branes wr. } \hat{\mathcal{Q}}^2|4 \text{ in } \hat{\mathcal{Q}}^3|4 \leftrightarrow \text{static D}1|8\text{-branes in } \mathbb{R}^4|8 \]

straightforward: add diagonal line bundle \(\text{D}^2|4 \), defined by \(\omega^1 = \omega^2 \)

\[\text{D}3|4\text{-branes wrapping } \text{D}^2|4 \text{ in } \mathcal{P}^3|4 \leftrightarrow \text{D}1|8\text{-branes in } \mathbb{R}^4|8 \).

Note:

- Branes extend only into chiral fermionic dimensions
- Branes appear in bound state configurations.
D-Brane correspondences
We find a list of correspondences between topological and physical D-branes.

Summing up, we have

\[D_5|4 \text{-branes in } \mathcal{P}^{3|4} \leftrightarrow D_3|8 \text{-branes in } \mathbb{R}^{4|8} \]

\[D_3|4 \text{-branes wr. } \mathcal{P}^{2|4} \text{ in } \mathcal{P}^{3|4} \text{ or } \hat{Q}^{3|4} \leftrightarrow \text{static } D_3|8 \text{-branes in } \mathbb{R}^{4|8} \]

\[D_3|4 \text{-branes wr. } \hat{Q}^{2|4} \text{ in } \hat{Q}^{3|4} \leftrightarrow \text{static } D_1|8 \text{-branes in } \mathbb{R}^{4|8} \]

\[D_1|4 \text{-branes in } \mathcal{P}^{3|4} \leftrightarrow D(-1|8) \text{-branes in } \mathbb{R}^{4|8} \]

straightforward: add diagonal line bundle \(D^{2|4} \), defined by \(\omega^1 = \omega^2 \)

\[D_3|4 \text{-branes wrapping } D^{2|4} \text{ in } \mathcal{P}^{3|4} \leftrightarrow D_1|8 \text{-branes in } \mathbb{R}^{4|8} \].

Note:

- Branes extend only into chiral fermionic dimensions
- Branes appear in bound state configurations.
D-Brane correspondences
We find a list of correspondences between topological and physical D-branes.

Summing up, we have

\[\text{D5}^{5|4} \text{-branes in } \mathcal{P}^{3|4} \leftrightarrow \text{D3}^{3|8} \text{-branes in } \mathbb{R}^{4|8} \]
\[\text{D3}^{3|4} \text{-branes wr. } \mathcal{P}^{2|4} \text{ in } \mathcal{P}^{3|4} \text{ or } \hat{\mathcal{Q}}^{3|4} \leftrightarrow \text{static D3}^{3|8} \text{-branes in } \mathbb{R}^{4|8} \]
\[\text{D3}^{3|4} \text{-branes wr. } \hat{\mathcal{Q}}^{2|4} \text{ in } \hat{\mathcal{Q}}^{3|4} \leftrightarrow \text{static D1}^{1|8} \text{-branes in } \mathbb{R}^{4|8} \]
\[\text{D1}^{1|4} \text{-branes in } \mathcal{P}^{3|4} \leftrightarrow \text{D(-1}^{1|8}) \text{-branes in } \mathbb{R}^{4|8} \]

straightforward: add diagonal line bundle \(\mathcal{D}^{2|4} \), defined by \(\omega^1 = \omega^2 \)

\[\text{D3}^{3|4} \text{-branes wrapping } \mathcal{D}^{2|4} \text{ in } \mathcal{P}^{3|4} \leftrightarrow \text{D1}^{1|8} \text{-branes in } \mathbb{R}^{4|8} \]

Note:

- Branes extend only into chiral fermionic dimensions
- Branes appear in bound state configurations.
D-Brane correspondences
We find a list of correspondences between topological and physical D-branes.

Summing up, we have

\[\text{D5}|4 \text{-branes in } \mathcal{P}^3|4 \leftrightarrow \text{D3}|8 \text{-branes in } \mathbb{R}^4|8 \]
\[\text{D3}|4 \text{-branes wr. } \mathcal{P}^2|4 \text{ in } \mathcal{P}^3|4 \text{ or } \hat{\mathcal{Q}}^3|4 \leftrightarrow \text{static } \text{D3}|8 \text{-branes in } \mathbb{R}^4|8 \]
\[\text{D3}|4 \text{-branes wr. } \hat{\mathcal{Q}}^2|4 \text{ in } \hat{\mathcal{Q}}^3|4 \leftrightarrow \text{static } \text{D1}|8 \text{-branes in } \mathbb{R}^4|8 \]
\[\text{D1}|4 \text{-branes in } \mathcal{P}^3|4 \leftrightarrow \text{D}(-1|8) \text{-branes in } \mathbb{R}^4|8 \]

straightforward: add diagonal line bundle \(D^2|4 \), defined by \(\omega^1 = \omega^2 \)

\[\text{D3}|4 \text{-branes wrapping } D^2|4 \text{ in } \mathcal{P}^3|4 \leftrightarrow \text{D1}|8 \text{-branes in } \mathbb{R}^4|8 \].

Note:
- Branes extend only into chiral fermionic dimensions
- Branes appear in bound state configurations.
D-Brane correspondences

We find a list of correspondences between topological and physical D-branes.

Summing up, we have

\[D_5|4 \text{-branes in } \mathcal{P}^3|4 \leftrightarrow D_3|8 \text{-branes in } \mathbb{R}^4|8 \]

\[D_3|4 \text{-branes wr. } \mathcal{P}^2|4 \text{ in } \mathcal{P}^3|4 \text{ or } \hat{Q}^3|4 \leftrightarrow \text{static } D_3|8 \text{-branes in } \mathbb{R}^4|8 \]

\[D_3|4 \text{-branes wr. } \hat{Q}^2|4 \text{ in } \hat{Q}^3|4 \leftrightarrow \text{static } D_1|8 \text{-branes in } \mathbb{R}^4|8 \]

\[D_1|4 \text{-branes in } \mathcal{P}^3|4 \leftrightarrow D(-1|8) \text{-branes in } \mathbb{R}^4|8 \]

straightforward: add diagonal line bundle \(D^2|4 \), defined by \(\omega^1 = \omega^2 \)

\[D_3|4 \text{-branes wrapping } D^2|4 \text{ in } \mathcal{P}^3|4 \leftrightarrow D_1|8 \text{-branes in } \mathbb{R}^4|8 \]

Note:

- Branes extend only into chiral fermionic dimensions
- Branes appear in bound state configurations.
D-brane configuration equivalences
We had topological-physical D-brane equivalences for ADHM and Nahm construction.

But: There are many more.
Conclusions
Summary and Outlook

Done:
- Definition of twistor matrix models
- Extension of the matrix models to full ADHM-equations
- full Nahm-equations
- Map between topological and physical D-brane bound states

Future Directions:
- Study Nahm equations more closely
- Study mirror configurations?
- Generalize to full Yang-Mills theory
- Carry over results from topological strings to physical ones (e.g. Derived Categories).
Done:

- Definition of twistor matrix models
- Extension of the matrix models to full ADHM-equations
- Full Nahm-equations
- Map between topological and physical D-brane bound states

Future Directions:

- Study Nahm equations more closely
- Study mirror configurations?
- Generalize to full Yang-Mills theory
- Carry over results from topological strings to physical ones (e.g. Derived Categories).
Conclusions
Summary and Outlook

Done:
- Definition of twistor matrix models
- Extension of the matrix models to
 - full ADHM-equations
 - full Nahm-equations
- Map between topological and physical D-brane bound states

Future Directions:
- Study Nahm equations more closely
- Study mirror configurations?
- Generalize to full Yang-Mills theory
- Carry over results from topological strings to physical ones (e.g. Derived Categories).
Conclusions
Summary and Outlook

Done:
- Definition of *twistor matrix models*
- Extension of the matrix models to
 - full ADHM-equations
 - full Nahm-equations
- Map between *topological and physical D-brane bound states*

Future Directions:
- Study *Nahm equations* more closely
- Study *mirror configurations*?
- Generalize to *full Yang-Mills theory*
- Carry over results from topological strings to physical ones
 (e.g. *Derived Categories*).
Done:

- Definition of **twistor matrix models**
- Extension of the matrix models to
 - full ADHM-equations
 - full Nahm-equations
- Map between **topological and physical D-brane bound states**

Future Directions:

- Study **Nahm equations** more closely
- Study **mirror configurations**?
- Generalize to **full Yang-Mills theory**
 - Carry over results from topological strings to physical ones (e.g. Derived Categories).
Conclusions
Summary and Outlook

Done:

- Definition of twistor matrix models
- Extension of the matrix models to
 - full ADHM-equations
 - full Nahm-equations
- Map between topological and physical D-brane bound states

Future Directions:

- Study Nahm equations more closely
- Study mirror configurations?
- Generalize to full Yang-Mills theory
- Carry over results from topological strings to physical ones (e.g. Derived Categories).
Matrix Models and D-Branes in Twistor String Theory

Christian Sämann

Dublin Institute for Advanced Studies

LMS Durham Symposium 2007

Based on:

- JHEP 0603 (2006) 002, O. Lechtenfeld and CS.