Galois descent in Galois theories

Daniel Bertrand (Inst. Math. Jussieu)

I. The case of Kummer theory(and applications to Diophantine Geometry)

II . The differential case(and applications to Schanuel problems)

NDMTF, Durham, July 2009

I. Kummer theory on abelian varieties

- K = number field, $\overline{K} =$ algebraic closure.
- A = an abelian variety over K, dim A := g. Set $End(A/K) = End(A/\overline{K}) := \mathcal{O}$.
- $y \in A(K)$. Assume that y generates A, i.e. $\mathbb{Z}.y$ is Zariski closed in $A \Leftrightarrow Ann_{\mathcal{O}}(y) = 0$.

Following the elliptic work of Bashmakov and Tate-Coates (\sim 1970), we have :

Theorem K: there exists c = c(A, K, y) > 0 such that for all n > 0, $[K(\frac{1}{n}y) : K] \ge cn^{2g}$.

Refs.: K. Ribet: Duke math. J. 46, 1979, 745-761;

D.B.: Proc. Durham Conference 1986, "New advances in transcendence theory", ed. A. Baker, CUP 1988, 37-55.

•
$$A_{tor} = \bigcup_n A[n], K_{\infty} = K(A_{tor})$$

•
$$L_{\infty} = \bigcup_n K_{\infty}(\frac{1}{n}y), \quad L_{(\ell)} = \bigcup_m K_{\infty}(\frac{1}{\ell^m}y).$$

•
$$T_{\infty}(A) := proj.lim_n \ A[n] = \prod_{\ell \in \mathcal{P}} T_{\ell}(A)$$

We will actually prove that $Gal(L_{\infty}/K_{\infty})$ is isomorphic to an open subgroup of $T_{\infty}(A)$, or equivalently (Nakayama) :

- i) for all primes ℓ , $Gal(L_{(\ell)}/K_{\infty})$ is an open subgroup of $T_{\ell}(A) \simeq \mathbb{Z}_{\ell}^{2g}$;
- ii) for almost all ℓ , $Gal(K_{\infty}(\frac{1}{\ell}y)/K_{\infty}) \simeq A[\ell]$.

$$\overline{K}$$

$$\mid K_{\infty}(\frac{1}{n}y) \qquad \xi_{y}$$

$$\mid N \hookrightarrow A[n] \simeq (\mathbb{Z}/n\mathbb{Z})^{2g}$$

$$K_{\infty} \qquad \rho$$

$$\mid M \hookrightarrow GL(T_{\infty}(A))$$

$$K$$

$$\xi_y(\sigma) = \sigma(\frac{1}{n}y) - \frac{1}{n}y, \quad \xi_y(\tau\sigma\tau^{-1}) = \tau(\xi_y(\sigma)).$$

Proof (in the mod ℓ case)

1. Galois theoretic step.

(Of necessity, base extension to $K_{\infty} \rightsquigarrow A$ becomes " K_{∞} -large" for the morphism $[\ell]_A$.)

 $Im(\xi_y) \simeq N$ is a J-submodule of $A[\ell]$. Assume $N \neq A[\ell]$. Then $\exists \alpha \in \mathcal{O}, \alpha \notin \ell\mathcal{O}$ s.t. $\alpha.y$ is divisible by ℓ in $A(K_\infty)$.

2. Galois descent

There exists $\ell_0(A,K)$ such that $\forall \ell > \ell_0$, if a point $y' \in A(K)$ is divisible by ℓ in $A(K_\infty)$, then, y' is already divisible by ℓ in A(K), i.e. $A(K)/\ell.A(K) \hookrightarrow A(K_\infty)/\ell.A(K_\infty)$

3. (Diophantine) geometric step

There exists $\ell_1(A, K, y)$ such that $\alpha.y \in \ell.A(K)$ with $\ell > \ell_1$ implies $\alpha \in \ell.\mathcal{O}$.

Proof of 1.

- $A[\ell]$ is a semi-simple J-module (Faltings), so there exists $\alpha_{\ell} \in End_J(A[\ell])$ killing N.
- $End_J(A[\ell]) \simeq End(A) \otimes \mathbf{F}_{\ell}$ (Faltings), so α_{ℓ} yields $\alpha \in \mathcal{O}, \alpha \notin \ell \mathcal{O}$ killing N.
- $\xi_{\alpha,y} = \alpha \xi_y$, so, $\frac{1}{\ell} \alpha.y$ is fixed by N.

Proof of 2.

?
$$\rightarrow A(K)/\ell.A(K) \rightarrow A(K_{\infty})/\ell.A(K_{\infty})$$

 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $H^{1}(J,A[\ell]) \rightarrow H^{1}(\Gamma_{K},A[\ell]) \rightarrow H^{1}(\Gamma_{K_{\infty}},A[\ell])^{J}$

Serre's result on homotheties and Sah's lemma imply $H^1(J, A[\ell]) = 0$ for large ℓ .

Proof of 3.

Mordell-Weil (or a trick of Cassels's), both based on heights.

[Similar arguments in the ℓ -adic case.]

Some diophantine applications

C. Khare, D. Prasad : Reduction of homomorphisms mod p and algebraicity, JNT 105, 2004, 322-332.

A/K simple, $y,y'\in A(K)$ s.t. for almost all places v, the order of $y \mod v$ divides the order of $y' \mod v$. Then, $\exists \alpha \in \mathcal{O}, y' = \alpha.y$. (This sharpens a result of M. Larsen.)

U. Zannier: On the Hilbert Irreducibility Theorem, Pisa preprint, 2008.

Let $\pi:Y\to A$ be a dominant K-morphism of finite degree, with Y irreducible and $A=E^n$. Let $y\in A(K)$ generate A. Suppose that for any isogeny $\phi:A\to A$, the pull-back $\phi^*(Y)$ is irreducible. Then there is an arithmetic progression $\mathcal V$ in $\mathbb Z$ such that each $\nu\in\mathcal V$, the fiber $\pi^{-1}(\nu.y)$ is K-irreducible.

Also, work of M. Gavrilovich (K-Theory, 38, 2008, 135-152) on $Ext(E(\overline{K}), \mathbb{Z}^2)$; of C. Salgado (PhD. Paris 7, 2009) on ranks of elliptic surfaces, ...

II.a. Logarithms on abelian schemes

- $K = \mathbb{C}(S)$ or $\mathbb{C}(S)^{alg}$, $S/\mathbb{C} = \text{smooth affine}$ curve, $\partial = \text{a derivation on } K \text{ with } K^{\partial} = \mathbb{C}$, $\widehat{K} = \text{diff. closure}$, $\mathcal{U} = \text{univ. domain.}$
- A/K, coming from an abelian scheme $\mathcal{A} \to S$. $A_0 = \operatorname{its} K/\mathbb{C}$ -trace. Its universal extension \tilde{A} has dimension 2g:

$$0 \to W_A \to \tilde{A} \to^{\pi} A \to 0$$

Exponential sequence:

$$0 \to T_B \tilde{\mathcal{A}} \to L \tilde{\mathcal{A}}^{an} \to exp \tilde{\mathcal{A}}^{an} \to 0$$

• $y \in \tilde{A}(K)$, generating \tilde{A} , i.e. : $\forall H \subsetneq \tilde{A}, y \notin H + \tilde{A}_0(\mathbb{C})$. Chose $\ell n(y) \in exp^{-1}(y)$. Then :

Theorem L (André, 1992)
$$tr.dg.(K(\ell n(y))/K) = 2g.$$

 \tilde{A} has a structure of algebraic D-group, with $\partial \ell n_{\tilde{A}}: \tilde{A} \to L \tilde{A}$

Gauss-Manin connection:

$$\partial_{L\tilde{A}} = \partial \ell n_{\tilde{A}} \circ exp : L\tilde{A} \to L\tilde{A}$$

So $\ell n(y) \leadsto x \in L\tilde{A}(\hat{K})$ solution of the inhomogeneous LDE : $\partial_{L\tilde{A}}(x) = \partial \ell n_{\tilde{A}} y$.

• $K_{L\tilde{A}} = K(T_B(\tilde{A})) = \text{Picard-Vessiot extension for } \partial_{L\tilde{A}}(-) = 0$, with solution space $(L\tilde{A})^{\partial} = T_B(\tilde{A}) \otimes \mathbb{C} \simeq \mathbb{C}^{2g}$.

We will actually prove that

$$Gal_{\partial}(K_{L\widetilde{A}}(\ell n(y))/K_{L\widetilde{A}}) \simeq (L\widetilde{A})^{\partial}.$$

$$\begin{array}{cccc} \widehat{K} & & & & & \\ & | & & & & \\ K_{L\widetilde{A}}(\ell n(y)) & & \xi_{y} & & & \\ & | & | & | N & \hookrightarrow & (L\widetilde{A})^{\partial} & & \\ K_{L\widetilde{A}} & & \rho & & & \\ & | & | & | J & \hookrightarrow & GL((L\widetilde{A})^{\partial}) & & \\ K & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$$

$$\xi_y(\sigma) = \sigma(\ell n(y)) - \ell n(y), \quad \xi_y(\tau \sigma \tau^{-1}) = \tau(\xi_y(\sigma)).$$

Proof (in a "generic" case)

By Deligne, $L\tilde{A}$ is a semi-simple D-module. For simplicity, suppose that it is irreducible.

1. Galois theoretic step .

(Of necessity, base extension to $K_{L\widetilde{A}}\leadsto L\widetilde{A}$ becomes " $K_{L\widetilde{A}}$ -large" for the morphism $[exp]_{\widetilde{A}}$.)

 $Im(\xi_y)\simeq N$ is a J-submodule of $(L\tilde{A})^\partial$. Assume $N\neq (L\tilde{A})^\partial$. Then $N=0, x\in L\tilde{A}(K_{L\tilde{A}})$ and

$$\partial \ell n_{\tilde{A}} y = \partial_{L\tilde{A}}(x) \in \partial_{L\tilde{A}}(L\tilde{A}(K_{L\tilde{A}})).$$

2. Galois descent

If a point $z\in L\tilde{A}(K)$ lies in $\partial_{L\tilde{A}}\left(L\tilde{A}(K_{L\tilde{A}})\right)$, then, z already lies in $\partial_{L\tilde{A}}(L\tilde{A}(K))$, i.e.

$$Coker(\partial_{L\widetilde{A}}, L\widetilde{A}(K)) \hookrightarrow Coker(\partial_{L\widetilde{A}}, L\widetilde{A}(K_{L\widetilde{A}}))$$

Indeed, J is reductive, so $H^1(J,(L\tilde{A})^{\partial})=0$.

3. Geometric step

Manin's theorem : if $\partial \ell n_{\tilde{A}}y = \partial_{L\tilde{A}}(x)$ for some $x \in L\tilde{A}(K)$, then $y \in W_A + \tilde{A}_0(\mathbb{C}) + \tilde{A}_{tor}$.

A diophantine application

Theorem L plays a (minor, but not empty) role in

D. Masser, U. Zannier: Torsion anomalous points and families of elliptic curves; CRAS Paris 346, 2008, 491-494,

i.e the following special case of the Zilber-Pink conjecture. Consider the sections y,y' with abscissae 2, 3 of the Legendre elliptic scheme $E/S, S = \lambda$ —line. There are finitely many λ 's such that both $y(\lambda)$ and $y'(\lambda)$ are torsion points on E_{λ} . In other words, the curve C = (y,y') on the abelian scheme A/S, $A = E \times E$, has finite intersection with $A^{[>1]}$, where $A^{[>1]}$ = the union of all 2-codim'l algebraic subgroups of all the fibers of A/S.

Uses a result of J. Pila (Quart.J.M 55, 2004, 207-223) on the rational points of a subanalytic surface away from the union of its non-punctual semi-algebraic subsets. The algebraic independence of $\ell n(y), \ell n(y')$ over $K_{L\widetilde{A}}$ (plus some knowledge of the size of J as well) shows that there is nothing to withdraw.

II b. Exponentials on abelian schemes

As in II.a,

$$K = \mathbb{C}(S), \ \partial, \ A/K, \ A_0/\mathbb{C}, \ \tilde{A}.$$

 $0 \to T_B \tilde{\mathcal{A}} \to L \tilde{\mathcal{A}}^{an} \to exp \ \tilde{\mathcal{A}}^{an} \to 0$

• $x \in L\tilde{A}(K)$, generating $L\tilde{A}$, i.e. : $\forall H \subsetneq \tilde{A}, x \notin LH + L\tilde{A}_0(\mathbb{C})$. Then :

Theorem E (Be-Pillay, JAMS, 201?)
$$tr.dg.(K(exp(x)/K) = 2g.$$

As in II.a, we have

$$\begin{split} \partial \ell n_{\tilde{A}} : \tilde{A} \to L \tilde{A} \\ \partial_{L \tilde{A}} &= \partial \ell n_{\tilde{A}} \circ exp : L \tilde{A} \to L \tilde{A}. \end{split}$$

So $exp(x) \leadsto y \in \tilde{A}(\hat{K})$ solution of the inhomogeneous NLDE : $\partial \ell n_{\tilde{A}}(y) = \partial_{L\tilde{A}}x$.

Let $K_{\widetilde{A}}$ be the differential extension of \overline{K} generated by all points in

$$\tilde{A}^{\partial} = \{ z \in \tilde{A}(\hat{K}), \partial \ell n_{\tilde{A}}(z) = 0. \}$$

Using

- Pillay's Galois theory
- . \bullet + a Galois descent, we will actually prove that

$$Gal_{\partial}(K_{\tilde{A}}(exp(x))/K_{\tilde{A}}) \simeq \tilde{A}^{\partial}.$$

$$\xi_x(\sigma) = \sigma(exp(x)) - exp(x).$$

In generic cases (e.g. when the Kodaira-Spencer rank of A/S is maximal, e.g. when $L\tilde{A}$ is irreducible),

$$K_{\tilde{A}} = \overline{K}$$
:

the D-group \widetilde{A} is \overline{K} -large, and no descent is required! We then merely need :

1. Galois theoretic step

 $Im(\xi_x)\simeq N=H^\partial$ for some algebraic D-subgroup H of \tilde{A} . Assume $H\neq \tilde{A}$. Then there is a non trivial D-quotient $\pi:\tilde{A}\to \overline{A}$ sending x to $\overline{x}\in L\overline{A}(K)$, with

$$\partial_{L\overline{A}}(\overline{x}) = \partial \ell n_{\overline{A}}(\overline{y})$$
 for some $\overline{y} \in \overline{A}(K)$.

3. Geometric step

If $\overline{A} \simeq \widetilde{B}$ for some abelian variety quotient B of A, just apply Manin's theorem: $\overline{x} \in LW_B + L\widetilde{B}_0(\mathbb{C})$, so x cannot generate $L\widetilde{A}$.

The general case requires Chai's sharpening of Manin's theorem.

That $\overline{A}\simeq \tilde{B}$ happens automatically when W_A contains no non trivial D-subgroup. When $A_0=0$, this is equivalent to \tilde{A} being \overline{K} -large. In general,

2. Galois descent in Pillay's theory

Write K for \overline{K} , and let U be the maximal D-subgroup of \widetilde{A} (equivalently D-submodule of $L\widetilde{A}$) contained in W_A .

$$0 \to U \to \widetilde{A} \to \overline{A} \to 0.$$

- Hrushovski-Sokolovic, Marker-Pillay $\Rightarrow \overline{A}$ is K-large : $\overline{A}^{\partial}(\widehat{K}) = \overline{A}^{\partial}(K)$.
- Manin-Chai $\Rightarrow \overline{A}^{\partial}(K) = \overline{A}_{tor} + A_0(C)$.
- $0 \to U^{\partial}(\widehat{K}) \to \widetilde{A}^{\partial}(\widehat{K}) \to \overline{A}^{\partial}(\widehat{K}) \to 0.$

Therefore

 $K_{\widetilde{A}}=K_U$ is a P-V extension of K and $\widetilde{J}=Gal_{\partial}(K_{\widetilde{A}}/K):=J_U$ is a factor of the reductive group $J=Gal_{\partial}(K_{L\widetilde{A}}/K)$. Actually (Deligne), J, hence J_U , is semi-simple.

By Step 1 over $K_{\widetilde{A}}$, and rigidity of D-subgroups of \widetilde{A} , we have :

 $\partial_{L\overline{A}}(\overline{x}) = \partial \ell n_{\overline{A}}(\overline{y})$ for some $\overline{y} \in \overline{A}(K_U)$. and it remains to show that $L\overline{A}(K)/\partial \ell n_{\overline{A}}(\overline{A}(K)) \hookrightarrow L\overline{A}(K_U)/\partial \ell n_{\overline{A}}(\overline{A}(K_U)),$ i.e. that we may take $\overline{y} \in \overline{A}(K)$.

The cocycle $\widehat{\xi}_{\overline{y}}:J_U\to \overline{A}^\partial:\sigma\mapsto\sigma\overline{y}-\overline{y}$ is a group homomorphism. Since $J_U=[J_U,J_U]$, while \overline{A}^∂ is abelian, $\xi_{\overline{y}}$ vanishes, so that indeed \overline{y} is defined over K.

Conclusion

- No diophantine application (yet) of Theorem E.
- But the method works in other contexts, e.g., considering the differential equation

$$\partial \ell n(y) = \lambda . \partial \ell n(x)$$

on \mathbb{G}_m , with $\lambda \in \mathbb{C}, \lambda \notin \mathbb{Q}$:

if $x_1, ..., x_n \in \mathbb{G}_m(K)$ are multiplicatively independent modulo $\mathbb{G}_m(\mathbb{C})$, then, $x_1^{\lambda}, ..., x_n^{\lambda}$ are algebraically independent over $K = \mathbb{C}(z)$.

For more general (Schanuel-type) results on x^{λ} , see:

- M. Bayes, J. Kirby, A. Wilkie, (2008) arXiv: 0810.4457.
- P. Kowalski, Ann. PAL, 156, 2008, 96-109.