Linear Algebra over a Ring

Ivo Herzog

New Directions in the Model Theory of Fields Durham University July 23, 2009

Linear Equations

- Let R be an associative ring with 1 . The language for left R-modules is

$$
\mathcal{L}(R)=(+,-, 0, r)_{r \in R}
$$

Linear Equations

- Let R be an associative ring with 1 . The language for left R-modules is

$$
\mathcal{L}(R)=(+,-, 0, r)_{r \in R} .
$$

- A linear equation is expressible in $\mathcal{L}(R)$:

$$
r_{1} v_{1}+r_{2} v_{2}+\cdots+r_{n} v_{n} \doteq 0
$$

Linear Equations

- Let R be an associative ring with 1 . The language for left R-modules is

$$
\mathcal{L}(R)=(+,-, 0, r)_{r \in R} .
$$

- A linear equation is expressible in $\mathcal{L}(R)$:

$$
r_{1} v_{1}+r_{2} v_{2}+\cdots+r_{n} v_{n} \doteq 0
$$

- The standard axioms for a left R-module are expressible in $\mathcal{L}(R)$. This collection of axioms, denoted $T(R)$, is usually infinite. For example, for every $r \in R$,

$$
(\forall v, w) r(v+w) \doteq r v+r w
$$

belongs to $T(R)$.

Positive-primitive Formulae

- Relative to the axioms $T(R)$, every atomic formula of $\mathcal{L}(R)$ is equivalent to a linear equation

$$
r_{1} v_{1}+r_{2} v_{2}+\cdots+r_{n} v_{n} \doteq 0
$$

Positive-primitive Formulae

- Relative to the axioms $T(R)$, every atomic formula of $\mathcal{L}(R)$ is equivalent to a linear equation

$$
r_{1} v_{1}+r_{2} v_{2}+\cdots+r_{n} v_{n} \doteq 0
$$

- A finite conjunction of linear equations is a system of linear equations:

$$
A \mathbf{v} \doteq 0
$$

where A is an $m \times n$ matrix and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a column of n variables.

Positive-primitive Formulae

- Relative to the axioms $T(R)$, every atomic formula of $\mathcal{L}(R)$ is equivalent to a linear equation

$$
r_{1} v_{1}+r_{2} v_{2}+\cdots+r_{n} v_{n} \doteq 0
$$

- A finite conjunction of linear equations is a system of linear equations:

$$
A \mathbf{v} \doteq 0
$$

where A is an $m \times n$ matrix and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a column of n variables.

- A positive-primitive formula is an existentially quantified systems of linear equations:

$$
\exists \mathbf{w}(A \mathbf{v}+B \mathbf{w} \doteq 0)
$$

Examples

- There are two extreme cases of a positive primitive formula:

$$
\exists \mathbf{w}(A \mathbf{v}+B \mathbf{w} \doteq 0)
$$

Examples

- There are two extreme cases of a positive primitive formula:

$$
\exists \mathbf{w}(A \mathbf{v}+B \mathbf{w} \doteq 0)
$$

- If $B=0$, then the formula degenerates into a quantifier-free positive-primitive formula $A \mathbf{v} \doteq 0$. This is a system of linear equations, an annihilator condition.

Examples

- There are two extreme cases of a positive primitive formula:

$$
\exists \mathbf{w}(A \mathbf{v}+B \mathbf{w} \doteq 0)
$$

- If $B=0$, then the formula degenerates into a quantifier-free positive-primitive formula $A \mathbf{v} \doteq 0$. This is a system of linear equations, an annihilator condition.
- If $A=I_{n}$, the $n \times n$ identity matrix, then the pp-formula is equivalent, relative to $T(R)$, to the divisibility condition

$$
B \mid \mathbf{v}:=\exists \mathbf{w}(\mathbf{v} \doteq B \mathbf{w})
$$

Examples

- There are two extreme cases of a positive primitive formula:

$$
\exists \mathbf{w}(A \mathbf{v}+B \mathbf{w} \doteq 0)
$$

- If $B=0$, then the formula degenerates into a quantifier-free positive-primitive formula $A \mathbf{v} \doteq 0$. This is a system of linear equations, an annihilator condition.
- If $A=I_{n}$, the $n \times n$ identity matrix, then the pp-formula is equivalent, relative to $T(R)$, to the divisibility condition

$$
B \mid \mathbf{v}:=\exists \mathbf{w}(\mathbf{v} \doteq B \mathbf{w})
$$

- Using this notation, we may express a general pp-formula in the free variables $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ as
$B \mid A \mathbf{v}$.

Subgroups Defined by a Positive-primitive Formula

- If $\varphi\left(v_{1}, \ldots, v_{n}\right)=B \mid A \boldsymbol{v}$ is a positive-primitive formula in $\mathcal{L}(R)$, then

$$
\varphi(M):=\left\{\mathbf{a} \in M^{n}: M \models \exists \mathbf{w}(B \mathbf{w} \doteq A \mathbf{a})\right\}
$$

is a subgroup of M^{n}. A subgroup of the form $\varphi(M)$ is called an n-ary pp-definable subgroup of M.

Subgroups Defined by a Positive-primitive Formula

- If $\varphi\left(v_{1}, \ldots, v_{n}\right)=B \mid A \boldsymbol{v}$ is a positive-primitive formula in $\mathcal{L}(R)$, then

$$
\varphi(M):=\left\{\mathbf{a} \in M^{n}: M \models \exists \mathbf{w}(B \mathbf{w} \doteq A \mathbf{a})\right\}
$$

is a subgroup of M^{n}. A subgroup of the form $\varphi(M)$ is called an n-ary pp-definable subgroup of M.

- If $\varphi(\mathbf{v})$ and $\psi(\mathbf{v})$ are positive-primitive formulae, then

$$
(\varphi \wedge \psi)(\mathbf{v}) \text { and }(\varphi+\psi)(\mathbf{v}):=\exists \mathbf{w}(\varphi(\mathbf{v}-\mathbf{w}) \wedge \psi(\mathbf{w}))
$$

are equivalent, relative to $T(R)$, to positive-primitive formulae.

Subgroups Defined by a Positive-primitive Formula

- If $\varphi\left(v_{1}, \ldots, v_{n}\right)=B \mid A \mathbf{v}$ is a positive-primitive formula in $\mathcal{L}(R)$, then

$$
\varphi(M):=\left\{\mathbf{a} \in M^{n}: M \models \exists \mathbf{w}(B \mathbf{w} \doteq A \mathbf{a})\right\}
$$

is a subgroup of M^{n}. A subgroup of the form $\varphi(M)$ is called an n-ary pp-definable subgroup of M.

- If $\varphi(\mathbf{v})$ and $\psi(\mathbf{v})$ are positive-primitive formulae, then

$$
(\varphi \wedge \psi)(\mathbf{v}) \text { and }(\varphi+\psi)(\mathbf{v}):=\exists \mathbf{w}(\varphi(\mathbf{v}-\mathbf{w}) \wedge \psi(\mathbf{w}))
$$

are equivalent, relative to $T(R)$, to positive-primitive formulae.

- If ${ }_{R} M$ is a left R-module, then
$(\varphi \wedge \psi)(M)=\varphi(M) \cap \psi(M)$ and $(\varphi+\psi)(M):=\varphi(M)+\psi(M)$.

Lemma Presta

- The Completeness Theorem: $T(R) \vdash \psi(\mathbf{v}) \rightarrow \varphi(\mathbf{v})$ if and only if $\psi(M) \subseteq \varphi(M)$ for every left R-module ${ }_{R} M$.

Lemma Presta

- The Completeness Theorem: $T(R) \vdash \psi(\mathbf{v}) \rightarrow \varphi(\mathbf{v})$ if and only if $\psi(M) \subseteq \varphi(M)$ for every left R-module ${ }_{R} M$.
- Lemma Presta. $T(R) \vdash B\left|A \mathbf{v} \rightarrow B^{\prime}\right| A^{\prime} \mathbf{v}$ iff there exist matrices U, V and G, of appropriate size, such that

$$
U B=B^{\prime} V \text { and } U A=A^{\prime}+B^{\prime} G
$$

Lemma Presta

- The Completeness Theorem: $T(R) \vdash \psi(\mathbf{v}) \rightarrow \varphi(\mathbf{v})$ if and only if $\psi(M) \subseteq \varphi(M)$ for every left R-module ${ }_{R} M$.
- Lemma Presta. $T(R) \vdash B\left|A \mathbf{v} \rightarrow B^{\prime}\right| A^{\prime} \mathbf{v}$ iff there exist matrices U, V and G, of appropriate size, such that

$$
U B=B^{\prime} V \text { and } U A=A^{\prime}+B^{\prime} G
$$

- Proof of easy direction:

$$
\begin{aligned}
T(R) \vdash B \mid A \mathbf{v} & \rightarrow U B \mid U A \mathbf{v} \\
& \leftrightarrow B^{\prime} V \mid\left(A^{\prime}+B^{\prime} G\right) \mathbf{v} \\
& \rightarrow B^{\prime} \mid\left(A^{\prime}+B^{\prime} G\right) \mathbf{v} \\
& \leftrightarrow B^{\prime} \mid A^{\prime} \mathbf{v} .
\end{aligned}
$$

Definition

- Definition. For $n \geq 0$, let $L_{n}^{\prime}(R)$ be the set of pairs of matrices $(A \mid B)$ where A has n columns, and B has the same number of rows as A. The relation

$$
(A \mid B) \leq_{n}\left(A^{\prime} \mid B^{\prime}\right)
$$

holds provided there exist matrices U, V and G such that

$$
U B=B^{\prime} V \text { and } U A=A^{\prime}+B^{\prime} G .
$$

Definition

- Definition. For $n \geq 0$, let $L_{n}^{\prime}(R)$ be the set of pairs of matrices $(A \mid B)$ where A has n columns, and B has the same number of rows as A. The relation

$$
(A \mid B) \leq_{n}\left(A^{\prime} \mid B^{\prime}\right)
$$

holds provided there exist matrices U, V and G such that

$$
U B=B^{\prime} V \text { and } U A=A^{\prime}+B^{\prime} G .
$$

- Proposition. Let A be an $m \times n$ matrix; B an $m \times k$ matrix. The relation \leq_{n} is the least partial order on $L_{n}^{\prime}(R)$ satisfying:

1. If U is a matrix with m columns, then $(A \mid B) \leq(U A \mid U B)$.
2. If V is a matrix with k rows, then $(A \mid B V) \leq(A \mid B)$.
3. If G is a $k \times n$ matrix, then $(A+B G \mid B) \leq(A \mid B)$.

Matrix Pairs

- Two pairs of matrices $(A \mid B)$ and $\left(A^{\prime} \mid B^{\prime}\right)$ in $L_{n}^{\prime}(R)$ are equivalent if

$$
(A \mid B) \leq_{n}\left(A^{\prime} \mid B^{\prime}\right) \text { and }\left(A^{\prime} \mid B^{\prime}\right) \leq_{n}(A \mid B) .
$$

An n-ary matrix pair $[A \mid B]$ is the equivalence class of $(A \mid B)$. Denote by $L_{n}(R)$ the partially ordered set of n-ary matrix pairs.

Matrix Pairs

- Two pairs of matrices $(A \mid B)$ and $\left(A^{\prime} \mid B^{\prime}\right)$ in $L_{n}^{\prime}(R)$ are equivalent if

$$
(A \mid B) \leq_{n}\left(A^{\prime} \mid B^{\prime}\right) \text { and }\left(A^{\prime} \mid B^{\prime}\right) \leq_{n}(A \mid B)
$$

An n-ary matrix pair $[A \mid B]$ is the equivalence class of $(A \mid B)$. Denote by $L_{n}(R)$ the partially ordered set of n-ary matrix pairs.

- Proposition. The following hold in $L_{n}(R)$:

1. If P is an invertible matrix, then $[A \mid B]=[P A \mid P B]$.
2. If Q is an invertible matrix, then $[A \mid B Q]=[A \mid B]$.
3. If G is any matrix, then $[A+B G \mid B]=[A \mid B]$.

Maximum and Minimum Elements

- The minimum element of $L_{n}(R)$ is given by $0_{n}:=\left[I_{n} \mid 0\right]$. For, if $[A \mid B]$ is an arbitrary n-ary matrix pair, then

$$
0_{n}=\left[I_{n} \mid 0\right] \leq\left[A \cdot I_{n} \mid 0\right]=[A \mid B \cdot 0] \leq[A \mid B] .
$$

Maximum and Minimum Elements

- The minimum element of $L_{n}(R)$ is given by $0_{n}:=\left[I_{n} \mid 0\right]$. For, if $[A \mid B]$ is an arbitrary n-ary matrix pair, then

$$
0_{n}=\left[I_{n} \mid 0\right] \leq\left[A \cdot I_{n} \mid 0\right]=[A \mid B \cdot 0] \leq[A \mid B] .
$$

- Similarly, the maximum element is given by $1_{n}:=\left[I_{n} \mid I_{n}\right]$. If A is $m \times n$, let P be $n \times m$. Then since
$[A \mid B] \leq\left[P A \mid I_{n} \cdot P B\right] \leq\left[P A \mid I_{n}\right]=\left[P A+I_{n}\left(I_{n}-P A\right) \mid I_{n}\right]=1_{n}$.
Also note that

$$
1_{n}=\left[I_{n} \mid I_{n}\right]=\left[0 \mid I_{n}\right] \leq[0 \mid B] .
$$

Principal Ideal Domains

- If R is a PID, then there are invertible matrices P and Q such that $P B Q=D$ is a diagonal matrix. Thus

$$
[A \mid B]=[P A \mid P B]=[P A \mid P B Q]=[P A \mid D] .
$$

Principal Ideal Domains

- If R is a PID, then there are invertible matrices P and Q such that $P B Q=D$ is a diagonal matrix. Thus

$$
[A \mid B]=[P A \mid P B]=[P A \mid P B Q]=[P A \mid D] .
$$

- The infimum of two n-ary matrix pairs $[A \mid B]$ and $\left[A^{\prime} \mid B^{\prime}\right]$ is given by

$$
[A \mid B] \wedge\left[A^{\prime} \mid B^{\prime}\right]=\left[\begin{array}{c|cc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right]
$$

Principal Ideal Domains

- If R is a PID, then there are invertible matrices P and Q such that $P B Q=D$ is a diagonal matrix. Thus

$$
[A \mid B]=[P A \mid P B]=[P A \mid P B Q]=[P A \mid D] .
$$

- The infimum of two n-ary matrix pairs $[A \mid B]$ and $\left[A^{\prime} \mid B^{\prime}\right]$ is given by

$$
[A \mid B] \wedge\left[A^{\prime} \mid B^{\prime}\right]=\left[\begin{array}{c|cc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right]
$$

- If $D=\left(d_{i j}\right)$ is a diagonal matrix, then

$$
[A \mid D]=\bigwedge_{i}\left[i A \mid d_{i i}\right]
$$

where ${ }_{i} A$ denotes the i-th row of A.

Regular Matrices

- A matrix B is regular if there is a matrix C such that $B C B=B$.

Regular Matrices

- A matrix B is regular if there is a matrix C such that $B C B=B$.
- Proposition. A matrix B is regular iff for every A, there is an A^{\prime} such that

$$
[A \mid B]=\left[A^{\prime} \mid 0\right] .
$$

Regular Matrices

- A matrix B is regular if there is a matrix C such that $B C B=B$.
- Proposition. A matrix B is regular iff for every A, there is an A^{\prime} such that

$$
[A \mid B]=\left[A^{\prime} \mid 0\right] .
$$

- Proof: If B is regular, then $[A \mid B C] \leq[A \mid B] \leq[A \mid B C]$, with $B C$ idempotent $(B C)^{2}=B C B C=B C$. If E is idempotent, then

$$
[A \mid E] \leq\left[\left(I_{m}-E\right) A \mid 0\right] \leq[A-E A \mid E]=[A \mid E]
$$

von Neumann Regular Rings

- For the converse, let I_{n} be the $n \times n$ identity matrix. If $\left[I_{n} \mid B\right]=\left[A^{\prime} \mid 0\right]$, then

1. there is a U such that $U B=0$ and $U \cdot I_{n}=A^{\prime}$, i.e., $A^{\prime} B=0$; and
2. there are U and G such that $U A^{\prime}=I_{n}+B G$.

Then $0=U A^{\prime} B=B+B G B$, so that $B=B(-G) B$.

von Neumann Regular Rings

- For the converse, let I_{n} be the $n \times n$ identity matrix. If $\left[I_{n} \mid B\right]=\left[A^{\prime} \mid 0\right]$, then

1. there is a U such that $U B=0$ and $U \cdot I_{n}=A^{\prime}$, i.e., $A^{\prime} B=0$; and
2. there are U and G such that $U A^{\prime}=I_{n}+B G$. Then $0=U A^{\prime} B=B+B G B$, so that $B=B(-G) B$.

- Corollary. A ring R is von Neumann regular iff for every matrix pair $[A \mid B]$ there is an A^{\prime} such that $[A \mid B]=\left[A^{\prime} \mid 0\right]$.

The Opposite Ring $R^{o p}$

- Multiplication of matrices with entries in $R^{\circ p}$ is denoted $A * B$. It is related to multiplication of matrices over R by the equation

$$
(A * B)^{\mathrm{tr}}=B^{\mathrm{tr}} * A^{\mathrm{tr}}
$$

The Opposite Ring $R^{o p}$

- Multiplication of matrices with entries in $R^{\circ p}$ is denoted $A * B$. It is related to multiplication of matrices over R by the equation

$$
(A * B)^{\mathrm{tr}}=B^{\mathrm{tr}} * A^{\mathrm{tr}}
$$

- Theorem. (Prest, Huisgen-Z./Zimmermann) If $(A \mid B) \leq\left(A^{\prime} \mid B^{\prime}\right)$ in $L_{n}^{\prime}(R)$, then in $L_{n}^{\prime}\left(R^{\circ \mathrm{P}}\right)$,

$$
\left(\begin{array}{c|l}
I_{n} & \left(A^{\prime}\right)^{\mathrm{tr}} \\
0 & \left(B^{\prime}\right)^{\mathrm{tr}}
\end{array}\right) \leq\left(\begin{array}{c|c}
I_{n} & A^{\mathrm{tr}} \\
0 & B^{\mathrm{tr}}
\end{array}\right)
$$

The Opposite Ring $R^{o p}$

- Multiplication of matrices with entries in $R^{\circ p}$ is denoted $A * B$. It is related to multiplication of matrices over R by the equation

$$
(A * B)^{\mathrm{tr}}=B^{\mathrm{tr}} * A^{\mathrm{tr}}
$$

- Theorem. (Prest, Huisgen-Z./Zimmermann) If $(A \mid B) \leq\left(A^{\prime} \mid B^{\prime}\right)$ in $L_{n}^{\prime}(R)$, then in $L_{n}^{\prime}\left(R^{\circ \mathrm{P}}\right)$,

$$
\left(\begin{array}{c|l}
I_{n} & \left(A^{\prime}\right)^{\mathrm{tr}} \\
0 & \left(B^{\prime}\right)^{\mathrm{tr}}
\end{array}\right) \leq\left(\begin{array}{c|c}
I_{n} & A^{\mathrm{tr}} \\
0 & B^{\mathrm{tr}}
\end{array}\right)
$$

- Proof: We are given matrices U, V and G such that $U B=B^{\prime} V$ and $U A=A^{\prime}+B^{\prime} G$, or

$$
\left(A^{\prime}, B^{\prime}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
G & V
\end{array}\right)=U(A, B)
$$

- In $L_{n}\left(R^{\mathrm{op}}\right)$, this yields

$$
\left(\begin{array}{cc}
I_{n} & G^{t r} \\
0 & V^{t r}
\end{array}\right) *\binom{\left(A^{\prime}\right)^{\operatorname{tr}}}{\left(B^{\prime}\right)^{t r}}=\binom{A^{\mathrm{tr}}}{B^{t r}} * U^{\mathrm{tr}}
$$

- In $L_{n}\left(R^{\mathrm{op}}\right)$, this yields

$$
\left(\begin{array}{cc}
I_{n} & G^{t r} \\
0 & V^{t r}
\end{array}\right) *\binom{\left(A^{\prime}\right)^{\mathrm{tr}}}{\left(B^{\prime}\right)^{t r}}=\binom{A^{\mathrm{tr}}}{B^{t r}} * U^{\mathrm{tr}}
$$

- But also

$$
\left(\begin{array}{cc}
I_{n} & G^{t r} \\
0 & V^{t r}
\end{array}\right) *\binom{I_{n}}{0}=\binom{I_{n}}{0}
$$

- In $L_{n}\left(R^{\mathrm{op}}\right)$, this yields

$$
\left(\begin{array}{cc}
I_{n} & G^{t r} \\
0 & V^{t r}
\end{array}\right) *\binom{\left(A^{\prime}\right)^{t r}}{\left(B^{\prime}\right)^{t r}}=\binom{A^{\mathrm{tr}}}{B^{t r}} * U^{\mathrm{tr}}
$$

- But also

$$
\left(\begin{array}{cc}
I_{n} & G^{t r} \\
0 & V^{t r}
\end{array}\right) *\binom{I_{n}}{0}=\binom{I_{n}}{0}
$$

- Let $U^{\prime}=\left(\begin{array}{cc}I_{n} & G^{t r} \\ 0 & V^{t r}\end{array}\right), V^{\prime}=U^{\mathrm{tr}}$, and $G^{\prime}=0$.

The Anti-isomorphism

- This induces an anti-morphism from $L_{n}(R)$ to $L_{n}\left(R^{\circ p}\right)$, given by

$$
[A \mid B] \mapsto[A \mid B]^{*}:=\left[\begin{array}{c|c}
I_{n} & A^{\mathrm{tr}} \\
0 & B^{\mathrm{tr}}
\end{array}\right]
$$

The Anti-isomorphism

- This induces an anti-morphism from $L_{n}(R)$ to $L_{n}\left(R^{\circ \mathrm{p}}\right)$, given by

$$
[A \mid B] \mapsto[A \mid B]^{*}:=\left[\begin{array}{c|c}
I_{n} & A^{\operatorname{tr}} \\
0 & B^{\operatorname{tr}}
\end{array}\right] .
$$

- To see that it is a anti-isomorphism, just note that

$$
\left[\begin{array}{c|cc}
I_{n} & I_{n} & 0 \\
0 & A & B
\end{array}\right]=\left[\begin{array}{c|cc}
I_{n} & I_{n} & 0 \\
-A & 0 & B
\end{array}\right]=\left[I_{n} \mid I_{n}\right] \wedge[-A \mid B]=[A \mid B] .
$$

Properties of Duality

- Example. The anti-isomorphism $[A \mid B] \mapsto\left[\begin{array}{c|c}I_{n} & A^{\text {tr }} \\ 0 & B^{\text {tr }}\end{array}\right]$ interchanges the respective families of annihilator and divisibility conditions: $[A \mid 0]^{*}=\left[I_{n} \mid A^{t r}\right]$.

Properties of Duality

- Example. The anti-isomorphism $[A \mid B] \mapsto\left[\begin{array}{c|c}I_{n} & A^{\mathrm{tr}} \\ 0 & B^{\mathrm{tr}}\end{array}\right]$ interchanges the respective families of annihilator and divisibility conditions: $[A \mid 0]^{*}=\left[I_{n} \mid A^{t r}\right]$.
- Theorem. (IH) Let M be a right R-module, and N a left R-module. Given n-tuples $\mathbf{a} \in M^{n}$ and $\mathbf{b} \in N^{n}$, then $\mathbf{a} \otimes \mathbf{b}=0$ in $M \otimes_{R} N$ iff there is a pp-formula $\varphi(\mathbf{v})$ such that $N \models \varphi(\mathbf{b})$ and $M \models \varphi^{*}(\mathbf{a})$.

Properties of Duality

- Example. The anti-isomorphism $[A \mid B] \mapsto\left[\begin{array}{c|c}I_{n} & A^{\mathrm{tr}} \\ 0 & B^{\mathrm{tr}}\end{array}\right]$ interchanges the respective families of annihilator and divisibility conditions: $[A \mid 0]^{*}=\left[I_{n} \mid A^{t r}\right]$.
- Theorem. (IH) Let M be a right R-module, and N a left R-module. Given n-tuples $\mathbf{a} \in M^{n}$ and $\mathbf{b} \in N^{n}$, then $\mathbf{a} \otimes \mathbf{b}=0$ in $M \otimes_{R} N$ iff there is a pp-formula $\varphi(\mathbf{v})$ such that $N \models \varphi(\mathbf{b})$ and $M \models \varphi^{*}(\mathbf{a})$.
- Proof of the easy direction:

$$
\mathbf{a} \otimes \mathbf{b}=\mathbf{v} A \otimes \mathbf{b}=\mathbf{v} \otimes A \mathbf{b}=\mathbf{v} \otimes B \mathbf{w}=\mathbf{v} B \otimes \mathbf{w}=0
$$

The Modular Lattice

- The partial order on $L_{n}(R)$ is a modular lattice with maximum element $1_{n}=\left[I_{n} \mid I_{n}\right]$ and minimum element $0_{n}=\left[I_{n} \mid 0\right]$.

The Modular Lattice

- The partial order on $L_{n}(R)$ is a modular lattice with maximum element $1_{n}=\left[I_{n} \mid I_{n}\right]$ and minimum element $0_{n}=\left[I_{n} \mid 0\right]$.
- The infimum operation is given by

$$
[A \mid B] \wedge\left[A^{\prime} \mid B^{\prime}\right]=\left[\begin{array}{c|cc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right]
$$

The Modular Lattice

- The partial order on $L_{n}(R)$ is a modular lattice with maximum element $1_{n}=\left[I_{n} \mid I_{n}\right]$ and minimum element $0_{n}=\left[I_{n} \mid 0\right]$.
- The infimum operation is given by

$$
[A \mid B] \wedge\left[A^{\prime} \mid B^{\prime}\right]=\left[\begin{array}{c|cc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right]
$$

- The supremum operation satisfies

$$
[A \mid B]+\left[A^{\prime} \mid B^{\prime}\right]=\left([A \mid B]^{*} \wedge\left[A^{\prime} \mid B^{\prime}\right]^{*}\right)^{*} .
$$

The Modular Lattice

- The partial order on $L_{n}(R)$ is a modular lattice with maximum element $1_{n}=\left[I_{n} \mid I_{n}\right]$ and minimum element $0_{n}=\left[I_{n} \mid 0\right]$.
- The infimum operation is given by

$$
[A \mid B] \wedge\left[A^{\prime} \mid B^{\prime}\right]=\left[\begin{array}{c|cc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right]
$$

- The supremum operation satisfies

$$
[A \mid B]+\left[A^{\prime} \mid B^{\prime}\right]=\left([A \mid B]^{*} \wedge\left[A^{\prime} \mid B^{\prime}\right]^{*}\right)^{*} .
$$

- Explicitly,

$$
[A \mid B]+\left[A^{\prime} \mid B^{\prime}\right]:=\left[\begin{array}{c|cccc}
I_{n} & I_{n} & 0 & I_{n} & 0 \\
0 & A & B & 0 & 0 \\
0 & 0 & 0 & A^{\prime} & B^{\prime}
\end{array}\right]
$$

Quantifiers

- If $\varphi(\mathbf{v}) \rightleftharpoons[A \mid B]$ is the pp-formula associated to the matrix pair, we also write $\varphi(\mathbf{u}, \mathbf{v}) \rightleftharpoons\left[A_{1}, A_{2} \mid B\right]$.

Quantifiers

- If $\varphi(\mathbf{v}) \rightleftharpoons[A \mid B]$ is the pp-formula associated to the matrix pair, we also write $\varphi(\mathbf{u}, \mathbf{v}) \rightleftharpoons\left[A_{1}, A_{2} \mid B\right]$.
- There are two quantifiers, given by

$$
\exists \mathbf{v} \varphi(\mathbf{u}, \mathbf{v}) \rightleftharpoons\left[A_{1} \mid A_{2}, B\right] \text { and } \varphi(\mathbf{u}, 0) \rightleftharpoons\left[A_{1} \mid B\right] .
$$

Quantifiers

- If $\varphi(\mathbf{v}) \rightleftharpoons[A \mid B]$ is the pp-formula associated to the matrix pair, we also write $\varphi(\mathbf{u}, \mathbf{v}) \rightleftharpoons\left[A_{1}, A_{2} \mid B\right]$.
- There are two quantifiers, given by

$$
\exists \mathbf{v} \varphi(\mathbf{u}, \mathbf{v}) \rightleftharpoons\left[A_{1} \mid A_{2}, B\right] \text { and } \varphi(\mathbf{u}, 0) \rightleftharpoons\left[A_{1} \mid B\right] .
$$

- These quantifiers are related by duality according to the following equations in $L_{n}\left(R^{\mathrm{op}}\right)$:

$$
\begin{gathered}
{\left[A_{1}, A_{2} \mid B\right]^{*}=\left[\begin{array}{cc|c}
I_{n_{1}} & 0 & A_{1}^{\mathrm{tr}} \\
0 & I_{n_{2}} & A_{2}^{\mathrm{tr}} \\
0 & 0 & B^{\mathrm{tr}}
\end{array}\right]} \\
{\left[\begin{array}{c|cc}
I_{n_{1}} & 0 & A_{1}^{\mathrm{tr}} \\
0 & I_{n_{2}} & A_{2}^{\mathrm{tr}} \\
0 & 0 & B^{\mathrm{tr}}
\end{array}\right]=\left[\begin{array}{c|c}
I_{n_{1}} & A_{1}^{\mathrm{tr}} \\
0 & B^{\mathrm{tr}}
\end{array}\right]=\left[A_{1} \mid B\right]^{*} .}
\end{gathered}
$$

Goursat's Theorem

- Goursat's Theorem (1889). Let X_{0} and X_{1} be groups and $\Gamma \leq X_{0} \times X_{1}$ a subgroup.

Goursat's Theorem

- Goursat's Theorem (1889). Let X_{0} and X_{1} be groups and $\Gamma \leq X_{0} \times X_{1}$ a subgroup.
- Let $Y_{k} \leq X_{k}(k=0,1)$ be the image of Γ under the natural projection onto X_{k}.

Goursat's Theorem

- Goursat's Theorem (1889). Let X_{0} and X_{1} be groups and $\Gamma \leq X_{0} \times X_{1}$ a subgroup.
- Let $Y_{k} \leq X_{k}(k=0,1)$ be the image of Γ under the natural projection onto X_{k}.
- Then

1. $\left(Y_{0} \cap \Gamma\right) \triangleleft Y_{0}$ and $\left(Y_{0} \cap \Gamma\right) \triangleleft Y_{0}$; and
2. there is an isomorphism $f_{\Gamma}: Y_{0} /\left(Y_{0} \cap \Gamma\right) \cong Y_{1} /\left(Y_{1} \cap \Gamma\right)$.

Goursat's Theorem

- Goursat's Theorem (1889). Let X_{0} and X_{1} be groups and $\Gamma \leq X_{0} \times X_{1}$ a subgroup.
- Let $Y_{k} \leq X_{k}(k=0,1)$ be the image of Γ under the natural projection onto X_{k}.
- Then

1. $\left(Y_{0} \cap \Gamma\right) \triangleleft Y_{0}$ and $\left(Y_{0} \cap \Gamma\right) \triangleleft Y_{0}$; and
2. there is an isomorphism $f_{\Gamma}: Y_{0} /\left(Y_{0} \cap \Gamma\right) \cong Y_{1} /\left(Y_{1} \cap \Gamma\right)$.

- The graph of the isomorphism is the image of Γ in the quotient of the inclusion

$$
\left[\left(Y_{0} \cap \Gamma\right) \times\left(Y_{1} \cap \Gamma\right)\right] \leq \Gamma \leq\left(Y_{0} \times Y_{1}\right)
$$

The Goursat Group

- The Goursat group $G(R)$ is the free group on the elements of $\cup_{n \geq 1} L_{n}(R)$, modulo the relations:

1. for every three matrices A_{1}, A_{2} and B with the same number of rows,

$$
\left[A_{2} \mid A_{1}, B\right]-\left[A_{2} \mid B\right]=\left[A_{1} \mid A_{2}, B\right]-\left[A_{1} \mid B\right] ;
$$

2. for $[A \mid B] \in L_{m}$ and $\left[A^{\prime} \mid B^{\prime}\right] \in L_{n}$,

$$
\left[\begin{array}{cc|cc}
A & 0 & A^{\prime} & 0 \\
0 & B & 0 & B^{\prime}
\end{array}\right]=[A \mid B]+\left[A^{\prime} \mid B^{\prime}\right] ; \text { and }
$$

3. for every $n \geq 1,0_{n}=0$.

The 0-Dimensional Goursat Group

- The 0-dimensional Goursat group $G_{0}(R)$ is the free group on the elements of $L_{1}(R)$, modulo the relations:

1. $0_{1}=0$; and
2. if A_{1} and A_{2} are column matrices, and all three matrices A_{1}, A_{2}, and B have the same number of rows, then

$$
\left[A_{2} \mid A_{1}, B\right]-\left[A_{2} \mid B\right]=\left[A_{1} \mid A_{2}, B\right]-\left[A_{1} \mid B\right] .
$$

The 0-Dimensional Goursat Group

- The 0-dimensional Goursat group $G_{0}(R)$ is the free group on the elements of $L_{1}(R)$, modulo the relations:

1. $0_{1}=0$; and
2. if A_{1} and A_{2} are column matrices, and all three matrices A_{1}, A_{2}, and B have the same number of rows, then

$$
\left[A_{2} \mid A_{1}, B\right]-\left[A_{2} \mid B\right]=\left[A_{1} \mid A_{2}, B\right]-\left[A_{1} \mid B\right] .
$$

- There is an obvious morphism $\iota: G_{0}(R) \rightarrow G(R)$ induced by $[A \mid B] \mapsto[A \mid B]$.

Finitely Presented Modules

- A left R-module ${ }_{R} M$ is finitely presented if there is an exact sequence, called a free presentation, of the form

$$
{ }_{R} R^{m} \xrightarrow{f}{ }_{R} R^{n} \longrightarrow M \longrightarrow 0 .
$$

Finitely Presented Modules

- A left R-module ${ }_{R} M$ is finitely presented if there is an exact sequence, called a free presentation, of the form

$$
{ }_{R} R^{m} \xrightarrow{f}{ }_{R} R^{n} \longrightarrow M \longrightarrow 0 .
$$

- The morphism $f: R^{m} \rightarrow R^{n}$ is given by multiplication on the right by an $m \times n$ matrix A,

$$
f=-\times A .
$$

We say that M is presented by the matrix A, and write $M=M_{A}$.

Finitely Presented Modules

- A left R-module ${ }_{R} M$ is finitely presented if there is an exact sequence, called a free presentation, of the form

$$
{ }_{R} R^{m} \longrightarrow{ }_{R} R^{n} \longrightarrow M \longrightarrow 0 .
$$

- The morphism $f: R^{m} \rightarrow R^{n}$ is given by multiplication on the right by an $m \times n$ matrix A,

$$
f=-\times A .
$$

We say that M is presented by the matrix A, and write $M=M_{A}$.

- Two matrices A and B are equivalent, denoted $A \sim B$, if they present isomorphic modules, $M_{A} \cong M_{B}$. The equivalence class of a matrix A is denoted by $\{A\}$.

The Grothendieck Group

- Let R-mod denote the category of finitely presented modules.

The Grothendieck Group

- Let R-mod denote the category of finitely presented modules.
- Let $K_{0}(R$-mod, $\oplus)$ be the free group on the symbols $\{M\}$, $M \in R$-mod, modulo the relations

$$
[M \oplus N]=[M]+[N] .
$$

It may also be defined as the free group on the equivalence classes $\{A\}$ of matrices, modulo the relations

$$
\left\{\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)\right\}=\{A\}+\{B\} .
$$

The Grothendieck Group

- Let R-mod denote the category of finitely presented modules.
- Let $K_{0}(R$-mod, $\oplus)$ be the free group on the symbols $\{M\}$, $M \in R$-mod, modulo the relations

$$
[M \oplus N]=[M]+[N] .
$$

It may also be defined as the free group on the equivalence classes $\{A\}$ of matrices, modulo the relations

$$
\left\{\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)\right\}=\{A\}+\{B\} .
$$

- Adelman: Let $\mathrm{Ab}(R)$ be the free abelian category over R. The subcategory of projective objects of $\mathrm{Ab}(R)$ is equivalent to R-mod. Thus $K_{0}(R$-mod, $\oplus)$ is isomorphic to the Grothendieck group $K_{0}(\mathrm{Ab}(R))$.

Some Homomorphisms

- The Isomorphism Theorem. (IH) There exist morphisms

so that the composition obtained by going around, starting at any vertex, yields the identity morphism.

Some Homomorphisms

- The Isomorphism Theorem. (IH) There exist morphisms

so that the composition obtained by going around, starting at any vertex, yields the identity morphism.
- The morphism $\gamma: G(R) \rightarrow K_{0}(R-\bmod , \oplus)$ is induced by the function $[A \mid B] \mapsto\{(A, B)\}-\{B\}$.

Some Homomorphisms

- The Isomorphism Theorem. (IH) There exist morphisms

so that the composition obtained by going around, starting at any vertex, yields the identity morphism.
- The morphism $\gamma: G(R) \rightarrow K_{0}(R$-mod, $\oplus)$ is induced by the function $[A \mid B] \mapsto\{(A, B)\}-\{B\}$.
- The morphism $\kappa: K_{0}(R-\bmod , \oplus) \rightarrow G_{0}(R)$ is induced by the function $\{A\} \mapsto \sum_{j=1}^{n}\left[A_{j} \mid A_{j+1}, \ldots, A_{n}\right]$, where A_{j} is the j-th column of A.

Equivalent Matrices

- Theorem. Two matrices with entries in the ring R are equivalent iff one can be obtained from the other by a sequence of operations of the following form:

1. permutation of rows or columns;
2. replacement of a matrix C by $\left(\begin{array}{cc}C & 0 \\ 0 & 1\end{array}\right)$, or the reverse;
3. addition or deletion of an extra row of zeros;
4. addition of a left (resp., right) scalar multiple of a row (resp., column) to another row (resp., column).

Equivalent Matrices

- Theorem. Two matrices with entries in the ring R are equivalent iff one can be obtained from the other by a sequence of operations of the following form:

1. permutation of rows or columns;
2. replacement of a matrix C by $\left(\begin{array}{cc}C & 0 \\ 0 & 1\end{array}\right)$, or the reverse;
3. addition or deletion of an extra row of zeros;
4. addition of a left (resp., right) scalar multiple of a row (resp., column) to another row (resp., column).

- Reference: Theorem 6.1 in Lickorish, W.B.R., An Introduction to Knot Theory GTM 175.

The Morphism $\gamma: G(R) \rightarrow K_{0}(R$-mod, $\oplus)$

- Lemma. If $(A \mid B) \leq\left(A^{\prime} \mid B^{\prime}\right)$, then

$$
\left(\begin{array}{ccc}
A & B & 0 \\
0 & 0 & B^{\prime}
\end{array}\right) \sim\left(\begin{array}{ccc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right) .
$$

The Morphism $\gamma: G(R) \rightarrow K_{0}(R$-mod, $\oplus)$

- Lemma. If $(A \mid B) \leq\left(A^{\prime} \mid B^{\prime}\right)$, then

$$
\left(\begin{array}{ccc}
A & B & 0 \\
0 & 0 & B^{\prime}
\end{array}\right) \sim\left(\begin{array}{ccc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right) .
$$

- Proof. We are given U, V and G such that $U B=B^{\prime} V$ and $U A=A^{\prime}+B^{\prime} G$. Thus

$$
\begin{aligned}
\left(\begin{array}{ccc}
A & B & 0 \\
0 & 0 & B^{\prime}
\end{array}\right) & \sim\left(\begin{array}{ccc}
A & B & 0 \\
U A & U B & B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
A & B & 0 \\
U A & B^{\prime} V & B^{\prime}
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
A & B & 0 \\
U A & 0 & B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
A & B & 0 \\
A^{\prime}+B^{\prime} G & 0 & B^{\prime}
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right) .
\end{aligned}
$$

γ Is Well-Defined

- If $[A \mid B]=\left[A^{\prime} \mid B^{\prime}\right]$, then

$$
\begin{aligned}
\left(\begin{array}{ccc}
A & B & 0 \\
0 & 0 & B^{\prime}
\end{array}\right) & \sim\left(\begin{array}{ccc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
A^{\prime} & B^{\prime} & 0 \\
A & 0 & B
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
A^{\prime} & B^{\prime} & 0 \\
0 & 0 & B
\end{array}\right)
\end{aligned}
$$

γ Is Well-Defined

- If $[A \mid B]=\left[A^{\prime} \mid B^{\prime}\right]$, then

$$
\begin{aligned}
\left(\begin{array}{ccc}
A & B & 0 \\
0 & 0 & B^{\prime}
\end{array}\right) & \sim\left(\begin{array}{ccc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
A^{\prime} & B^{\prime} & 0 \\
A & 0 & B
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
A^{\prime} & B^{\prime} & 0 \\
0 & 0 & B
\end{array}\right)
\end{aligned}
$$

- So in $K_{0}(R$-mod, $\oplus)$, we have that

$$
\{(A, B)\}+\left\{B^{\prime}\right\}=\left\{\left(A^{\prime}, B^{\prime}\right)\right\}+\{B\}
$$

and hence that $\{(A, B)\}-\{B\}=\left\{\left(A^{\prime}, B^{\prime}\right)\right\}-\left\{B^{\prime}\right\}$.

Exercises

- The material presented here on n-ary matrix pairs has been entierly self-contained, except for the theorem cited from Lickorish's textbook and the following three exercises:

Exercises

- The material presented here on n-ary matrix pairs has been entierly self-contained, except for the theorem cited from Lickorish's textbook and the following three exercises:
- 1. Verify, using the definition of an n-ary matrix pair, that

$$
[A \mid B] \wedge\left[A^{\prime} \mid B^{\prime}\right]=\left[\begin{array}{c|cc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right] .
$$

Exercises

- The material presented here on n-ary matrix pairs has been entierly self-contained, except for the theorem cited from Lickorish's textbook and the following three exercises:
- 1. Verify, using the definition of an n-ary matrix pair, that

$$
[A \mid B] \wedge\left[A^{\prime} \mid B^{\prime}\right]=\left[\begin{array}{c|cc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right] .
$$

- 2. Show that the morphism $\kappa: K_{0}(R$-mod, $\oplus) \rightarrow G_{0}(R)$ is well-defined.

Exercises

- The material presented here on n-ary matrix pairs has been entierly self-contained, except for the theorem cited from Lickorish's textbook and the following three exercises:
- 1. Verify, using the definition of an n-ary matrix pair, that

$$
[A \mid B] \wedge\left[A^{\prime} \mid B^{\prime}\right]=\left[\begin{array}{c|cc}
A & B & 0 \\
A^{\prime} & 0 & B^{\prime}
\end{array}\right] .
$$

- 2. Show that the morphism $\kappa: K_{0}(R$-mod, $\oplus) \rightarrow G_{0}(R)$ is well-defined.
- 3. Verify that the composition obtained by going around the triangle in The Isomorphism Theorem is the identity.

