# Linear Algebra over a Ring

Ivo Herzog

#### New Directions in the Model Theory of Fields Durham University July 23, 2009

・ロト ・回ト ・ヨト ・ヨト

The Language Definable Subsets of a Module

## Linear Equations

Let R be an associative ring with 1. The language for left R-modules is

 $\mathcal{L}(R) = (+, -, 0, r)_{r \in R}.$ 

・ロン ・回と ・ヨン・

The Language Definable Subsets of a Module

# Linear Equations

► Let *R* be an **associative ring** with 1. The **language** for left *R*-modules is

$$\mathcal{L}(R) = (+, -, 0, r)_{r \in R}.$$

• A linear equation is expressible in  $\mathcal{L}(R)$  :

$$r_1v_1+r_2v_2+\cdots+r_nv_n\doteq 0.$$

イロン イヨン イヨン イヨン

The Language Definable Subsets of a Module

# Linear Equations

Let R be an associative ring with 1. The language for left R-modules is

$$\mathcal{L}(R) = (+, -, 0, r)_{r \in R}.$$

• A linear equation is expressible in  $\mathcal{L}(R)$  :

$$r_1v_1+r_2v_2+\cdots+r_nv_n\doteq 0.$$

The standard axioms for a left *R*-module are expressible in L(R). This collection of axioms, denoted T(R), is usually infinite. For example, for every r ∈ R,

$$(\forall v, w) r(v + w) \doteq rv + rw$$

belongs to T(R).

The Language Definable Subsets of a Module

### Positive-primitive Formulae

Relative to the axioms T(R), every atomic formula of L(R) is equivalent to a linear equation

$$r_1v_1+r_2v_2+\cdots+r_nv_n\doteq 0.$$

イロン 不同と 不同と 不同と

The Language Definable Subsets of a Module

## Positive-primitive Formulae

► Relative to the axioms T(R), every atomic formula of L(R) is equivalent to a linear equation

$$r_1v_1+r_2v_2+\cdots+r_nv_n\doteq 0.$$

A finite conjunction of linear equations is a system of linear equations:

$$A\mathbf{v} \doteq 0$$
,

where A is an  $m \times n$  matrix and  $\mathbf{v} = (v_1, v_2, \dots, v_n)$  is a *column* of *n* variables.

The Language Definable Subsets of a Module

## Positive-primitive Formulae

► Relative to the axioms T(R), every atomic formula of L(R) is equivalent to a linear equation

$$r_1v_1+r_2v_2+\cdots+r_nv_n\doteq 0.$$

A finite conjunction of linear equations is a system of linear equations:

$$A\mathbf{v} \doteq 0,$$

where A is an  $m \times n$  matrix and  $\mathbf{v} = (v_1, v_2, \dots, v_n)$  is a *column* of *n* variables.

A positive-primitive formula is an existentially quantified systems of linear equations:

$$\exists \mathbf{w} (A\mathbf{v} + B\mathbf{w} \doteq 0).$$

・ロン ・回と ・ヨン・

The Language Definable Subsets of a Module

## Examples

There are two extreme cases of a positive primitive formula:

$$\exists \mathbf{w} (A\mathbf{v} + B\mathbf{w} \doteq 0).$$

・ロト ・回ト ・ヨト ・ヨト

3

The Language Definable Subsets of a Module

# Examples

There are two extreme cases of a positive primitive formula:

$$\exists \mathbf{w} (A\mathbf{v} + B\mathbf{w} \doteq \mathbf{0}).$$

If B = 0, then the formula degenerates into a quantifier-free positive-primitive formula Av ≐ 0. This is a system of linear equations, an annihilator condition.

The Language Definable Subsets of a Module

# Examples

There are two extreme cases of a positive primitive formula:

$$\exists \mathbf{w} (A\mathbf{v} + B\mathbf{w} \doteq \mathbf{0}).$$

- If B = 0, then the formula degenerates into a quantifier-free positive-primitive formula Av ≐ 0. This is a system of linear equations, an annihilator condition.
- ▶ If  $A = I_n$ , the  $n \times n$  identity matrix, then the pp-formula is equivalent, relative to T(R), to the **divisibility condition**

$$B|\mathbf{v}:=\exists \mathbf{w} \ (\mathbf{v}\doteq B\mathbf{w}).$$

The Language Definable Subsets of a Module

# Examples

There are two extreme cases of a positive primitive formula:

$$\exists \mathbf{w} (A\mathbf{v} + B\mathbf{w} \doteq \mathbf{0}).$$

- If B = 0, then the formula degenerates into a quantifier-free positive-primitive formula Av ≐ 0. This is a system of linear equations, an annihilator condition.
- If A = I<sub>n</sub>, the n × n identity matrix, then the pp-formula is equivalent, relative to T(R), to the divisibility condition

$$B|\mathbf{v} := \exists \mathbf{w} \ (\mathbf{v} \doteq B\mathbf{w}).$$

• Using this notation, we may express a general pp-formula in the free variables  $\mathbf{v} = (v_1, \dots, v_n)$  as

$$B|A\mathbf{v}.$$

・ロン ・回と ・ヨン・

The Language Definable Subsets of a Module

### Subgroups Defined by a Positive-primitive Formula

• If  $\varphi(v_1, \ldots, v_n) = B | A \mathbf{v}$  is a positive-primitive formula in  $\mathcal{L}(R)$ , then

$$\varphi(M) := \{ \mathbf{a} \in M^n : M \models \exists \mathbf{w} \ (B\mathbf{w} \doteq A\mathbf{a}) \}$$

is a subgroup of  $M^n$ . A subgroup of the form  $\varphi(M)$  is called an *n*-ary **pp-definable subgroup** of M.

・ロン ・回 と ・ ヨ と ・ ヨ と

## Subgroups Defined by a Positive-primitive Formula

• If  $\varphi(v_1, \ldots, v_n) = B | A \mathbf{v}$  is a positive-primitive formula in  $\mathcal{L}(R)$ , then

$$\varphi(M) := \{ \mathbf{a} \in M^n : M \models \exists \mathbf{w} \ (B\mathbf{w} \doteq A\mathbf{a}) \}$$

is a subgroup of  $M^n$ . A subgroup of the form  $\varphi(M)$  is called an *n*-ary pp-definable subgroup of M.

• If  $\varphi(\mathbf{v})$  and  $\psi(\mathbf{v})$  are positive-primitive formulae, then

$$(\varphi \wedge \psi)(\mathbf{v}) \text{ and } (\varphi + \psi)(\mathbf{v}) := \exists \mathbf{w} \ (\varphi(\mathbf{v} - \mathbf{w}) \wedge \psi(\mathbf{w}))$$

are equivalent, relative to T(R), to positive-primitive formulae.

・ロン ・回と ・ヨン・

# Subgroups Defined by a Positive-primitive Formula

• If  $\varphi(v_1, \ldots, v_n) = B | A \mathbf{v}$  is a positive-primitive formula in  $\mathcal{L}(R)$ , then

$$\varphi(M) := \{ \mathbf{a} \in M^n : M \models \exists \mathbf{w} \ (B\mathbf{w} \doteq A\mathbf{a}) \}$$

is a subgroup of  $M^n$ . A subgroup of the form  $\varphi(M)$  is called an *n*-ary pp-definable subgroup of M.

• If  $\varphi(\mathbf{v})$  and  $\psi(\mathbf{v})$  are positive-primitive formulae, then

$$(\varphi \wedge \psi)(\mathbf{v}) \text{ and } (\varphi + \psi)(\mathbf{v}) := \exists \mathbf{w} \ (\varphi(\mathbf{v} - \mathbf{w}) \wedge \psi(\mathbf{w}))$$

are equivalent, relative to T(R), to positive-primitive formulae.

 $(\varphi \wedge \psi)(M) = \varphi(M) \cap \psi(M) \text{ and } (\varphi + \psi)(M) := \varphi(M) + \psi(M).$ 

(日) (同) (E) (E) (E)

The Language Definable Subsets of a Module

#### Lemma Presta

The Completeness Theorem: T(R) ⊢ ψ(v) → φ(v) if and only if ψ(M) ⊆ φ(M) for every left R-module <sub>R</sub>M.

・ロン ・回と ・ヨン・

The Language Definable Subsets of a Module

### Lemma Presta

- The Completeness Theorem: T(R) ⊢ ψ(v) → φ(v) if and only if ψ(M) ⊆ φ(M) for every left R-module <sub>R</sub>M.
- Lemma Presta. T(R) ⊢ B|Av → B'|A'v iff there exist matrices U, V and G, of appropriate size, such that

$$UB = B'V$$
 and  $UA = A' + B'G$ .

イロト イヨト イヨト イヨト

The Language Definable Subsets of a Module

### Lemma Presta

- The Completeness Theorem: T(R) ⊢ ψ(v) → φ(v) if and only if ψ(M) ⊆ φ(M) for every left R-module <sub>R</sub>M.
- Lemma Presta. T(R) ⊢ B|Av → B'|A'v iff there exist matrices U, V and G, of appropriate size, such that

$$UB = B'V$$
 and  $UA = A' + B'G$ .

Proof of easy direction:

$$T(R) \vdash B | A\mathbf{v} \rightarrow UB | UA\mathbf{v}$$
  

$$\leftrightarrow B' V | (A' + B'G)\mathbf{v}$$
  

$$\rightarrow B' | (A' + B'G)\mathbf{v}$$
  

$$\leftrightarrow B' | A'\mathbf{v}.$$

Matrix Pairs Examples Duality

# Definition

▶ Definition. For n ≥ 0, let L'<sub>n</sub>(R) be the set of pairs of matrices (A | B) where A has n columns, and B has the same number of rows as A. The relation

$$(A \mid B) \leq_n (A' \mid B')$$

holds provided there exist matrices U, V and G such that

$$UB = B'V$$
 and  $UA = A' + B'G$ .

イロト イヨト イヨト イヨト

Matrix Pairs Examples Duality

# Definition

▶ Definition. For n ≥ 0, let L'<sub>n</sub>(R) be the set of pairs of matrices (A | B) where A has n columns, and B has the same number of rows as A. The relation

 $(A \mid B) \leq_n (A' \mid B')$ 

holds provided there exist matrices U, V and G such that

$$UB = B'V$$
 and  $UA = A' + B'G$ .

▶ Proposition. Let A be an m × n matrix; B an m × k matrix. The relation ≤<sub>n</sub> is the least partial order on L'<sub>n</sub>(R) satisfying:

- 1. If U is a matrix with m columns, then  $(A | B) \leq (UA | UB)$ .
- 2. If V is a matrix with k rows, then  $(A | BV) \leq (A | B)$ .
- 3. If G is a  $k \times n$  matrix, then  $(A + BG \mid B) \leq (A \mid B)$ .

ト < 臣 ト < 臣 ト</p>

Image: A matrix

Matrix Pairs Examples Duality

# Matrix Pairs

► Two pairs of matrices (A | B) and (A' | B') in L'<sub>n</sub>(R) are equivalent if

## $(A \mid B) \leq_n (A' \mid B') \text{ and } (A' \mid B') \leq_n (A \mid B).$

An *n*-ary matrix pair [A | B] is the equivalence class of (A | B). Denote by  $L_n(R)$  the partially ordered set of *n*-ary matrix pairs.

Matrix Pairs Examples Duality

# Matrix Pairs

► Two pairs of matrices (A | B) and (A' | B') in L'<sub>n</sub>(R) are equivalent if

 $(A \mid B) \leq_n (A' \mid B') \text{ and } (A' \mid B') \leq_n (A \mid B).$ 

An *n*-ary matrix pair [A | B] is the equivalence class of (A | B). Denote by  $L_n(R)$  the partially ordered set of *n*-ary matrix pairs.

**Proposition.** The following hold in  $L_n(R)$ :

- 1. If P is an invertible matrix, then [A | B] = [PA | PB].
- 2. If Q is an invertible matrix, then [A | BQ] = [A | B].
- 3. If G is any matrix, then [A + BG | B] = [A | B].

・ロン ・回と ・ヨン・

Matrix Pairs Examples Duality

## Maximum and Minimum Elements

► The minimum element of L<sub>n</sub>(R) is given by 0<sub>n</sub> := [I<sub>n</sub> | 0]. For, if [A | B] is an arbitrary *n*-ary matrix pair, then

$$0_n = [I_n \mid 0] \le [A \cdot I_n \mid 0] = [A \mid B \cdot 0] \le [A \mid B].$$

イロト イヨト イヨト イヨト

Matrix Pairs Examples Duality

## Maximum and Minimum Elements

► The minimum element of L<sub>n</sub>(R) is given by 0<sub>n</sub> := [I<sub>n</sub> | 0]. For, if [A | B] is an arbitrary n-ary matrix pair, then

$$0_n = [I_n \mid 0] \le [A \cdot I_n \mid 0] = [A \mid B \cdot 0] \le [A \mid B].$$

Similarly, the maximum element is given by 1<sub>n</sub> := [I<sub>n</sub> | I<sub>n</sub>]. If A is m × n, let P be n × m. Then since

$$[A \mid B] \leq [PA \mid I_n \cdot PB] \leq [PA \mid I_n] = [PA + I_n(I_n - PA) \mid I_n] = 1_n.$$

Also note that

$$1_n = [I_n \mid I_n] = [0 \mid I_n] \le [0 \mid B]$$

Matrix Pairs Examples Duality

## Principal Ideal Domains

If R is a PID, then there are invertible matrices P and Q such that PBQ = D is a diagonal matrix. Thus

 $[A \mid B] = [PA \mid PB] = [PA \mid PBQ] = [PA \mid D].$ 

・ロン ・回と ・ヨン・

Matrix Pairs Examples Duality

## Principal Ideal Domains

If R is a PID, then there are invertible matrices P and Q such that PBQ = D is a diagonal matrix. Thus

$$[A \mid B] = [PA \mid PB] = [PA \mid PBQ] = [PA \mid D].$$

► The infimum of two *n*-ary matrix pairs [A | B] and [A' | B'] is given by

$$[A \mid B] \wedge [A' \mid B'] = \left[ egin{array}{c|c} A \mid B & 0 \\ A' \mid 0 & B' \end{array} 
ight].$$

Matrix Pairs Examples Duality

# Principal Ideal Domains

► If R is a **PID**, then there are invertible matrices P and Q such that PBQ = D is a diagonal matrix. Thus

$$[A \mid B] = [PA \mid PB] = [PA \mid PBQ] = [PA \mid D].$$

► The infimum of two *n*-ary matrix pairs [A | B] and [A' | B'] is given by

$$[A \mid B] \wedge [A' \mid B'] = \left[ egin{array}{c|c} A & B & 0 \\ A' & 0 & B' \end{array} 
ight].$$

• If  $D = (d_{ij})$  is a diagonal matrix, then

$$[A \mid D] = \bigwedge_{i} [_{i}A \mid d_{ii}],$$

where  $_{i}A$  denotes the *i*-th row of A.

イロン イヨン イヨン イヨン

Matrix Pairs Examples Duality

## **Regular Matrices**

► A matrix B is regular if there is a matrix C such that BCB = B.

・ロト ・回ト ・ヨト ・ヨト

Matrix Pairs Examples Duality

## **Regular Matrices**

- ► A matrix B is regular if there is a matrix C such that BCB = B.
- ▶ **Proposition.** A matrix *B* is regular iff for every *A*, there is an *A*′ such that

$$[A \mid B] = [A' \mid 0].$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Matrix Pairs Examples Duality

## **Regular Matrices**

- ► A matrix B is regular if there is a matrix C such that BCB = B.
- Proposition. A matrix B is regular iff for every A, there is an A' such that

$$[A \mid B] = [A' \mid 0].$$

▶ Proof: If B is regular, then [A | BC] ≤ [A | B] ≤ [A | BC], with BC idempotent (BC)<sup>2</sup> = BCBC = BC. If E is idempotent, then

$$[A | E] \le [(I_m - E)A | 0] \le [A - EA | E] = [A | E].$$

Matrix Pairs Examples Duality

# von Neumann Regular Rings

- ► For the converse, let  $I_n$  be the  $n \times n$  identity matrix. If  $[I_n | B] = [A' | 0]$ , then
  - 1. there is a U such that UB = 0 and  $U \cdot I_n = A'$ , i.e., A'B = 0; and
  - 2. there are U and G such that  $UA' = I_n + BG$ .

Then 0 = UA'B = B + BGB, so that B = B(-G)B.

Matrix Pairs Examples Duality

# von Neumann Regular Rings

- ► For the converse, let  $I_n$  be the  $n \times n$  identity matrix. If  $[I_n | B] = [A' | 0]$ , then
  - 1. there is a U such that UB = 0 and  $U \cdot I_n = A'$ , i.e., A'B = 0; and
  - 2. there are U and G such that  $UA' = I_n + BG$ .

Then 0 = UA'B = B + BGB, so that B = B(-G)B.

Corollary. A ring R is von Neumann regular iff for every matrix pair [A | B] there is an A' such that [A | B] = [A' | 0].

Matrix Pairs Examples Duality

# The Opposite Ring $R^{op}$

 Multiplication of matrices with entries in R<sup>op</sup> is denoted A \* B. It is related to multiplication of matrices over R by the equation

$$(A*B)^{\mathsf{tr}} = B^{\mathsf{tr}} * A^{\mathsf{tr}}.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Matrix Pairs Examples Duality

# The Opposite Ring $R^{op}$

 Multiplication of matrices with entries in R<sup>op</sup> is denoted A \* B. It is related to multiplication of matrices over R by the equation

$$(A*B)^{\mathsf{tr}}=B^{\mathsf{tr}}*A^{\mathsf{tr}}.$$

► **Theorem.** (Prest, Huisgen-Z./Zimmermann) If  $(A | B) \leq (A' | B')$  in  $L'_n(R)$ , then in  $L'_n(R^{op})$ ,  $\begin{pmatrix} I_n | (A')^{tr} \\ 0 | (B')^{tr} \end{pmatrix} \leq \begin{pmatrix} I_n | A^{tr} \\ 0 | B^{tr} \end{pmatrix}$ .

Matrix Pairs Examples Duality

# The Opposite Ring $R^{op}$

 Multiplication of matrices with entries in R<sup>op</sup> is denoted A \* B. It is related to multiplication of matrices over R by the equation

$$(A*B)^{\mathsf{tr}}=B^{\mathsf{tr}}*A^{\mathsf{tr}}.$$

- ► **Theorem.** (Prest, Huisgen-Z./Zimmermann) If  $(A | B) \le (A' | B')$  in  $L'_n(R)$ , then in  $L'_n(R^{op})$ ,  $\begin{pmatrix} I_n & (A')^{tr} \\ 0 & (B')^{tr} \end{pmatrix} \le \begin{pmatrix} I_n & A^{tr} \\ 0 & B^{tr} \end{pmatrix}$ .
- ▶ **Proof:** We are given matrices U, V and G such that UB = B'V and UA = A' + B'G, or

$$(A',B')\left( egin{array}{cc} I_n & 0 \\ G & V \end{array} 
ight) = U(A,B).$$

| The Model Theory of Modules | Matrix Pairs |
|-----------------------------|--------------|
| A Formal Calculus           | Examples     |
| The Goursat Group           | Duality      |

▶ In  $L_n(R^{op})$ , this yields

$$\left(\begin{array}{cc}I_n & G^{tr}\\0 & V^{tr}\end{array}\right)*\left(\begin{array}{c}(A')^{tr}\\(B')^{tr}\end{array}\right)=\left(\begin{array}{c}A^{tr}\\B^{tr}\end{array}\right)*U^{tr}.$$

・ロ・ ・回・ ・ヨ・ ・ヨ・

æ

| The Model Theory of Modules | Matrix Pairs |
|-----------------------------|--------------|
| A Formal Calculus           | Examples     |
| The Goursat Group           | Duality      |

▶ In  $L_n(R^{op})$ , this yields

$$\left(\begin{array}{cc}I_n & G^{tr}\\0 & V^{tr}\end{array}\right)*\left(\begin{array}{c}(A')^{\mathsf{tr}}\\(B')^{tr}\end{array}\right)=\left(\begin{array}{c}A^{\mathsf{tr}}\\B^{tr}\end{array}\right)*U^{\mathsf{tr}}.$$

► But also

$$\left(\begin{array}{cc}I_n & G^{tr}\\0 & V^{tr}\end{array}\right)*\left(\begin{array}{c}I_n\\0\end{array}\right)=\left(\begin{array}{c}I_n\\0\end{array}\right).$$

・ロ・ ・回・ ・ヨ・ ・ヨ・

æ
| The Model Theory of Modules | Matrix Pairs |  |
|-----------------------------|--------------|--|
| A Formal Calculus           | Examples     |  |
| The Goursat Group           | Duality      |  |

▶ In  $L_n(R^{op})$ , this yields

$$\left(\begin{array}{cc}I_n & G^{tr}\\0 & V^{tr}\end{array}\right)*\left(\begin{array}{c}(A')^{\mathsf{tr}}\\(B')^{tr}\end{array}\right)=\left(\begin{array}{c}A^{\mathsf{tr}}\\B^{tr}\end{array}\right)*U^{\mathsf{tr}}.$$

► But also

$$\begin{pmatrix} I_n & G^{tr} \\ 0 & V^{tr} \end{pmatrix} * \begin{pmatrix} I_n \\ 0 \end{pmatrix} = \begin{pmatrix} I_n \\ 0 \end{pmatrix}.$$

$$\blacktriangleright \text{ Let } U' = \begin{pmatrix} I_n & G^{tr} \\ 0 & V^{tr} \end{pmatrix}, V' = U^{\text{tr}}, \text{ and } G' = 0.$$

・ロ・ ・回・ ・ヨ・ ・ヨ・

æ

Matrix Pairs Examples Duality

### The Anti-isomorphism

This induces an anti-morphism from L<sub>n</sub>(R) to L<sub>n</sub>(R<sup>op</sup>), given by

$$[A \mid B] \mapsto [A \mid B]^* := \begin{bmatrix} I_n & A^{\mathsf{tr}} \\ 0 & B^{\mathsf{tr}} \end{bmatrix}.$$

イロン イヨン イヨン イヨン

Matrix Pairs Examples Duality

### The Anti-isomorphism

► This induces an anti-morphism from L<sub>n</sub>(R) to L<sub>n</sub>(R<sup>op</sup>), given by

$$[A \mid B] \mapsto [A \mid B]^* := \begin{bmatrix} I_n & A^{\text{tr}} \\ 0 & B^{\text{tr}} \end{bmatrix}.$$

To see that it is a anti-isomorphism, just note that

$$\begin{bmatrix} I_n & I_n & 0 \\ 0 & A & B \end{bmatrix} = \begin{bmatrix} I_n & I_n & 0 \\ -A & 0 & B \end{bmatrix} = [I_n \mid I_n] \land [-A \mid B] = [A \mid B].$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

-2

Matrix Pairs Examples Duality

### Properties of Duality

• **Example.** The anti-isomorphism  $[A | B] \mapsto \begin{bmatrix} I_n & A^{tr} \\ 0 & B^{tr} \end{bmatrix}$ interchanges the respective families of annihilator and divisibility conditions:  $[A | 0]^* = [I_n | A^{tr}]$ .

Matrix Pairs Examples Duality

## Properties of Duality

- ▶ **Example.** The anti-isomorphism  $[A | B] \mapsto \begin{bmatrix} I_n & A^{tr} \\ 0 & B^{tr} \end{bmatrix}$  interchanges the respective families of annihilator and divisibility conditions:  $[A | 0]^* = [I_n | A^{tr}]$ .
- Theorem. (IH) Let M be a right R-module, and N a left R-module. Given n-tuples a ∈ M<sup>n</sup> and b ∈ N<sup>n</sup>, then a ⊗ b = 0 in M ⊗<sub>R</sub> N iff there is a pp-formula φ(v) such that N ⊨ φ(b) and M ⊨ φ<sup>\*</sup>(a).

Matrix Pairs Examples Duality

# Properties of Duality

- ▶ **Example.** The anti-isomorphism  $[A | B] \mapsto \begin{bmatrix} I_n & A^{tr} \\ 0 & B^{tr} \end{bmatrix}$  interchanges the respective families of annihilator and divisibility conditions:  $[A | 0]^* = [I_n | A^{tr}]$ .
- ▶ **Theorem.** (IH) Let *M* be a right *R*-module, and *N* a left *R*-module. Given *n*-tuples  $\mathbf{a} \in M^n$  and  $\mathbf{b} \in N^n$ , then  $\mathbf{a} \otimes \mathbf{b} = 0$  in  $M \otimes_R N$  iff there is a pp-formula  $\varphi(\mathbf{v})$  such that  $N \models \varphi(\mathbf{b})$  and  $M \models \varphi^*(\mathbf{a})$ .

Proof of the easy direction:

$$\mathbf{a} \otimes \mathbf{b} = \mathbf{v}A \otimes \mathbf{b} = \mathbf{v} \otimes A\mathbf{b} = \mathbf{v} \otimes B\mathbf{w} = \mathbf{v}B \otimes \mathbf{w} = \mathbf{0}.$$

Matrix Pairs Examples Duality

### The Modular Lattice

► The partial order on L<sub>n</sub>(R) is a modular lattice with maximum element 1<sub>n</sub> = [I<sub>n</sub> | I<sub>n</sub>] and minimum element 0<sub>n</sub> = [I<sub>n</sub> | 0].

・ロン ・回 と ・ ヨ と ・ ヨ と

Matrix Pairs Examples Duality

# The Modular Lattice

- ► The partial order on L<sub>n</sub>(R) is a modular lattice with maximum element 1<sub>n</sub> = [I<sub>n</sub> | I<sub>n</sub>] and minimum element 0<sub>n</sub> = [I<sub>n</sub> | 0].
- The infimum operation is given by

$$[A \mid B] \land [A' \mid B'] = \left[ \begin{array}{c|c} A \mid B & 0 \\ A' \mid 0 & B' \end{array} \right]$$

٠

イロト イヨト イヨト イヨト

Matrix Pairs Examples Duality

# The Modular Lattice

- ► The partial order on L<sub>n</sub>(R) is a modular lattice with maximum element 1<sub>n</sub> = [I<sub>n</sub> | I<sub>n</sub>] and minimum element 0<sub>n</sub> = [I<sub>n</sub> | 0].
- The infimum operation is given by

$$[A \mid B] \land [A' \mid B'] = \left[ \begin{array}{cc|c} A \mid B & 0 \\ A' \mid 0 & B' \end{array} \right]$$

٠

イロト イヨト イヨト イヨト

-2

The supremum operation satisfies

$$[A | B] + [A' | B'] = ([A | B]^* \land [A' | B']^*)^*.$$

Matrix Pairs Examples Duality

# The Modular Lattice

- ► The partial order on L<sub>n</sub>(R) is a modular lattice with maximum element 1<sub>n</sub> = [I<sub>n</sub> | I<sub>n</sub>] and minimum element 0<sub>n</sub> = [I<sub>n</sub> | 0].
- The infimum operation is given by

$$[A \mid B] \land [A' \mid B'] = \left[ \begin{array}{cc|c} A \mid B & 0 \\ A' \mid 0 & B' \end{array} \right]$$

٠

.

イロト イヨト イヨト イヨト

The supremum operation satisfies

$$[A | B] + [A' | B'] = ([A | B]^* \land [A' | B']^*)^*.$$

Explicitly,

$$[A \mid B] + [A' \mid B'] := \left[ \begin{array}{cccc} I_n \mid I_n & 0 & I_n & 0 \\ 0 \mid A & B & 0 & 0 \\ 0 \mid 0 & 0 & A' & B' \end{array} \right]$$

Matrix Pairs Examples Duality

# Quantifiers

If φ(v) ⇒ [A | B] is the pp-formula associated to the matrix pair, we also write φ(u, v) ⇒ [A<sub>1</sub>, A<sub>2</sub> | B].

・ロン ・回 と ・ ヨ と ・ ヨ と

Matrix Pairs Examples Duality

# Quantifiers

- If φ(v) ⇒ [A | B] is the pp-formula associated to the matrix pair, we also write φ(u, v) ⇒ [A<sub>1</sub>, A<sub>2</sub> | B].
- There are two quantifiers, given by

$$\exists \mathbf{v} \ \varphi(\mathbf{u}, \mathbf{v}) \rightleftharpoons [A_1 \mid A_2, B] \text{ and } \varphi(\mathbf{u}, 0) \rightleftharpoons [A_1 \mid B].$$

イロト イヨト イヨト イヨト

-2

Matrix Pairs Examples Duality

# Quantifiers

- If φ(v) ⇒ [A | B] is the pp-formula associated to the matrix pair, we also write φ(u, v) ⇒ [A<sub>1</sub>, A<sub>2</sub> | B].
- There are two quantifiers, given by

$$\exists \mathbf{v} \ \varphi(\mathbf{u}, \mathbf{v}) \rightleftharpoons [A_1 \mid A_2, B] \text{ and } \varphi(\mathbf{u}, 0) \rightleftharpoons [A_1 \mid B].$$

These quantifiers are related by duality according to the following equations in L<sub>n</sub>(R<sup>op</sup>):

$$\begin{bmatrix} A_1, A_2 \mid B \end{bmatrix}^* = \begin{bmatrix} I_{n_1} & 0 & | A_1^{tr} \\ 0 & I_{n_2} & | A_2^{tr} \\ 0 & 0 & | B^{tr} \end{bmatrix};$$
$$\begin{bmatrix} I_{n_1} \mid 0 & A_1^{tr} \\ I_{n_2} & A_2^{tr} \\ 0 & 0 & B^{tr} \end{bmatrix} = \begin{bmatrix} I_{n_1} \mid A_1^{tr} \\ B^{tr} \end{bmatrix} = [A_1 \mid B]$$

The Grothendieck Group The Isomorphism Exercises

### Goursat's Theorem

• Goursat's Theorem (1889). Let  $X_0$  and  $X_1$  be groups and  $\Gamma \le X_0 \times X_1$  a subgroup.

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

The Grothendieck Group The Isomorphism Exercises

### Goursat's Theorem

- Goursat's Theorem (1889). Let  $X_0$  and  $X_1$  be groups and  $\Gamma \le X_0 \times X_1$  a subgroup.
- Let Y<sub>k</sub> ≤ X<sub>k</sub> (k = 0, 1) be the image of Γ under the natural projection onto X<sub>k</sub>.

・ロン ・回 と ・ ヨ と ・ ヨ と

The Grothendieck Group The Isomorphism Exercises

# Goursat's Theorem

- Goursat's Theorem (1889). Let  $X_0$  and  $X_1$  be groups and  $\Gamma \le X_0 \times X_1$  a subgroup.
- Let Y<sub>k</sub> ≤ X<sub>k</sub> (k = 0, 1) be the image of Γ under the natural projection onto X<sub>k</sub>.
- Then
  - 1.  $(Y_0 \cap \Gamma) \triangleleft Y_0$  and  $(Y_0 \cap \Gamma) \triangleleft Y_0$ ; and
  - 2. there is an isomorphism  $f_{\Gamma}: Y_0/(Y_0 \cap \Gamma) \cong Y_1/(Y_1 \cap \Gamma)$ .

The Grothendieck Group The Isomorphism Exercises

# Goursat's Theorem

- Goursat's Theorem (1889). Let  $X_0$  and  $X_1$  be groups and  $\Gamma \leq X_0 \times X_1$  a subgroup.
- Let Y<sub>k</sub> ≤ X<sub>k</sub> (k = 0, 1) be the image of Γ under the natural projection onto X<sub>k</sub>.
- Then
  - 1.  $(Y_0 \cap \Gamma) \triangleleft Y_0$  and  $(Y_0 \cap \Gamma) \triangleleft Y_0$ ; and
  - 2. there is an isomorphism  $f_{\Gamma}: Y_0/(Y_0 \cap \Gamma) \cong Y_1/(Y_1 \cap \Gamma)$ .
- The graph of the isomorphism is the image of Γ in the quotient of the inclusion

```
[(Y_0 \cap \Gamma) \times (Y_1 \cap \Gamma)] \leq \Gamma \leq (Y_0 \times Y_1).
```

The Grothendieck Group The Isomorphism Exercises

### The Goursat Group

- The Goursat group G(R) is the free group on the elements of ∪<sub>n≥1</sub> L<sub>n</sub>(R), modulo the relations:
  - 1. for every three matrices  $A_1$ ,  $A_2$  and B with the same number of rows,

$$[A_2|A_1, B] - [A_2|B] = [A_1|A_2, B] - [A_1|B];$$

2. for  $[A|B] \in L_m$  and  $[A'|B'] \in L_n$ ,

$$\left[ egin{array}{c|c} A & 0 & A' & 0 \ 0 & B & 0 & B' \end{array} 
ight] = [A|B] + [A'|B'];$$
 and

3. for every  $n \ge 1$ ,  $0_n = 0$ .

The Grothendieck Group The Isomorphism Exercises

# The 0-Dimensional Goursat Group

- ▶ The 0-dimensional Goursat group  $G_0(R)$  is the free group on the elements of  $L_1(R)$ , modulo the relations:
  - 1.  $0_1 = 0$ ; and
  - 2. if  $A_1$  and  $A_2$  are column matrices, and all three matrices  $A_1$ ,  $A_2$ , and B have the same number of rows, then

$$[A_2|A_1, B] - [A_2|B] = [A_1|A_2, B] - [A_1|B]$$

The Grothendieck Group The Isomorphism Exercises

# The 0-Dimensional Goursat Group

- ► The 0-dimensional Goursat group  $G_0(R)$  is the free group on the elements of  $L_1(R)$ , modulo the relations:
  - 1.  $0_1 = 0$ ; and
  - 2. if  $A_1$  and  $A_2$  are column matrices, and all three matrices  $A_1$ ,  $A_2$ , and B have the same number of rows, then

$$[A_2|A_1, B] - [A_2|B] = [A_1|A_2, B] - [A_1|B].$$

▶ There is an obvious morphism  $\iota : G_0(R) \to G(R)$  induced by  $[A | B] \mapsto [A | B].$ 

The Grothendieck Group The Isomorphism Exercises

#### Finitely Presented Modules

► A left *R*-module <sub>R</sub>M is **finitely presented** if there is an exact sequence, called a **free presentation**, of the form

$$_{R}R^{m} \xrightarrow{f} _{R}R^{n} \longrightarrow M \longrightarrow 0.$$

イロト イヨト イヨト イヨト

The Grothendieck Group The Isomorphism Exercises

### Finitely Presented Modules

► A left *R*-module <sub>R</sub>M is **finitely presented** if there is an exact sequence, called a **free presentation**, of the form

$$_{R}R^{m} \xrightarrow{f} _{R}R^{n} \xrightarrow{} M \xrightarrow{} 0.$$

▶ The morphism  $f : \mathbb{R}^m \to \mathbb{R}^n$  is given by multiplication on the right by an  $m \times n$  matrix A,

$$f = - \times A.$$

We say that M is **presented** by the matrix A, and write  $M = M_A$ .

The Grothendieck Group The Isomorphism Exercises

## Finitely Presented Modules

► A left *R*-module <sub>*R*</sub>*M* is **finitely presented** if there is an exact sequence, called a **free presentation**, of the form

$$_{R}R^{m} \xrightarrow{f} _{R}R^{n} \xrightarrow{} M \xrightarrow{} 0.$$

• The morphism  $f : \mathbb{R}^m \to \mathbb{R}^n$  is given by multiplication on the right by an  $m \times n$  matrix A,

$$f = - \times A.$$

We say that M is **presented** by the matrix A, and write  $M = M_A$ .

► Two matrices A and B are equivalent, denoted A ~ B, if they present isomorphic modules, M<sub>A</sub> ≅ M<sub>B</sub>. The equivalence class of a matrix A is denoted by {A}.

The Grothendieck Group The Isomorphism Exercises

#### The Grothendieck Group

► Let *R*-mod denote the **category** of finitely presented modules.

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

The Grothendieck Group The Isomorphism Exercises

# The Grothendieck Group

- Let *R*-mod denote the **category** of finitely presented modules.
- Let K<sub>0</sub>(R-mod, ⊕) be the free group on the symbols {M}, M ∈ R-mod, modulo the relations

$$[M\oplus N]=[M]+[N].$$

It may also be defined as the free group on the equivalence classes  $\{A\}$  of matrices, modulo the relations

$$\left\{ \left( \begin{array}{cc} A & 0 \\ 0 & B \end{array} \right) \right\} = \{A\} + \{B\}.$$

The Grothendieck Group The Isomorphism Exercises

# The Grothendieck Group

- Let *R*-mod denote the **category** of finitely presented modules.
- Let K<sub>0</sub>(R-mod, ⊕) be the free group on the symbols {M}, M ∈ R-mod, modulo the relations

$$[M \oplus N] = [M] + [N].$$

It may also be defined as the free group on the equivalence classes  $\{A\}$  of matrices, modulo the relations

$$\left\{ \left( \begin{array}{cc} A & 0 \\ 0 & B \end{array} \right) \right\} = \{A\} + \{B\}.$$

► Adelman: Let Ab(R) be the free abelian category over R. The subcategory of projective objects of Ab(R) is equivalent to R-mod. Thus K<sub>0</sub>(R-mod, ⊕) is isomorphic to the Grothendieck group K<sub>0</sub>(Ab(R)).

The Grothendieck Group The Isomorphism Exercises

# Some Homomorphisms

• The Isomorphism Theorem. (IH) There exist morphisms



so that the composition obtained by going around, starting at any vertex, yields the identity morphism.

The Grothendieck Group The Isomorphism Exercises

## Some Homomorphisms

• The Isomorphism Theorem. (IH) There exist morphisms



so that the composition obtained by going around, starting at any vertex, yields the identity morphism.

▶ The morphism  $\gamma : G(R) \to K_0(R \text{-mod}, \oplus)$  is induced by the function  $[A \mid B] \mapsto \{(A, B)\} - \{B\}$ .

The Grothendieck Group The Isomorphism Exercises

# Some Homomorphisms

• The Isomorphism Theorem. (IH) There exist morphisms



so that the composition obtained by going around, starting at any vertex, yields the identity morphism.

- ▶ The morphism  $\gamma : G(R) \to K_0(R \text{-mod}, \oplus)$  is induced by the function  $[A \mid B] \mapsto \{(A, B)\} \{B\}.$
- ▶ The morphism  $\kappa : K_0(R \text{-mod}, \oplus) \to G_0(R)$  is induced by the function  $\{A\} \mapsto \sum_{j=1}^n [A_j \mid A_{j+1}, \ldots, A_n]$ , where  $A_j$  is the *j*-th column of *A*.

The Grothendieck Group The Isomorphism Exercises

### Equivalent Matrices

- ▶ **Theorem.** Two matrices with entries in the ring *R* are equivalent iff one can be obtained from the other by a sequence of operations of the following form:
  - 1. permutation of rows or columns;
  - 2. replacement of a matrix C by  $\begin{pmatrix} C & 0 \\ 0 & 1 \end{pmatrix}$ , or the reverse;
  - 3. addition or deletion of an extra row of zeros;
  - 4. addition of a left (resp., right) scalar multiple of a row (resp., column) to another row (resp., column).

・ロン ・回 と ・ ヨ と ・ ヨ と

The Grothendieck Group The Isomorphism Exercises

### Equivalent Matrices

- ▶ **Theorem.** Two matrices with entries in the ring *R* are equivalent iff one can be obtained from the other by a sequence of operations of the following form:
  - 1. permutation of rows or columns;
  - 2. replacement of a matrix C by  $\begin{pmatrix} C & 0 \\ 0 & 1 \end{pmatrix}$ , or the reverse;
  - 3. addition or deletion of an extra row of zeros;
  - 4. addition of a left (resp., right) scalar multiple of a row (resp., column) to another row (resp., column).
- Reference: Theorem 6.1 in Lickorish, W.B.R., An Introduction to Knot Theory GTM 175.

・ロン ・回 と ・ ヨ と ・ ヨ と

The Grothendieck Group The Isomorphism Exercises

# The Morphism $\gamma: G(R) \rightarrow K_0(R\operatorname{-mod}, \oplus)$

▶ Lemma. If  $(A | B) \leq (A' | B')$ , then

$$\left(\begin{array}{ccc}A & B & 0\\ 0 & 0 & B'\end{array}\right) \sim \left(\begin{array}{ccc}A & B & 0\\ A' & 0 & B'\end{array}\right).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

The Grothendieck Group The Isomorphism Exercises

# The Morphism $\gamma: G(R) \rightarrow K_0(R\operatorname{-mod}, \oplus)$

• Lemma. If  $(A \mid B) \leq (A' \mid B')$ , then

$$\left(\begin{array}{ccc}A & B & 0\\ 0 & 0 & B'\end{array}\right) \sim \left(\begin{array}{ccc}A & B & 0\\ A' & 0 & B'\end{array}\right).$$

▶ **Proof.** We are given U, V and G such that UB = B'V and UA = A' + B'G. Thus

$$\begin{pmatrix} A & B & 0 \\ 0 & 0 & B' \end{pmatrix} \sim \begin{pmatrix} A & B & 0 \\ UA & UB & B' \end{pmatrix} = \begin{pmatrix} A & B & 0 \\ UA & B'V & B' \end{pmatrix}$$
$$\sim \begin{pmatrix} A & B & 0 \\ UA & 0 & B' \end{pmatrix} = \begin{pmatrix} A & B & 0 \\ A' + B'G & 0 & B' \end{pmatrix}$$
$$\sim \begin{pmatrix} A & B & 0 \\ A' & 0 & B' \end{pmatrix}.$$

イロト イヨト イヨト イヨト

-2

The Grothendieck Group The Isomorphism Exercises

# $\gamma$ Is Well-Defined

► If 
$$[A \mid B] = [A' \mid B']$$
, then  

$$\begin{pmatrix} A & B & 0 \\ 0 & 0 & B' \end{pmatrix} \sim \begin{pmatrix} A & B & 0 \\ A' & 0 & B' \end{pmatrix}$$

$$\sim \begin{pmatrix} A' & B' & 0 \\ A & 0 & B \end{pmatrix}$$

$$\sim \begin{pmatrix} A' & B' & 0 \\ 0 & 0 & B \end{pmatrix}$$

・ロト ・回ト ・ヨト ・ヨト

The Grothendieck Group The Isomorphism Exercises

## $\gamma$ Is Well-Defined

If [A

$$|B] = [A' | B'], \text{ then}$$

$$\begin{pmatrix} A & B & 0 \\ 0 & 0 & B' \end{pmatrix} \sim \begin{pmatrix} A & B & 0 \\ A' & 0 & B' \end{pmatrix}$$

$$\sim \begin{pmatrix} A' & B' & 0 \\ A & 0 & B \end{pmatrix}$$

$$\sim \begin{pmatrix} A' & B' & 0 \\ 0 & 0 & B \end{pmatrix}$$

▶ So in  $K_0(R\text{-mod}, \oplus)$ , we have that

$$\{(A,B)\} + \{B'\} = \{(A',B')\} + \{B\}$$

and hence that  $\{(A, B)\} - \{B\} = \{(A', B')\} - \{B'\}.$ 

The Grothendieck Group The Isomorphism Exercises

#### Exercises

The material presented here on *n*-ary matrix pairs has been entierly self-contained, except for the theorem cited from Lickorish's textbook and the following three exercises:

イロト イヨト イヨト イヨト
The Model Theory of Modules A Formal Calculus The Goursat Group The Grothendieck Group The Isomorphism Exercises

## Exercises

- The material presented here on *n*-ary matrix pairs has been entierly self-contained, except for the theorem cited from Lickorish's textbook and the following three exercises:
- ▶ 1. Verify, using the definition of an *n*-ary matrix pair, that

$$[A \mid B] \land [A' \mid B'] = \left[ \begin{array}{c|c} A \mid B & 0 \\ A' \mid 0 & B' \end{array} \right]$$

イロト イヨト イヨト イヨト

The Model Theory of Modules A Formal Calculus The Goursat Group The Grothendieck Group The Isomorphism Exercises

## Exercises

- The material presented here on *n*-ary matrix pairs has been entierly self-contained, except for the theorem cited from Lickorish's textbook and the following three exercises:
- ▶ 1. Verify, using the definition of an *n*-ary matrix pair, that

$$[A \mid B] \land [A' \mid B'] = \left[ \begin{array}{c|c} A & B & 0 \\ A' & 0 & B' \end{array} \right]$$

► 2. Show that the morphism \(\kappa\) : K<sub>0</sub>(R-mod, \(\oplu\)) → G<sub>0</sub>(R) is well-defined.

イロト イヨト イヨト イヨト

The Model Theory of Modules A Formal Calculus The Goursat Group The Grothendieck Group The Isomorphism Exercises

## Exercises

- The material presented here on *n*-ary matrix pairs has been entierly self-contained, except for the theorem cited from Lickorish's textbook and the following three exercises:
- ▶ 1. Verify, using the definition of an *n*-ary matrix pair, that

$$[A \mid B] \land [A' \mid B'] = \left[ \begin{array}{cc|c} A & B & 0 \\ A' & 0 & B' \end{array} \right]$$

- ► 2. Show that the morphism \(\kappa\) : K<sub>0</sub>(R-mod, \(\oplu\)) → G<sub>0</sub>(R) is well-defined.
- 3. Verify that the composition obtained by going around the triangle in The Isomorphism Theorem is the identity.

イロト イヨト イヨト イヨト