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What is motivic integration? (An etymological answer)

The theory of motives was introduced by Grothendieck as a way to
explain cohomological arguments in algebraic geometry (and
especially such theorems as independence of the results from the
specific cohomology theory used) geometrically.

Integration, at first at least, really meant integration in the
Lebesgue sense. Motivic integration interpolates p-adic integration.
In the more recent developments, the integrals have a more formal
character along the lines of the integrals in de Rham cohomology
rather than those defined measure theoretically.

Thomas Scanlon University of California, Berkeley
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What is motivic integration? (Historical answer)

Motivic integration as introduced by Kontsevich in 1995 is a
theory which makes sense of some integrals over the
C[[t]]-valued points of algebraic varieties taking values in a
ring of motives constructed from the category of algebraic
varieties.
Motivic integration as initially developed by Denef and Loeser
(and then others) grounds Kontsevich’s theory in the model
theory of Z-valued henselian fields allowing for rigorous
transfers between different p-adic integration theories and
even different characteristics.
Motivic integration over algebraically closed valued fields in
the sense of Hrushovski and Kazhdan is a theory in which the
measures are defined on sets defined in algebraically closed
valued fields and the values lie in (semi-)rings built from an
amalgam of algebraic varieties and polytopes.

Thomas Scanlon University of California, Berkeley
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Why am I talking about motivic integration?

Given that my own connection to this subject is tangential and we
have five more lectures scheduled on this subject to be delivered by
the principal practitioners of motivic integration, why am I talking
now?

Most of us here are aware that motivic integration is a deep subject
and owes much of its efficacy to model theory, but even after nearly
a decade and a half of conference presentations and seminars its
aims and inner workings have not been internalized by model
theorists. My goal in these lectures is to explain from the vantage
of a model theorist who does not work actively on the subject

what the main goals of motivic integration are,

how the model theoretic integration theory hews closer to the
geometric intuition, and

how some of the technical constructions work.
Thomas Scanlon University of California, Berkeley
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Other introductions and surveys

The literature on motivic integration is vast and there are several
good introductory articles. You may want to read some of the
articles listed below while following the lecture series on motivic
integration.

Denef and Loeser, Motivic integration and the Grothendieck
group of pseudo-finite fields, (ICM 2002). (on Denef’s
webpage)

Gordon and Yaffe, An overview of arithmetic motivic
integration. arXiv:0811.2160

Hales, What is motivic measure? arXiv:math.AG/0312229

Yin, Grothendieck homomorphisms in algebraically closed
valued fields, arXiv:0809.0473v1

Blickle’s bibliography [through 2004]:
http://www.mabli.org/old/jet-bibliography.html

Thomas Scanlon University of California, Berkeley
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Prehistory: equality of Betti numbers for birational
Calabi-Yau manifolds

Theorem (Batyrev)

If X and Y are birational smooth projective algebraic varieties over
C possessing nonvanishing volume forms, then
H i (X ,C) ∼= H i (Y ,C) for every i ≥ 0.

Choosing integral models, for p � 0, the volume forms give
canonical p-adic measures.∫

X (R) dµω = #X (Fq)/qn where R is an unramified extension
of Zp, Fq is the residue field, dµω is the canonical measure
and n = dim X .
Birationality implies that on a set of codimension at least two,
the measures on X and Y agree.
It follows that X and Y have the same ζ-functions at p, and,
hence, the same Betti numbers.

Thomas Scanlon University of California, Berkeley
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Kontsevich’s generalization

The hypothesis and conclusion of Batyrev’s theorem concern
complex algebraic varieties and the Euclidean topology, but the
proof passes through p-adic integration and uses a comparison
between `-adic étale cohomology and Betti cohomology.

Kontsevich introduced to motivic integration in order to carry out
a similar calculation geometrically without any special appeal to
p-adic methods.

I will delay a description of Kontsevich’s construction until after I
have recalled another theorem predating the formal development of
motivic integration, but one which brings model theory into the
picture.

Thomas Scanlon University of California, Berkeley
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Prehistory: rationality of Poincaré series

Let f (x1, . . . , xm) ∈ Zp[x1, . . . , xm] be a polynomial in many
variables over the p-adic integers. Define

Nn := #{a ∈ (Zp/pnZp)m : f (a) = 0}

Theorem (Igusa)

The Poincaré series

Pf ,p(T ) :=
∞∑

n=0

Nn(p−mT )n ∈ Q[[T ]]

is a rational function of T .

Thomas Scanlon University of California, Berkeley
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Prehistory: Poincaré series as p-adic integral

Define

If ,p(s) :=

∫
Zp

m
|f (x)|spdx

Proposition

Pf ,p(p−m−s) =
1− p−s If ,p(s)

1− p−s

Consequently, to prove rationality of Pf ,p(T ), it suffices to prove
rationality of If ,p(s) as a function of p−s .

Thomas Scanlon University of California, Berkeley
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Prehistory: rationality of Igusa integrals via cell
decomposition

Igusa proved the rationality of If (s) via resolution of
singularities.

Denef’s proof uses701 Tf 3.03 -1.777 T.03.93 0 Td [ps
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Prehistory: uniformity in p

Theorem

Let f (x1, . . . , xm) ∈ Z[x1, . . . , xm] be a polynomial over the ring of
integers. There is a polynomial Q(X ,T ) ∈ Z[X ,T ] and a natural
number d so that for all sufficiently large primes p,
Pf ,p(T ) = Hp(T )/Q(p,T ) where Hp is a polynomial of degree d.

This uniformity result was proven using quantifier elimination by
Macintyre and Pas independently.

Thomas Scanlon University of California, Berkeley
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K0(C )

Let C be a small category. For X an object of C , let [X ] be the
isomorphism class of X .
The Grothendieck group of C , K0(C ) is the free abelian group on
the isomorphism classes of objects of C modulo the subgroup
generated by [X ] + [Y ]− [X

∐
Y ] as X and Y range through the

objects of C .
If C has coproducts, products, a terminal object and × distributes
over

∐
in the sense that A× (B

∐
C ) ∼= (A× B)

∐
(A× C ) holds

universally, then K0(C ) is a ring with the multiplication determined
by [X ] · [Y ] := [X × Y ].

Thomas Scanlon University of California, Berkeley
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Poor man’s motives

Let k be a field and Vark the category of algebraic varieties over k .

The ring of “poor man’s motives” over k is the Grothendieck ring
K0(Vark ).

To be honest, we need to use constructible morphisms: a morphism
f : X → Y is given by writing X =

⋃̇
Xi as a finite disjoint union

of varieties (not necessarily closed in X ) for which the restriction of
f to Xi is a regular map of algebraic varieties.

Set L := [A1
k ] ∈ K0(Vark ) and define a filtration on K0(Vark )[L−1]

by letting F j K0(Vark )[L−1] be the subgroup generated by elements
of the form [V ]L−m with dim(V ) + m ≤ j .

Kontsevich’s value ring is M̂k , the completion of K0(Vark )[L−1]
with respect to this filtration.

Thomas Scanlon University of California, Berkeley
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Arc spaces

Let X be an algebraic variety over an algebraically closed field k.

For each natural number n, there is an algebraic variety AnX , the
nth arc space of X , for which AnX (k) = X (k[t]/tn), canonically.
Taking projective limits, we may identify X (k[[t]]) with
A∞X (k) := lim←−AnX (k).

There are natural projections πn,m : AnX → AmX .

For X smooth, we may cover X by open affines U for which
An+1U ∼= U × Adn where d = dim X .

Thomas Scanlon University of California, Berkeley
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Motivic measure

If X is an algebraic variety of dimension d over k , then there is a
countably additive measure µX defined on the σ-algebra generated
by the semialgebraic subsets of X (k[[t]]) and taking values in M̂k

determined by the condition that if Y ⊆ An+1X is a closed
subvariety, then µX (π−1

∞,n+1Y ) = [Y ]L−nd .

Thomas Scanlon University of California, Berkeley
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Motivic integrals

Via the usual measure theoretic definition of integration, we can
now make sense of motivic integrals.

For f a regular function on X , the integral∫
X (k[[t]])

L− ordt (f )dµ

plays the central role in Kontsevich’s proof and can be regarded as
the evaluation at s = 1 of a motivic Igusa integral.

Thomas Scanlon University of California, Berkeley
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Comparing Grothendieck rings

The ring M̂k may be understood through its realizations.

Given a homomorphism ψ : M̂k → R to another ring, we may
apply ψ to the result of an integral and thereby obtain an R-valued
integral.

If k is a finite field, then there is a natural map
K0(Vark [L−1])→ Q given by [X ]→ #X (k).

Via an ultraproduct construction, the finite field counting
functions induce nonstandard counting functions
K0(VarC)→ ∗Z.

By assigning to a smooth projective variety its Hodge
polynomial: [X ] 7→

∑
i ,j dim H i (X ,Ωj

X )ui v j , one obtains a

homomorphism M̂C → Z[u, v ].

Thomas Scanlon University of California, Berkeley
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Dwork’s rationality theorem

For X an algebraic variety over a finite field k = Fq, the zeta
function of X is

Z (X , q, t) := exp(
∞∑

n=1

#X (Fqn )

n
tn) ∈ Q[[t]]

Theorem (Dwork)

Z (X , q, t) ∈ Q(t)

Dwork’s proof uses p-adic functional analysis.

Thomas Scanlon University of California, Berkeley
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Motivic ζ-function

If X is an algebraic variety over a field k , then

Zmot(X , t) :=
∞∑

n=0

[Symn(X )]tn ∈ K0(Vark )[[t]]

When k = Fq is a finite field, there is a counting of points
homomorphism χq : K0(Vark )→ Z which extends to the formal
power series and χq(Zmot(X , t)) = Z (X , q, t)

When X is defined over Z, we know that for each power of a prime
q that Z (X , q, t) is a rational function. Is this explained
motivically?

Thomas Scanlon University of California, Berkeley
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What does “rational function” mean?

Theorem (Poonen)

If char(k) = 0, then K0(Vark ) is not a domain.

Consequently, it is ambiguous as to what one means by “rational
function” over K0(Vark ). There are some reasonable definitions.

A formal power series f ∈ R[[t]] over the commmutative ring R is
rational if

for every homomorphism ψ : R → K from R to a field,
ψ(f ) ∈ K (t).

there are polynomials P(t) and Q(t) in R[t] so that f is the
unique solution to Q(t)X = P(t).

the coefficients of f satisfy a nontrivial linear difference
equation.

These definitions are not equivalent.
Thomas Scanlon University of California, Berkeley
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Counter-examples

Theorem (Larsen-Lunt)

With respect to any of the above definitions of rational, there are
algebraic varieties over C whose motivic zeta functions are not
rational.

This theorem does not rule out the possibility of a motivic
explanation (and, hence, uniformization) of Dwork’s theorem. The
proof of irrationality does not work in rings in which L is invertible.

Thomas Scanlon University of California, Berkeley
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Where does model theory enter?

At first, mainly through quantifier elimination/cell
deomposition theorems used to evaluate integrals.

Ax-Kochen-Ershov theorems yield uniformities across
characteristics.

Grothendieck (semi-)groups/rings of theories (and associated
structures) give a good language for studying comparisons.

With the Cluckers-Loeser relative theory and the
Hrushovski-Kazhdan ACVF theory, definability replaces
measure theory thereby making even the integration theory
more “motivic.”

Thomas Scanlon University of California, Berkeley
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K0(T )

Given a (not necessarily complete) theory T in the language L ,
K0(T ) is the Grothendieck ring of the category of definable sets
relative to T .

That is, we treat each formula ϕ(x1, . . . , xn) ∈ L as an object and
set

Mor(φ, ψ) := {[θ(x ; y)]∼ : T ` (∀x)(∀y)[θ(x ; y)→ φ(x)&ψ(y)]

&(∀x)[φ(x)→ (∃!y)θ(x , y)}

where θ ∼ ϑ just in case T ` θ ↔ ϑ.

Remark

For K0(T ) might not have a multiplicative identity if there is no
definable singleton.

Thomas Scanlon University of California, Berkeley
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Comparison to geometric Grothendieck rings

K0(ACF0) = K0(VarQ)

More generally, if K is an algebraically closed field of
characteristic zero and k is a subfield, then
K0(Th(K ,+,×, {a}a∈k )) = K0(Vark ).

There is a natural surjective map K0(VarFp )→ K0(ACFp)
with a nontrivial kernel (as observed by Ambrus Pal).

K0(Th(Z,+, 0, 1, <)) = 0 since
1 = [{0}] = [x ≥ 0]− [x > 0] = [x ≥ 0]− [x ≥ 1] = 0 as
x 7→ x + 1 is a definable bijection between {x : x ≥ 0} and
{x : x ≥ 1}.
K0(Th(Qp,+,×, 0, 1)) = 0 (Cluckers-Haskell)

Thomas Scanlon University of California, Berkeley
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K0 as a functor

If T ⊆ T ′, then there is a natural map K0(T )→ K0(T ′).

If we expand the language, then there is a natural map
K L

0 (T )→ K L ′
0 (T ), where we have added a superscript to indicate

the language under consideration. This construction is often used
when L ′ is an expansion of L by constants and T ′ is T together
with an atomic diagram in these new constants.

Thomas Scanlon University of California, Berkeley
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Languages for valued fields

We shall consider two basic languages for valued fields.

(A variant of) the language of Denef-Pas, a three-sorted
language, with sorts for the valued field, the residue field and
the value group and for which we are given an angular
component function ac : K× → k× where K is the valued
field, k is the residue field, and ac is a homomorphism
extending the reduction map on the units.

The language of additive-multiplicative congruences, a
two-sorted language with a sort for the valued field and a
second sort RV to be interpreted as K×/(1 + m).

Thomas Scanlon University of California, Berkeley
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Denef-Pas language in detail

For a valued field (K , v) we interpret the Denef-Pas language as
follows.

The sort VF, the valued field, is interpreted as K in the
language of rings.

The sort k, the residue field, is interpreted as the residue field
in the language of rings.

The sort Γ, the value group, is interpreted as the value group
in the language of ordered abelian groups,

There are functions π : VF→ k ∪ {∞} and v : VF→ Γ for the
residue and valuation maps.
There is also a function symbol ac : VF→ k for an angular
component map. Note that the angular component usually requires
an additional choice of structure.

Thomas Scanlon University of California, Berkeley
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More on the Denef-Pas language

To achieve quantifier elimination in the Denef-Pas language, even
for the theories of such structures as C((t)), it is necessary to first
force quantifier elimination in the residue field and value group
sorts.

Theorem

If (K , v , ac) is a henselian valued field with an angular component
function of residue characteristic zero, then Th(K , v , ac) eliminates
quantifiers relative to k and Γ in the Denef-Pas language.

When we understand the definable sets in the residue field and the
value group, quantifier elimination takes a cleaner form. For
example, when the value group is elementarily equivalent to Z,
“relative to Γ” means that we should include divisibility predicates,
and when the residue field is algebraically closed there is nothing
more to do.

Thomas Scanlon University of California, Berkeley
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Motivic measure in terms of definable sets

Kontsevich’s motivic measures can be regarded as a functions
which takes definable subsets of C[[t]]n to (a completion of a
localization of) K0(ACFC).

Remark

Motivic measures do not give rise to homomorphisms
K0(Th(C [[t]]))→ K0(ACFC) as, for instance, the measures are not
invariant under all definable bijections and are not even defined on
unbounded definable sets.

Thomas Scanlon University of California, Berkeley
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Arithmetic motivic integration

Consider instead the case of X being an algebraic variety defined
over a pseudofinite field k of characteristic zero.

Exactly as with the geometric motivic integration, one can define a
measure µX on the definable subsets of X (k[[t]]) taking values in a
completion of the Grothendieck ring of the theory of pseudofinite
fields localized by L := [x = x ].

The quantifier elimination theorem of Fried-Sacerdote allows one
to describe the definable sets in pseudofinite fields in terms of
Galois stratifications. The Ax-Kochen-Ershov theorems now give a
precise sense in which the theories of p-adic integration converge
to motivic integration.

Thomas Scanlon University of California, Berkeley
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Motivic integration as maps of Grothendieck semi-rings

One of the major innovations of the paper Cluckers & Loeser,
Constructible motivic functions and motivic integration,
arXiv:math/0410203 is that motivic integrals are realized as
homomorphisms from a semigroup of integrable constructible
functions, axiomatically described, and via this construction the
target ring is presented algebraically without a completion step.

This is a long and deep paper containing many other ideas and I
think that the authors would rank their construction of a functorial
relative theory of motivic integration as their principal achievement
here.

Similar issues are addressed in Hrushovski & Kazhdan, Integration
in valued fields, arXiv:math/0510133 with similar though
essentially different methods. Let me focus on the Cluckers-Loeser
approach to integration as a homomorphism and focus on the role
of the value group in the Hrushovski-Kazhdan theory.

Thomas Scanlon University of California, Berkeley
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The ring A

Let A := Z[L,L−1, { 1
1−Ln : n ∈ Z+}]

If L is any field and q ∈ L× is not a root of unity, then there is a
ring homomorphism ϑq : A→ L given by L 7→ q.

Define

A+ := {a ∈ A : ϑq(a) ≥ 0 for every real number q > 1}

Thomas Scanlon University of California, Berkeley
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Constructible motivic functions

For S = (ϕ, (X ,X , r)) ∈ GDef, the ring P(S), of constructible
Pressburger functions on S , is the subring of the ring of functions
from ϕ to A generated by

constant functions,

the characteristic functions of definable subsets of ϕ,

definable functions α : ϕ→ Z, and

functions of the form x 7→ Lβ(x) where β : ϕ→ Z is definable.

P+(S) is the sub-semi-ring of P(S) consisting of those functions
all of whose values lie in A+.

Thomas Scanlon University of California, Berkeley
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Summability

We say that a sequence 〈ai 〉∞i=0 of elements of A is summable if for
each real number q > 1 the series

∑∞
n=0 |ϑq(ai )| converges.

Note that to say that the sequence is summable does not mean
that

∑∞
n=0 ai ∈ A.

Thomas Scanlon University of California, Berkeley
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Integration over Zr

For S a definable subassignment we say that ϕ ∈P(S × Zr ) is
S-integrable if for every point s ∈ S the sequence 〈ϕ(s; i) : i ∈ Zr 〉
is summable and write ISP(S × Zr ) for the set of S-integrable
functions.

Theorem

There is a unique homomorphism µS : ISP(S × Zr )→P(S) so
that for every q > 1, s ∈ S, and ϕ ∈ ISP(S × Zr )

ϑq(µ(ϕ)(s)) =
∑
i∈Zr

ϑq(ϕ(s, i))

Key observation: via quantifier elimination, reduce to
computing (derivatives) of geometric series.
Thus, when computing sums over definable sets in the value
group, it is not necessary to perform a completion step.

Thomas Scanlon University of California, Berkeley
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Constructible motivic functions

For S a definable subassignment, RDefS is the category of
definable subassignments of S × kn (n ∈ N).

We define the semi-ring of positive constructible motivic functions
on S to be

C+(S) := SK0(RDefS )⊗N[L−1] A+

where by “SK0” we mean the Grothendieck semi-ring.

Thomas Scanlon University of California, Berkeley
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Integration of constructible motivic functions

One can define the notion of a volume forms on S which have the
shape

gL− ordt (f )|ω|

where g ∈ C+(S), f : S → VF is definable, and ω is an algebraic
volume form on the Zariski closure of S . As with Weil’s p-adic
measures, there are canonical volume forms on definable
subassignments.

Integration against this canonical volume form gives a
homomorphism of semi-rings C+(S)→ SK0(T )⊗N[L−1] A+.

Thomas Scanlon University of California, Berkeley
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Motivic integration over algebraically closed valued fields

In the Hrushovski-Kazhdan theory, motivic measures are defined on
definable sets in algebraically closed fields of residue characteristic
zero.

The theory of nontrivially valued algebraically closed fields has
quantifier elimination (say, in the three-sorted language of valued
fields without the angular component). It follows that many of the
results on motivic integration in ACVF may be specialized back to
the Cluckers-Loeser theory.

However, in the case of ACVF motivic integration, the integrals
take their values in Grothendieck (semi-)rings associated to
RV-structures, not merely of the residue field.

Thomas Scanlon University of California, Berkeley
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Additive-multiplicative congruences in detail

For (K , v), the language of additive-multiplicative congruences has
two sorts, VF to be interpreted as the valued field in the language
of rings as before and RV to be interpreted as K×/(1 + m) where
m := {x ∈ K : v(x) > 0} the maximal ideal of the ring of integers
in K and the sorts are connected via the natural quotient map
rv : VF→ RV.

There is more than one reasonable choice for the language on RV,
but we take

a binary function symbol for multiplication,

a 2-place relation V to be interpreted as
V (x , y)↔ v(x̃) ≤ v(ỹ) for any x̃ and ỹ with rv(x̃) = x and
rv(ỹ) = y , and

a 3-place relation A defined by
A(x , y , z)↔ (∃x̃)(∃ỹ)[rv(x̃) = x& rv(ỹ) = y& rv(x̃ + ỹ) = z ]

Thomas Scanlon University of California, Berkeley
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More on additive-multiplicative congruences

As with the Denef-Pas language, for Henselian fields of
residue characteristic zero, one has elimination of quantifiers
relative to RV.
In mixed characteristic, the same holds provided that one
includes higher RV-structures: RVn(K ) := K×/(1 + nm) for
all n ∈ Z+.
The advantage of RV over the Denef-Pas language is that the
passage from a one-sorted theory of a valued field to its
RV-structure is always a definable expansion, but the
Denef-Pas language requires a nontrivial choice of an angular
component and thereby changes the class of definable sets.
The problem is that

1 −−−−→ k× −−−−→ RV
v−−−−→ Γ −−−−→ 0 is a definably

nonsplit extension and the structure on RV might be
somewhat unfamiliar.

Thomas Scanlon University of California, Berkeley
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Lifting from RV to VF

Of course, if X ⊆ (VF×)m is a definable set, then rv(X ) ⊆ RVm is
definable in RV. In some sense, we can reverse this operation.

Let VF[n] be the category of definable sets X ⊆ VFm × RV` which
admit finite-to-one definable maps to VFn. The morphisms are
definable maps.

Let RV[n] be the category of pairs (X , f ) where X ⊆ RVm is
definable and f : X → RVn is definable and finite to one with
morphisms (X , f )→ (Y , g) being definable bijections.

For (X , f ) ∈ RV[n] define

L(X , f ) := {(x1, . . . , xn, y) ∈ VFn×X : (rv(x1), . . . , rv(xn)) = f (y)}

Thomas Scanlon University of California, Berkeley
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From RV to VF

Theorem

Writing SK0(RV) :=
⊕

SK0(RV[n]) and
SK0(VF) :=

⊕
SK0(VF[n]), the maps L : RV[n]→ VF[n] induce a

surjective map of semi-rings L : SK0(RV)→ SK0(VF)

Moreover, the kernel is generated by a single relation:

[1]1 = [1]0 + [(0,∞)]1

where

[1]0 = [({1}, 1 7→ ∗)] ∈ RV[0]

[1]1 = [({1}, 1 7→ 1)] ∈ RV[1], and

[(0,∞)]1 = [({x ∈ RV : v(x) > 0}, id)] ∈ RV[1]

Similar results are true for variants of these categories including
those with volume forms.
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What is SK0(RV)?

Theorem

Working over a model, SK0(RV) ∼= SK0(k)⊗ SK0(Γ).

Dropping the hypothesis of a model as a base,
SK0(RV) ∼= SK0(RES)×SK0(Γfinite ) SK0(Γ) where RES is the

subcategory of RV of sets internal to k and Γfinite is the
subcategory of finite definable sets.

SK0(k) may be understood in terms of algebraic varieties over
the residue field while SK0(Γ) encodes geometrical algebra, at
least over a model.
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What have I ignored?

Even for the works I have sketched, I have omitted most of the
material ranging from fundamental technical issues (such as, how
do we understand equality of the classes of definable sets over
different parameter sets?) to major theorems (such as the
construction of a relative theory of motivic integration). A couple
highlights follow.
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Motivic integration for more complicated functions

Exponential sums and the corresponding p-adic exponential
integrals do not fit into the standard version of motivic integration.
However, by expanding the target rings for the motivic integrals, it
is possible to make sense of motivic exponential integrals.
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Orbital integrals

One might study an algebraic group G acting (algebraically) on a
variety X for which the action is geometrically transitive but over,
say, Qp, breaks into several orbits. In representation theory, p-adic
integrals over such orbits are important. From the geometric point
of view, the orbits are not geometric objects, but they are definable
sets.

In a spectacular paper of Cluckers, Hales, and Loeser
(arXiv:0712.0708v1), it is shown that identities of orbital
integrals proven over Fp((t)) transfer to Qp for p � 0. In
particular, this holds for the so-called Fundamental Lemma of the
Langland’s Program.
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Where else does logic have to say about motivic
integration?

There are innumerable results about which I have been silent, in
part due to time constraints and in part due to my ignorance of
the subject. In the talks of the experts, we can expect far deeper
theorems and explanations. Allow me to mention two directions
which appear promising but little studied.

p-adic integration has been used to prove rationality results
about zeta functions for some finitely generated groups and
elimination of imaginaries in valued fields have already been
applied here.

Other geometric objects, such as finite dimensional difference
varieties, should be used to take the values of motivic
integrals. This would give model theoretic sense in which a
lifting of Frobenius is encoded in a motivic integral.
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