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Model Problem

We study the advection-diffusion equation

−ε∆u + b · ∇u = f in Ω ⊂ R
d (1a)

u = 0 on ∂Ω (1b)

in a polygonal domain Ω with ε ∈ R+, b ∈ W∞(div, Ω) and f ∈ L2(Ω)
where we define W∞(div, Ω) := {v ∈ [L∞(Ω)]d; (∇ · v) ∈ L∞(Ω)}. It
is a standard result that (1) has a unique solution in H1

0(Ω) provided that

−1
2∇ · b ≥ 0. The first term in (1a) represents diffusion, and the second

advection.

cG and dG Methods

The standard continuous Galerkin (cG) finite element method applied
to (1) is simple to implement but has poor performance as ε → 0 and
non-physical oscillations are apparent in the solution. Figure 1(a) shows the
cG solution to (1) with ε = 0.01, b = (−1, 0)⊤ and f = 1 using bilinear
elements on a 8 × 8 grid with the oscillations clearly apparent.
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(a) Unstable cG solution
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(b) dG solution

Figure 1: The cG and dG solutions

It is possible to introduce modifications to the basic cG method to
stabilize the problem and for a review of techniques readers should consult
e.g. [4].

An alternative, naturally stable family of methods for the solution of
(1) are the IP discontinuous Galerkin (dG) methods. For (1) the IP methods
are stable given certain conditions on the advection term and penalty terms
in the method [1]. The drawback of such methods is the marked increase in
degrees of freedom, thus augmenting considerably the computational cost.
Figure 1(b) shows the dG solution for (1). Unlike the cG solution in Figure
1(a), under and over shooting are limited to the region in close proxim-
ity to the true solution’s layers. Here we have used the nonsymmetric IP
method and the penalty parameter σ = 10. Note that although the nu-
merical method allows jumps the numerical solution is almost continuous
away from layers. The dG solution with linear elements shown here has 256
degrees of freedom compared to 81 for the cG method. The near continuity
on much of the mesh and the increase in degrees of freedom leads us to
propose a joint continuous discontinuous Galerkin (cdG) method. We also
look to more fully understand the role of the extra degrees of freedom in the
dG method. Our goal is to achieve stability while minimizing the degrees
of freedom.

cdG Methods

It is the exponential boundary layer that causes the cG solution to
have non-physical oscillations. We therefore propose to use the dG method
on a region of Ω that covers any boundary layers and the cG method away

from layers. The advantages of such a method are a significant reduction
in the degrees of freedom required compared with a pure dG method, yet
still maintaining stability. This method was first proposed in [2] and is an
extension of the method proposed in [3].

We call the region where the cG and dG methods are applied ΩD and
ΩC respectively, and likewise the triangulations on these regions TD and
TC . We decompose Ω by considering the region where the true solution
u is close to the solution of the hyperbolic reduced problem obtained by
imposing ε = 0. In this region Ω0 it is assumed that the difference uε∆
between the true solution and the reduced solution satisfies the bounds

∀ε ∈ (0, 1] : ‖uε∆‖L2(Ω0) < C0ε and |uε∆|H1(Ω0) < C0ε
1/2. (2)

See [4], Chapter III.1 for justification of these assumptions. Based on this
condition we construct our decomposition.
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Figure 2: The cdG Solution

We have proved that the cdG method is stable on the region ΩD using
and extending the method of [1]. In the ΩC region it is more difficult to
derive an a priori error estimate. We have so far been unable to find a rigor-
ous epsilon-independent estimate on this region, but have a partial epsilon-
independent result that localizes the difficulties to the interface between the
TC and TD elements. Numerical evidence suggests epsilon-independent
stability. Figure 2 shows the cdG solution to the advection-diffusion equa-
tion presented in the previous section, with ΩC being the region where
x ≥ 0.2. The behaviour of the cdG solution in both regions is close to
the behaviour of the dG solution. In addition the boundary conditions are
strongly enforced on the boundary in the ΩC region. The number of de-
grees of freedom in this example is 111, considerably fewer than for the dG
method.

Our numerical experiments lead us to believe the method will be sta-
ble in both regions. We hope to be able to improve our proof on the ΩC

region. Further work will also include details for practical implementation
of the method. For example with more complex (non-constant) advection
coefficients or domains it may not be straightforward a priori to perform the
decomposition, and so some algorithm will be required to implement the
method.
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