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ABSTRACT. In the present paper, we give necessary and sufficient
conditions for a birational Galois section of a projective smooth
curve over either the field of rational numbers or an imaginary qua-
dratic field to be geometric. As a consequence, we prove that, over
such a small number field, to prove the birational section conjec-
ture for projective smooth curves, it suffices to verify that, roughly
speaking, for any birational Galois section of the projective line,
the local points associated to the birational Galois section avoid
distinct three rational points, and, moreover, a certain Galois repre-
sentation determined by the birational Galois section is unramified
at all but finitely many primes.
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INTRODUCTION

Let k be a field of characteristic 0, k an algebraic closure of k, and
X a projective smooth geometrically connected curve over k. Write Gk

def
=

Gal(k/k) for the absolute Galois group of k determined by the fixed
algebraic closure k of k. Now we have a natural surjection

π1(X) ↠ Gk

from the étale fundamental group π1(X) of X to Gk induced by the
structure morphism of X . Then Grothendieck’s section conjecture
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may be stated as follows: If k is finitely generated over the field of ra-
tional numbers, and X is of genus ≥ 2, then any section of this surjec-
tion π1(X) ↠ Gk arises from a k-rational point of X , i.e., the image
of any section of this surjection coincides with, or, equivalently, is
contained in, a decomposition subgroup of π1(X) associated to a k-
rational point of X . In the present paper, we discuss the birational
version of this conjecture, i.e., the birational section conjecture. Denote
by k(X) the function field of X . Fix an algebraic closure k(X) of k(X)

containing k and write Gk(X)
def
= Gal(k(X)/k(X)). Then the natural

inclusions k ↪→ k(X), k ↪→ k(X) determine a surjection

Gk(X) ↠ Gk ,

which factors through the above surjection π1(X) ↠ Gk. We shall
refer to a section of this surjection Gk(X) ↠ Gk as a [pro-Primes] bira-
tional Galois section of X/k [cf. Definition 1.2]. In the present paper,
we discuss the geometricity of birational Galois sections.

Let x be a closed point of X and Dx ⊆ Gk(X) a decomposition sub-
group of Gk(X) associated to x. Then, as is well-known, the image
of the composite Dx ↪→ Gk(X) ↠ Gk coincides with the open sub-
group Gk(x) ⊆ Gk of Gk corresponding to the residue field k(x) of X
at x, and, moreover, the resulting surjection Dx ↠ Gk(x) admits a [not
necessarily unique] section. In particular, if, moreover, k(x) = x, i.e.,
x ∈ X(k), then the closed subgroup Dx ⊆ Gk(X) of Gk(X) contains the
image of a [not necessarily unique] birational Galois section of X/k.
We shall say that a birational Galois section of X/k is geometric if its
image is contained in a decomposition subgroup of Gk(X) associated
to a [necessarily k-rational] closed point of X [cf. Definition 1.3].

The birational section conjecture over local fields has been solved
affirmatively. In [8], Koenigsmann proved that if k is either a p-adic
local field for some prime number p [i.e., a finite extension of the p-
adic completion of the field of rational numbers] or the field of real
numbers, then any birational Galois section of X/k is geometric [cf.
[8] Proposition 2.4, (2)]. Moreover, in [12], Pop obtained, by a re-
fined discussion of Koenigsmann’s discussion, a result concerning
birational Galois sections over p-adic local fields [cf. [12], Theorem
A], which leads naturally to a proof of the geometrically pro-p version
of Koenigsmann’s result over p-adic local fields [cf. Proposition 1.7].
In [18], Wickelgren proved a strong version of the birational section
conjecture over the field of real numbers [cf. [18], Corollary 1.2].

In the remainder of Introduction, we discuss the geometricity of
birational Galois sections over number fields; suppose that k is a num-
ber field [i.e., a finite extension of the field of rational numbers].

First, let us recall that, in [1], Esnault and Wittenberg proved that
if the Shafarevich-Tate group of the Jacobian variety of X over k is
finite, then the existence of a birational Galois section of X/k implies
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the existence of a divisor of degree 1 on X ; more precisely, the existence
of a section of the natural surjection Gk(X)/[Gk·k(X), Gk·k(X)] ↠ Gk,

where we write Gk·k(X)
def
= Gal(k(X)/k·k(X)) and [Gk·k(X), Gk·k(X)] for

the closure of the commutator subgroup of Gk·k(X), is equivalent to
the existence of a divisor of degree 1 on X [cf. [1], Theorem 2.1]. Next,
let us recall that, in [4], Harari and Stix proved, as a consequence of
results obtained by Stoll in [16], that if there exist an abelian variety
A over k and a nonconstant morphism X → A over k such that both
the Mordell-Weil group and the Shafarevich-Tate group of A/k are
finite, then any birational Galois section of X/k is geometric [cf. [4],
Theorem 17]. This result of Harari and Stix gives us some examples
of X/k for which any birational Galois section is geometric [cf. [4],
Remark 18, (1)].

To state our main results, let us discuss local points associated to a bi-
rational Galois section. Write Pf

k for the set of nonarchimedean primes
of k. For each p ∈ Pf

k , fix an algebraic closure kp of the p-adic com-
pletion kp of k containing k and write Gp

def
= Gal(kp/kp) ⊆ Gk. Finally,

write Af
k ⊆

∏
p∈Pf

k
kp for the finite part of the adele ring of k, i.e.,

the subring of
∏

p∈Pf
k
kp consisting of elements (ap)p∈Pf

k
∈

∏
p∈Pf

k
kp

such that ap is contained in the ring of integers of kp for all but
finitely many p ∈ Pf

k . Then it follows from a result obtained in
[8], as well as [12], that, for each p ∈ Pf

k , a birational Galois sec-
tion s of X/k uniquely determines a kp-valued point xp of X such
that, for any open subscheme U ⊆ X of X , the image of the ho-
momorphism Gp → π1(U ⊗k kp) naturally determined by the iso-
morphism π1(U ⊗k kp)

∼→ π1(U) ×Gk
Gp and the composite Gp ↪→

Gk
s→ Gk(X) ↠ π1(U) is contained in a decomposition subgroup

of π1(U ⊗k kp) associated to xp [cf. Proposition 2.9]; we shall refer
to the kp-valued point xp as the kp-valued point of X associated to s
[cf. Definition 2.6]. In particular, [since X is projective over k] the
birational Galois section s uniquely determines an Af

k-valued point
xA

def
= (xp)p∈Pf

k
∈ X(Af

k) ⊆
∏

p∈Pf
k
X(kp) of X ; we shall refer to the

Af
k-valued point xA as the Af

k-valued point of X associated to s [cf. Def-
inition 2.6]. Note that if the birational Galois section s is geometric,
then there exists a [necessarily unique] k-rational point x ∈ X(k) of
X such that, for each p ∈ Pf

k , the kp-valued point of X determined
by x is the kp-valued point of X associated to s [cf. Remark 2.6.1].

The following result is the main result, which gives necessary and
sufficient conditions for a birational Galois section of a projective
smooth geometrically connected curve over a small number field, i.e.,
either the field of rational numbers or an imaginary quadratic field, to be
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geometric [cf. Theorem 4.5 in the case where C consists of all finite
groups].

Theorem A. Let k be either the field of rational numbers or an imag-
inary quadratic field, X a projective smooth geometrically con-
nected curve over k, and s a [pro-Primes] birational Galois section
of X/k [cf. Definition 1.2]. Then the following conditions are equivalent:

(1) s is geometric [cf. Definition 1.3].
(2) The following two conditions are satisfied:

(2-i) There exists a finite morphism ϕ : X → P1
k over k such that,

for each p ∈ Pf
k , the composite

Spec kp
xp−→ X

ϕ−→ P1
k

determines a kp-valued point of P1
k \ {0, 1,∞} ⊆ P1

k.
(2-ii) For each open subscheme U ⊆ X of X which is a hyperbolic

curve over k [cf. §0], there exists a prime number lU such that
the pro-lU Galois section of U/k [cf. Definition 1.2] naturally
determined by s is either cuspidal [cf. Definition 4.3, (i)] or
unramified almost everywhere [cf. Definition 4.3, (ii)].

(3) There exists a finite morphism ϕ : X → P1
k over k such that the

composite

SpecAf
k

xA−→ X
ϕ−→ P1

k

determines an Af
k-valued point of P1

k \ {0, 1,∞} ⊆ P1
k.

(4) There exist a finite subset T ⊆ Pf
k of Pf

k and a closed subscheme
Z ⊆ X of X which is finite over k such that, for each p ∈ Pf

k \ T ,
[the image of] the kp-valued point xp of X is contained in Z ⊆ X .

The outline of the proof of Theorem A is as follows: The implica-
tions (1) ⇒ (2) ⇒ (3) follow immediately from the various defini-
tions involved, together with some results that are proved in Appen-
dix and derived from the discussion given in [7]. Next, to verify the
implications (3)⇒ (4)⇒ (1), let us observe that since k is either the
field of rational numbers or an imaginary quadratic field, the following
assertion (†) holds [cf. Lemma 3.5]:

(†): for every [pro-Primes] birational Galois section
of P1

k/k, if the associated Af
k-valued point of P1

k de-
termines an Af

k-valued point of Gm,k
def
= P1

k \ {0,∞},
then the induced [pro-Primes] Galois section of Gm,k/k
arises from a k-rational point of Gm,k.

Then the implication (3) ⇒ (4) follows immediately from (†). Thus,
it remains to verify the implication (4) ⇒ (1). Since X is projective,
we have a closed immersion X ↪→ PN

k for some positive integer N .
Now by condition (4), we may assume without loss of generality
that, for every nonarchimedean prime p of k, the kp-valued point
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of PN
k determined by this closed immersion X ↪→ PN

k and the kp-
valued point of X associated to the given birational Galois section
s lies on the open subscheme Gm,k ×k · · · ×k Gm,k ⊆ AN

k ⊆ PN
k of

PN
k ; in particular, we have a kp-valued point of Gm,k ×k · · · ×k Gm,k.

Moreover, again by condition (4), together with the above assertion
(†), one verifies easily that, for each p, any one of the N factors of the
coordinate of the kp-valued point of Gm,k ×k · · · ×k Gm,k is k-rational.
In particular, it follows that X admits a k-rational point. Thus, by
applying this observation to the various open subgroups of Gk(X)

that contain the image of s, we conclude that s is geometric. This
completes the explanation of the outline of the proof of Theorem A.

Note that Theorem A is a result without any assumption on the finite-
ness of a Shafarevich-Tate group. Next, let us observe that the equiva-
lence (1) ⇔ (3) of Theorem A may be regarded as a tripod analogue
of the result due to Harari and Stix discussed above, i.e., [4], Theo-
rem 17. The condition that k is either the field of rational numbers
or an imaginary quadratic field [i.e., the assumption that the group
of units of the ring of integers of k is finite] in the statement of The-
orem A may be regarded as an analogue of the finiteness condition
on the Mordell-Weil group in the statement of [4], Theorem 17; on
the other hand, since any abelian variety is proper, in the case of [4],
Theorem 17, the condition corresponding to our condition that the
birational Galois section determines [not only a

(∏
p∈Pf

k
kp

)
-valued

point but also] an Af
k-valued point of the tripod P1

k \{0, 1,∞} in The-
orem A is automatically satisfied.

Let us also observe that our main result leads naturally to some
examples — which, however, were already essentially obtained by
Stoll — of projective smooth curves for which any prosolvable bira-
tional Galois section is geometric [cf. Remarks 4.2.1; 4.5.1, (iv)].

As a corollary of Theorem A, we prove the following result [cf.
Corollary 4.6].

Theorem B. Let k be either the field of rational numbers or an imagi-
nary quadratic field. Then the following assertions are equivalent:

(1) Any [pro-Primes] birational Galois section [cf. Definition 1.2] of
any projective smooth geometrically connected curve over k is geo-
metric [cf. Definition 1.3].

(2) Any [pro-Primes] birational Galois section of P1
k/k is geometric.

(3) Any [pro-Primes] birational Galois section s of P1
k/k satisfies the

following two conditions:
(3-i) There exist three distinct elements a, b, c ∈ P1

k(k) of P1
k(k)

such that, for any nonarchimedean prime p of k, the kp-valued
point of P1

k associated to s is ̸∈ {a, b, c} ⊆ (P1
k(k) ⊆) P1

k(kp).
(3-ii) There exists a prime number l such that the pro-l Galois section

of P1
k \ {0, 1,∞} [cf. Definition 1.2] naturally determined by
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s is either cuspidal [cf. Definition 4.3, (i)] or unramified
almost everywhere [cf. Definition 4.3, (ii)].

(4) Any [pro-Primes] birational Galois section s of P1
k/k satisfies the

following two conditions:
(4-i) There exist three distinct elements a, b, c ∈ P1

k(k) of P1
k(k)

such that, for any nonarchimedean prime p of k, the kp-valued
point of P1

k associated to s is ̸∈ {a, b, c} ⊆ (P1
k(k) ⊆) P1

k(kp).
(4-ii) Write sP for the pro-Primes Galois section of P1

k\{0, 1,∞} [cf.
Definition 1.2] naturally determined by s. Then it holds either
that sP is cuspidal [cf. Definition 4.3, (i)], or that there exists
a prime number l such that the l-adic Galois representation

Gk
sP−→ π1(P1

k \ {0, 1,∞}) −→ GL2(Zl)

— where the second arrow π1(P1
k \ {0, 1,∞}) → GL2(Zl) is

the l-adic representation of π1(P1
k \ {0, 1,∞}) determined by

the Legendre family of elliptic curves over P1
k \ {0, 1,∞},

i.e., the elliptic curve over P1
k \ {0, 1,∞} = Spec k[u±1, (1 −

u)−1] determined by the equation “y2 = x(x − 1)(x − u)” —
is unramified at all but finitely many primes of k.

As a consequence [cf. the equivalences (1) ⇔ (3) and (1) ⇔ (4) of
Theorem B], for a number field k which is either the field of rational
numbers or an imaginary quadratic field, to prove the birational section
conjecture over k [i.e., assertion (1) of Theorem B], it suffices to verify
that, roughly speaking, for any birational Galois section of the pro-
jective line over k, the local points associated to the birational Galois
section avoid distinct three rational points [cf. conditions (3-i), (4-i)],
and, moreover, a certain Galois representation determined by the bi-
rational Galois section is unramified at all but finitely many primes [cf.
conditions (3-ii), (4-ii)]. However, it is not clear to the author at the
time of writing whether or not these are always satisfied.

Finally, the author should mention that the referee pointed out
that, after the present paper, Stix presented, in [15], results that are
similar to and stronger than some results of the present paper. In
fact, for instance, a similar result to the equivalence (1) ⇔ (2) of
Theorem A (respectively, the equivalence (1) ⇔ (4) of Theorem B;
Lemma 3.5; Theorem 4.1; Corollary 4.2) of the present paper may be
found as [15], Theorem A (respectively, [15], Theorem C; [15], Propo-
sition 4; [15], Corollary 9; [15], Corollary 11).
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0. NOTATIONS AND CONVENTIONS

Numbers: The notation Primes will be used to denote the set of all
prime numbers. The notation Z will be used to denote the ring of
rational integers. If Σ ⊆ Primes, then we shall refer to a nonzero
integer whose prime divisors are contained in Σ as a Σ-integer, and
we shall write ẐΣ for the pro-Σ completion of Z, i.e., ẐΣ def

= lim←−Z/nZ,
where the projective limit is over all positive Σ-integers n. We shall
refer to a finite (respectively, finitely generated) extension of the field
of rational numbers as a number field (respectively, finitely generated
field of characteristic 0). If p ∈ Primes, then the notation Zp will be used
to denote the p-adic completion of Z, and we shall refer to a finite
extension of the p-adic completion of the field of rational numbers as
a p-adic local field.

Profinite groups: Let G be a profinite group and H ⊆ G a closed
subgroup of G. Then we shall denote by ZG(H), NG(H), Z loc

G (H) the
centralizer, normalizer, local centralizer of H in G, respectively, i.e.,

ZG(H)
def
= { g ∈ G | ghg−1 = h for any h ∈ H } ,

NG(H)
def
= { g ∈ G | g ·H · g−1 = H } ,

Z loc
G (H)

def
= lim−→

U

ZG(U)

— where the injective limit is over all open subgroups U ⊆ H of H .
We shall refer to Z(G)

def
= ZG(G), Z loc(G)

def
= Z loc

G (G) as the center,
local center of G, respectively. We shall say that G is center-free, slim if
Z(G) = {1}, Z loc(G) = {1}, respectively.

Let Σ ⊆ Primes be a nonempty subset of Primes [where we refer to
the discussion entitled “Numbers” concerning the set Primes]. Then
we shall say that a finite group G is a Σ-group if the cardinality of G
is a Σ-integer [where we refer to the discussion entitled “Numbers”
concerning the term “Σ-integer”].

Let C be a full formation [i.e., a family of finite groups that is closed
under taking quotients, subgroups, and extensions]. We shall say
that a finite group is a C-group if [a finite group which is isomorphic
to] the finite group is contained in C. We shall say that a profinite
group is a pro-C group if every finite quotient of the profinite group
is a C-group. We shall write Σ(C) ⊆ Primes for the set of prime num-
bers p ∈ Primes such that Z/pZ is a C-group. Here, we note that one
verifies easily that Σ(C) = Primes if and only if C contains all finite
solvable groups. If C consists of all Σ-groups for some nonempty
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subset Σ ⊆ Primes, then we shall refer to a pro-C group as a pro-Σ
group.

Let G be a profinite group. Then we shall write Aut(G) for the
group of [continuous] automorphisms of G, Inn(G) ⊆ Aut(G) for
the group of inner automorphisms of G, and

Out(G)
def
= Aut(G)/Inn(G) .

If, moreover, G is topologically finitely generated, then one verifies eas-
ily that the topology of G admits a basis of characteristic open sub-
groups, which thus induces a profinite topology on the group Aut(G),
hence also a profinite topology on the group Out(G).

Curves: Let S be a scheme and X a scheme over S. Then we shall say
that X is a smooth curve over S if there exist a scheme Xcpt which is
smooth, proper, geometrically connected, and of relative dimension
1 over S and a closed subscheme D ⊆ Xcpt of Xcpt which is finite
and étale over S such that the complement Xcpt \ D of D in Xcpt is
isomorphic to X over S. Note that, as is well-known, if X is a smooth
curve over [the spectrum of] a field k, then the pair “(Xcpt, D)” is
uniquely determined up to canonical isomorphism over k; we shall refer
to Xcpt as the smooth compactification of X over k and to a geometric
point of Xcpt whose image lies on D as a cusp of X .

Let S be a scheme. Then we shall say that a smooth curve X over
S is a hyperbolic curve (respectively, tripod) over S if there exist a pair
(Xcpt, D) satisfying the condition in the above definition of the term
“smooth curve” and a pair (g, r) of nonnegative integers such that
2g − 2 + r > 0 (respectively, (g, r) = (0, 3)), any geometric fiber of
Xcpt → S is [a necessarily smooth, proper, and connected curve] of
genus g, and the degree of D ⊆ Xcpt over S is r.

Let S be a scheme, U ⊆ S an open subscheme of S, and X a hyper-
bolic curve over U . Then we shall say that X admits good reduction
over S if there exists a hyperbolic curve XS over S such that XS×S U
is isomorphic to X over U .

1. BIRATIONAL GALOIS SECTIONS AND THEIR GEOMETRICITY

In the present §1, we discuss the notion of a birational Galois section.
In the present §1, let C be a full formation, k a field of characteristic
0, and k an algebraic closure of k. For a finite extension k′ (⊆ k) of k,
write Gk′

def
= Gal(k/k′).

Definition 1.1. Let X be a quasi-compact scheme which is geometri-
cally integral over k.

(i) We shall write
k(X)

for the function field of X .
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(ii) We shall write
∆C

X/k

for the pro-C geometric fundamental group of X , i.e., the maxi-
mal pro-C quotient of π1(X ⊗k k), and

ΠC
X/k

for the geometrically pro-C fundamental group of X , i.e., the quo-
tient of π1(X) by the kernel of the natural surjection π1(X ⊗k

k) ↠ ∆C
X/k. If X is the spectrum of a k-algebra R, then we

shall write

∆C
R/k

def
= ∆C

X/k ; ΠC
R/k

def
= ΠC

X/k .

Thus, we have a commutative diagram of profinite groups

1 −−−→ ∆C
k(X)/k −−−→ ΠC

k(X)/k −−−→ Gk −−−→ 1y y ∥∥∥
1 −−−→ ∆C

X/k −−−→ ΠC
X/k −−−→ Gk −−−→ 1

[cf. (i)] — where the horizontal sequences are exact [cf. [3],
Exposé IX, Théorème 6.1].

If C consists of all Σ-groups [cf. §0] for some nonempty sub-
set Σ ⊆ Primes [cf. §0], then we shall write

∆Σ
X/k

def
= ∆C

X/k ; ΠΣ
X/k

def
= ΠC

X/k .

Definition 1.2. Let X be a quasi-compact scheme which is geometri-
cally integral over k. Then we shall refer to a section of the upper
(respectively, lower) exact sequence of the commutative diagram of
Definition 1.1, (ii), as a pro-C birational Galois section (respectively, pro-
C Galois section) of X/k. The ∆C

k(X)/k-conjugacy (respectively, ∆C
X/k-

conjugacy) class of a pro-C birational Galois section (respectively,
pro-C Galois section) of X/k as the conjugacy class of the pro-C bi-
rational Galois section (respectively, pro-C Galois section).

If C consists of all Σ-groups for some nonempty subset Σ ⊆ Primes,
then we shall refer to a pro-C birational Galois section (respectively,
pro-C Galois section) of X/k as a pro-Σ birational Galois section (re-
spectively, pro-Σ Galois section) of X/k.

Definition 1.3. Let X be a smooth curve over k [cf. §0] and s a pro-C
birational Galois section (respectively, pro-C Galois section) of X/k
[cf. Definition 1.2]. Then we shall say that s is geometric if the image
of s is contained in a decomposition subgroup of ΠC

k(X)/k (respec-
tively, ΠC

X/k) associated to a [necessarily k-rational] closed point of
the [uniquely determined] smooth compactification of X over k.
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Remark 1.3.1. Let X be a smooth curve over k. Then it follows imme-
diately from the various definitions involved that the geometricity of
a pro-C birational Galois section (respectively, pro-C Galois section)
of X/k depends only on its conjugacy class [cf. Definition 1.2].

Remark 1.3.2. Let X , Y be smooth curves over k and Y → X a dom-
inant morphism over k, which thus determines a finite extension
k(X) ↪→ k(Y ) over k. If a pro-C birational Galois section (respec-
tively, pro-C Galois section) s of Y/k is geometric, then it follows im-
mediately from the various definitions involved that the pro-C bi-
rational Galois section (respectively, pro-C Galois section) of X/k
determined by s and the morphism Y → X [i.e., the pro-C bira-
tional Galois section (respectively, pro-C Galois section) of X/k ob-
tained as the composite of s and the natural open homomorphism
ΠC

k(Y )/k → ΠC
k(X)/k (respectively, ΠC

Y/k → ΠC
X/k) induced by Y → X] is

geometric.

Remark 1.3.3. Let X be a projective smooth curve over k, U ⊆ X an
open subscheme of X , and s a pro-C birational Galois section of X/k.
Then it follows immediately from the various definitions involved
that if s is geometric, then the pro-C Galois section of U/k naturally
determined by s [i.e., the pro-C Galois section of U/k obtained as the
composite of s and the natural surjection ΠC

k(X)/k ↠ ΠC
U/k] is geomet-

ric.

Lemma 1.4. Let X be a hyperbolic curve over k [cf. §0] and x, y closed
points of the [uniquely determined] smooth compactification of X . Suppose
that k is generalized sub-p-adic [i.e., k is isomorphic to a subfield of a
finitely generated extension of the p-adic completion of the maximal unram-
ified extension of the p-adic completion of the field of rational numbers —
cf. [11], Definition 4.11] for some p ∈ Σ(C) [cf. §0]. Then the following
conditions are equivalent:

(1) x = y.
(2) There exist respective decomposition subgroups Dx, Dy ⊆ ΠC

X/k of
ΠC

X/k associated to x, y such that the image of the composite

Dx ∩Dy ↪→ ΠC
X/k ↠ Gk

is open.

Proof. The implication (1) ⇒ (2) is immediate. Next, we verify the
implication (2) ⇒ (1). Suppose that condition (2) is satisfied. Then
it is immediate that, to verify the implication (2) ⇒ (1), by replac-
ing ΠC

X/k by an open subgroup of ΠC
X/k, we may assume without

loss of generality that X is of genus ≥ 2, and, moreover, the dis-
played composite of condition (2) is surjective, hence also that x and
y are k-rational. Thus, to verify the implication (2) ⇒ (1), by replac-
ing X by its smooth compactification, we may assume without loss
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of generality that x, y ∈ X(k). Then, by considering the quotient
ΠC

X/k ↠ Π
{p}
X/k of ΠC

X/k, the implication (2)⇒ (1) follows immediately
from [11], Theorem 4.12 [cf. also [11], Remark following Theorem
4.12], together with a similar argument to the argument used in the
proof of [10], Theorem C. This completes the proof of the implication
(2)⇒ (1), hence also of Lemma 1.4. □
Lemma 1.5. Let X be a hyperbolic curve over k, s a pro-C Galois section
of X/k [cf. Definition 1.2], and k′ (⊆ k) a finite extension of k. Suppose
that k is either

(a) a finitely generated field of characteristic 0 [cf. §0] or
(b) a p-adic local field for some p ∈ Σ(C) [cf. §0].

Then the following conditions are equivalent:
(1) s is geometric [cf. Definition 1.3].
(2) The pro-C Galois section s|Gk′

of X ⊗k k′/k′ determined by s is
geometric.

(3) For any open subgroup H ⊆ ΠC
X/k of ΠC

X/k containing the image
of s, the [uniquely determined] smooth compactification of the finite
étale covering of X corresponding to H ⊆ ΠC

X/k admits a k′-valued
point.

Proof. The equivalence (1)⇔ (2) follows immediately from a similar
argument to the argument used in the proof of [7], Lemma 54. Here,
we note that if k satisfies the condition (b), then, to applying a simi-
lar argument to the argument used in the proof of [7], Lemma 54, we
have to replace “[Moc99, Theorem C]” (respectively, the finiteness of
the set “(Xn)cpt(k)” obtained by Mordell-Faltings’s theorem) in the
proof of [7], Lemma 54, by Lemma 1.4 (respectively, the compactness
of the set “(Xn)cpt(k)” obtained by the consideration of a suitable
model of “(Xn)cpt” over the ring of integers of k). The equivalence
(2) ⇔ (3) follows immediately from a similar argument to the ar-
gument applied in the proof of [17], Proposition 2.8, (iv). This com-
pletes the proof of Lemma 1.5. □
Lemma 1.6. Let X be a smooth curve over k, s a pro-C birational Galois
section of X/k [cf. Definition 1.2], and k′ (⊆ k) a finite extension of k.
Suppose that k is either

(a) a finitely generated field of characteristic 0 [cf. §0] or
(b) a p-adic local field [cf. §0] for some p ∈ Σ(C) [cf. §0].

Then the following conditions are equivalent:
(1) s is geometric [cf. Definition 1.3].
(2) The pro-C birational Galois section s|Gk′ of X ⊗k k

′/k′ determined
by s is geometric.

(3) For any open subgroup H ⊆ ΠC
k(X)/k of ΠC

k(X)/k containing the
image of s, the [uniquely determined] smooth compactification of the
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normalization of X in the finite extension of k(X) corresponding to
H ⊆ ΠC

k(X)/k admits a k′-valued point.

Proof. This follows immediately from a similar argument to the ar-
gument applied in the proof of Lemma 1.5. □

The following result was essentially proved in [12] by a refined
discussion of the discussion given in [8].

Proposition 1.7. Let p be a prime number and X a smooth curve over
k. Suppose that p ∈ Σ(C) [cf. §0], and that k is a p-adic local field. Then
any pro-C birational Galois section of X/k [cf. Definition 1.2] is geometric
[cf. Definition 1.3].

Proof. It follows from the equivalence (1) ⇔ (3) of Lemma 1.6 that,
to verify Proposition 1.7, it suffices to verify that, for any open sub-
group H ⊆ ΠC

k(X)/k of ΠC
k(X)/k containing the image of s, the [uniquely

determined] smooth compactification of the normalization of X in
the finite extension of k(X) corresponding to H ⊆ ΠC

k(X)/k admits
a k(ζp)-valued point, where we use the notation ζp ∈ k to denote a
primitive p-th root of unity. On the other hand, this follows immedi-
ately from [12], Theorem A, (2). This completes the proof of Propo-
sition 1.7. □

2. LOCAL GEOMETRICITY OF BIRATIONAL GALOIS SECTIONS

In the present §2, we discuss the notion of the local geometricity of
birational Galois sections of smooth curves over number fields. In
the present §2, let C be a full formation, k a number field [cf. §0], k an
algebraic closure of k, and X a smooth curve over k [cf. §0]. Write

ok ⊆ k

for the ring of integers of k,
Pf

k

for the set of all nonarchimedean primes of k, and

Xcpt

for the [uniquely determined] smooth compactification of X over k.
Moreover, for each p ∈ Pf

k , write

kp

for the p-adic completion of k and

op ⊆ kp

for the ring of integers of kp. For each p ∈ Pf
k , let us fix an algebraic

closure kp of kp containing k and write

Gp
def
= Gal(kp/kp) ⊆ Gk

def
= Gal(k/k) .
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Definition 2.1. Let s be a pro-C Galois section of X/k [cf. Defini-
tion 1.2]. For a nonarchimedean prime p ∈ Pf

k of k, we shall say
that s is geometric at p if the pro-C Galois section of X ⊗k kp/kp nat-
urally determined by s [i.e., the pro-C Galois section of X ⊗k kp/kp
determined by the natural isomorphism

ΠC
X⊗kkp/kp

∼−→ ΠC
X/k ×Gk

Gp

and the composite
Gp ↪→ Gk

s→ ΠC
X/k ]

is geometric [cf. Definition 1.3]. For a subset S ⊆ Pf
k of Pf

k , we shall
say that s is geometric at S if, for each p ∈ S, s is geometric at p.
Finally, we shall say that s is locally geometric if s is geometric at Pf

k .

Remark 2.1.1. In the notation of Definition 2.1, it is immediate that
if s is geometric [cf. Definition 1.3], then s is locally geometric.

Definition 2.2. Let S ⊆ Pf
k be a subset of Pf

k . Then we shall write

Ãf
k |S

def
=

∏
p∈S

kp ;

Af
k |S

def
=

{
(ap)p∈S ∈ Ãf

k |S
∣∣∣ ap ∈ op for all but finitely many p ∈ S

}
;

Ãf
k

def
= Ãf

k |Pf
k
; Af

k

def
= Af

k |Pf
k
.

Remark 2.2.1. Since Xcpt is proper over k, for any subset S ⊆ Pf
k of

Pf
k , the natural injection Xcpt(Af

k |S) ↪→ Xcpt(Ãf
k |S) is bijective.

Definition 2.3. Let s be a pro-C Galois section of X/k [cf. Defini-
tion 1.2]. If s is geometric at a nonarchimedean prime p ∈ Pf

k of k
[cf. Definition 2.1], i.e., there exists a kp-valued point xp ∈ Xcpt(kp) =
(Xcpt⊗kkp)(kp) of Xcpt such that the image of the pro-C Galois section
of X ⊗k kp/kp naturally determined by s is contained in a decompo-
sition subgroup of ΠC

X⊗kkp/kp
associated to xp, then we shall refer to

such a kp-valued point “xp” of Xcpt as a kp-valued point of Xcpt asso-
ciated to s. If s is geometric at a subset S ⊆ Pf

k of Pf
k , then we shall

refer to an Ãf
k |S-valued point, or, equivalently [cf. Remark 2.2.1], an

Af
k |S-valued point, of Xcpt determined by kp-valued points of Xcpt

associated to s — where p ranges over elements of S — as an Ãf
k |S-

valued point, or, equivalently, an Af
k |S-valued point, of Xcpt associated to

s.

Remark 2.3.1. In the notation of Definition 2.3, suppose that s is
geometric [cf. Definition 1.3], hence also locally geometric [cf. Defi-
nition 2.1; Remark 2.1.1]. Then it is immediate that there exists a
k-rational point x ∈ Xcpt(k) of Xcpt such that, for each p ∈ Pf

k , the
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kp-valued point of Xcpt determined by x is a kp-valued point of Xcpt

associated to s. In particular, the Af
k-valued point of Xcpt determined

by x is an Af
k-valued point of Xcpt associated to s.

Note that if C contains all finite solvable groups, and X is a hyper-
bolic curve over k [cf. §0], then it follows from Theorem 4.1 below
that the converse holds, i.e., if s is locally geometric, and there exists
a k-rational point x ∈ Xcpt(k) of Xcpt such that, for each p ∈ Pf

k , the
kp-valued point of Xcpt determined by x is a kp-valued point of Xcpt

associated to s, then s is geometric.

Lemma 2.4. Let s be a pro-C birational Galois section of X/k [cf. Defini-
tion 1.2] and p ∈ Pf

k . For an open subscheme U ⊆ Xcpt of Xcpt, write

s[U ]

for the pro-C Galois section of U/k [cf. Definition 1.2] naturally determined
by s [i.e., the pro-C Galois section of U/k obtained as the composite of s and
the natural surjection ΠC

k(X)/k ↠ ΠC
U/k];

s[U, p]

for the pro-C Galois section of U⊗kkp/kp naturally determined by s [i.e., the
pro-C Galois section of U ⊗k kp/kp determined by the natural isomorphism

ΠC
U⊗kkp/kp

∼−→ ΠC
U/k ×Gk

Gp

and the composite

Gp ↪→ Gk
s→ ΠC

k(X)/k ↠ ΠC
U/k ].

Then the following conditions are equivalent:
(1) There exists a kp-valued point xp ∈ Xcpt(kp) = (Xcpt ⊗k kp)(kp)

of Xcpt such that, for any open subscheme U ⊆ Xcpt of Xcpt, the
image of the pro-C Galois section s[U, p] of U ⊗k kp/kp is contained
in a decomposition subgroup of ΠC

U⊗kkp/kp
associated to xp.

(2) For any open subscheme U ⊆ Xcpt of Xcpt, the pro-C Galois section
s[U ] of U/k is geometric at p [cf. Definition 2.1], i.e., the pro-C
Galois section s[U, p] of U ⊗k kp/kp is geometric [or, equivalently,
the image of s[U, p] is contained in a decomposition subgroup of
ΠC

U⊗kkp/kp
associated to a kp-rational point of Xcpt ⊗k kp].

(3) For any open subgroup H ⊆ ΠC
k(X)/k of ΠC

k(X)/k containing the
image of s, the [uniquely determined] smooth compactification of the
normalization of X in the finite extension of k(X) corresponding to
H ⊆ ΠC

k(X)/k admits a kp-valued point.
(4) The image of the homomorphism Gp → ΠC

k(X)/k×Gk
Gp induced by s

is contained in the image of a decomposition subgroup of ΠC
kp(X⊗kkp)/kp

associated to a [necessarily kp-rational] closed point of Xcpt ⊗k kp
by the natural surjection ΠC

kp(X⊗kkp)/kp
↠ ΠC

k(X)/k ×Gk
Gp.
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Proof. The implications (4) ⇒ (1) ⇒ (2) ⇒ (3) are immediate. Fi-
nally, the implication (3) ⇒ (4) follows immediately from a similar
argument to the argument applied in the proof of [17], Proposition
2.8, (iv). This completes the proof of Lemma 2.4. □
Definition 2.5. Let s be a pro-C birational Galois section of X/k [cf.
Definition 1.2]. For a nonarchimedean prime p ∈ Pf

k of k, we shall
say that s is geometric at p if the pair (s, p) satisfies equivalent condi-
tions (1), (2), (3), and (4) of Lemma 2.4. For a subset S ⊆ Pf

k of Pf
k ,

we shall say that s is geometric at S if, for each p ∈ S, s is geometric
at p. Finally, we shall say that s is locally geometric if s is geometric at
Pf

k .

Remark 2.5.1. In the notation of Definition 2.5, it is immediate that
if s is geometric [cf. Definition 1.3], then s is locally geometric.

Definition 2.6. Let s be a pro-C birational Galois section of X/k [cf.
Definition 1.2]. If s is geometric at a nonarchimedean prime p ∈
Pf

k of k [cf. Definition 2.5], i.e., the pair (s, p) satisfies condition (1)
of Lemma 2.4, then we shall refer to a kp-valued point “xp” of Xcpt

appearing in condition (1) of Lemma 2.4 as a kp-valued point of Xcpt

associated to s. If s is geometric at a subset S ⊆ Pf
k of Pf

k , then we shall
refer to an Ãf

k |S-valued point, or, equivalently [cf. Remark 2.2.1], an
Af

k |S-valued point, of Xcpt determined by kp-valued points of Xcpt

associated to s — where p ranges over elements of S — as an Ãf
k |S-

valued point, or, equivalently, an Af
k |S-valued point, of Xcpt associated to

s.

Remark 2.6.1. In the notation of Definition 2.6, suppose that s is
geometric [cf. Definition 1.3], hence also locally geometric [cf. Defi-
nition 2.5; Remark 2.5.1]. Then it is immediate that there exists a
k-rational point x ∈ Xcpt(k) of Xcpt such that, for each p ∈ Pf

k , the
kp-valued point of Xcpt determined by x is a kp-valued point of Xcpt

associated to s. In particular, the Af
k-valued point of Xcpt determined

by x is an Af
k-valued point of Xcpt associated to s.

Note that if C contains all finite solvable groups, then it follows
from Theorem 4.1 below that the converse holds, i.e., if s is locally
geometric, and there exists a k-rational point x ∈ Xcpt(k) of Xcpt such
that, for each p ∈ Pf

k , the kp-valued point of Xcpt determined by x is
a kp-valued point of Xcpt associated to s, then s is geometric.

Lemma 2.7. Let s be a pro-C birational Galois section (respectively, pro-C
Galois section) of X/k [cf. Definition 1.2] and S ⊆ Pf

k a subset of Pf
k .

Suppose that s is geometric at S [cf. Definition 2.5 (respectively, Defini-
tion 2.1)], and that, for each p ∈ S, the residue characteristic of p is ∈ Σ(C)
[cf. §0]. Suppose, moreover, that if s is a pro-C Galois section of X/k,
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then X is a hyperbolic curve over k [cf. §0]. Then an Af
k |S-valued point

of Xcpt associated to s [cf. Definition 2.6 (respectively, Definition 2.3)] is
uniquely determined by s.

Proof. Observe that, to verify Lemma 2.7, by replacing S by a sub-
set of S of cardinality 1, we may assume without loss of generality
that S = {p} for some p ∈ Pf

k . Then the uniqueness in question
follows immediately from Lemma 1.4. This completes the proof of
Lemma 2.7. □
Lemma 2.8. Let s be a pro-C birational Galois section of X/k [cf. Defini-
tion 1.2], S ⊆ Pf

k a subset of Pf
k , and xA ∈ Xcpt(Af

k |S) an Af
k |S-valued

point of Xcpt. Suppose that s is geometric at S [cf. Definition 2.5]. Write
s[X] for the pro-C Galois section of X/k [cf. Definition 1.2] naturally de-
termined by s. Then the following hold:

(i) s[X] is geometric at S [cf. Definition 2.1].
(ii) If xA ∈ Xcpt(Af

k |S) is an Af
k |S-valued point of Xcpt associated to s

[cf. Definition 2.6], then xA ∈ Xcpt(Af
k |S) is an Af

k |S-valued point
of Xcpt associated to s[X] [cf. Definition 2.3; assertion (i)].

(iii) Suppose, moreover, that, for each p ∈ S, the residue characteristic
of p is ∈ Σ(C) [cf. §0], and that X is a hyperbolic curve over k.
Then it holds that xA ∈ Xcpt(Af

k |S) is an Af
k |S-valued point of Xcpt

associated to s if and only if xA ∈ Xcpt(Af
k |S) is an Af

k |S-valued
point of Xcpt associated to s[X] [cf. assertion (i)].

Proof. Assertions (i), (ii) follow immediately from the various defini-
tions involved. Assertion (iii) follows immediately from Lemma 2.7,
together with assertion (ii). This completes the proof of Lemma 2.8.

□
The following result was essentially proved in [12] by a refined

discussion of the discussion given in [8].

Proposition 2.9. Let s be a pro-C birational Galois section of X/k [cf.
Definition 1.2] and S ⊆ Pf

k a subset of Pf
k such that, for each p ∈ S, the

residue characteristic of p is ∈ Σ(C) [cf. §0]. Then s is geometric at S [cf.
Definition 2.5]. In particular, s determines a unique Af

k |S-valued point of
Xcpt [cf. Definition 2.6].

Proof. If s is geometric at S, then the uniqueness of an Af
k |S-valued

point of Xcpt associated to s follows from Lemma 2.7. Thus, to verify
Proposition 2.9, it suffices to verify that s is geometric at S. More-
over, it follows immediately from the various definitions involved
that, to verify that s is geometric at S, by replacing S by a subset
of S of cardinality 1, we may assume without loss of generality that
S = {p} for some p ∈ Pf

k , whose residue characteristic we denote
by p. Thus, it follows from Lemma 2.10 below [cf. condition (5) of
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Lemma 2.10 below] that, to verify Proposition 2.9, it suffices to ver-
ify that, for any open subgroup H ⊆ ΠC

k(X)/k of ΠC
k(X)/k containing the

image of s, the [uniquely determined] smooth compactification Y of
the normalization of X in the finite extension of k(X) corresponding
to H ⊆ ΠC

k(X)/k admits a kp(ζp)-valued point, where we use the nota-
tion ζp ∈ k to denote a primitive p-th root of unity. On the other hand,
by considering the restriction of the pro-C birational Galois section of
Y/k naturally determined by s to the closed subgroup Gal(k/k(ζp)

h)

of Gk, where we write k(ζp)
h ⊆ k for the algebraic closure of k(ζp)

in kp(ζp), we conclude from [12], Theorem B, (2), that Y (k(ζp)
h) ̸= ∅,

hence also that Y (kp(ζp)) ̸= ∅. This completes the proof of Proposi-
tion 2.9. □

Lemma 2.10. In the notation of Lemma 2.4, suppose, moreover, that the
residue characteristic of p is ∈ Σ(C) [cf. §0]. Let k′

p (⊆ kp) be a finite exten-
sion of kp. Then equivalent conditions (1), (2), (3), and (4) of Lemma 2.4
are equivalent to the following conditions:

(5) For any open subgroup H ⊆ ΠC
k(X)/k of ΠC

k(X)/k containing the
image of s, the [uniquely determined] smooth compactification of the
normalization of X in the finite extension of k(X) corresponding to
H ⊆ ΠC

k(X)/k admits a k′
p-valued point.

(6) The image of the composite of the natural inclusion Gal(kp/k
′
p) ↪→

Gp and the homomorphism Gp → ΠC
k(X)/k ×Gk

Gp induced by s is
contained in the image of a decomposition subgroup of ΠC

kp(X⊗kkp)/kp

associated to a closed point of Xcpt⊗k kp [necessarily defined over a
subfield of k′

p] by the natural surjection ΠC
kp(X⊗kkp)/kp

↠ ΠC
k(X)/k×Gk

Gp.

Proof. The implication (3) ⇒ (5) is immediate. Moreover, by apply-
ing the implication (3) ⇒ (4) of Lemma 2.4 to the restriction of s
to a suitable open subgroup of Gk, we conclude that the implication
(5) ⇒ (6) holds. Finally, the implication (6) ⇒ (4) follows immedi-
ately from a similar argument to the argument applied in the proof
of [7], Lemma 54, by replacing “[Moc99, Theorem C]” (respectively,
the finiteness of the set “(Xn)cpt(k)” obtained by Mordell-Faltings’s
theorem) in the proof of [7], Lemma 54, by Lemma 1.4 (respectively,
the compactness of the set “(Xn)cpt(k)” obtained by the consideration
of a suitable model of “(Xn)cpt” over the ring of integers of k). This
completes the proof of Lemma 2.10. □

Proposition 2.11. Suppose that X is a hyperbolic curve over k. Let s be
a pro-C Galois section of X/k [cf. Definition 1.2] and S ⊆ Pf

k a subset of
Pf

k such that, for each p ∈ S, the residue characteristic of p is ∈ Σ(C) [cf.
§0]. Suppose that s arises from a pro-C birational Galois section of X/k [cf.
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Definition 1.2]. Then s is geometric at S [cf. Definition 2.1]. In particular,
s determines a unique Af

k |S-valued point of Xcpt [cf. Definition 2.3].

Proof. The fact that s is geometric at S follows immediately from Propo-
sition 2.9, together with Lemma 2.8, (i). The fact that s determines a
unique Af

k |S-valued point of Xcpt follows immediately from Lemma 2.7.
This completes the proof of Proposition 2.11. □

3. GALOIS SECTIONS OF TORI THAT LOCALLY ARISE FROM POINTS

In the present §3, we discuss Galois sections of tori that locally arise
from points. We maintain the notation of the preceding §2. Let Σ ⊆
Primes be a nonempty subset of Primes [cf. §0]. Write

Div(ok)
def
=

⊕
p∈Pf

k

Z ↠ Pic(ok)
def
= Pic(Spec ok) ;

dk for the minimal positive integer such that dk · Pic(ok) = {0};

Gm,Z
def
= P1

Z \ {0,∞} = SpecZ[u±1] ;

for each p ∈ Pf
k ,

vp : k
× −→ Z

for the p-adic valuation which induces a surjection k×
p ↠ Z;

divk : k× −→ Div(ok)
a 7→

∑
p∈Pf

k
vp(a) · p .

[Thus, we have an exact sequence of modules

0 −→ o×k −→ k× divk−→ Div(ok) −→ Pic(ok) −→ 0 .]

Write, moreover, for a ring R,

Gm,R
def
= Gm,Z ⊗Z R .

Let us identify Gm,R(R) with R× by the invertible function u ∈ R[u±1]×:

Gm,R(R) ≃ R× .

Definition 3.1. Let M be a module. Then we shall write

M [Σ]
def
= lim←−M/nM

— where n ranges over positive Σ-integers [cf. §0].

Lemma 3.2.
(i) For every [not necessarily algebraic] extension k′ of k, if we write

GSΣ(Gm,k′/k
′)

for the set of conjugacy classes of pro-Σ Galois sections of Gm,k′/k
′

[cf. Definition 1.2], then the map

GSΣ(Gm,k′/k
′) −→ H1(k′,∆Σ

Gm,k/k
)
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determined by the natural isomorphism

∆Σ
Gm,k′/k

′
∼−→ ∆Σ

Gm,k/k

induced by k ↪→ k′ and the map

GSΣ(Gm,k′/k
′) −→ H1(k′,∆Σ

Gm,k′/k
′)

given by mapping an element s ∈ GSΣ(Gm,k′/k
′) to the element

of H1(k′,∆Σ
Gm,k′/k

′) obtained by considering the difference of s and
the element of GSΣ(Gm,k′/k

′) arising from the k-rational point 1 ∈
(k′)× ≃ Gm,k′(k

′) is bijective.
(ii) There exists a natural isomorphism ∆Σ

Gm,k/k

∼→ ẐΣ(1) [where “(1)”
denotes a Tate twist] such that, for every [not necessarily algebraic]
extension k′ of k, the following diagram of sets commutes:

Gm,k(k
′) −−−→ GSΣ(Gm,k′/k

′)
∼−−−→ H1(k′,∆Σ

Gm,k/k
)

≀
y ≀

y
(k′)× −−−→ (k′)×[Σ]

∼−−−→ H1(k′, ẐΣ(1)) .

Here, the left-hand upper horizontal arrow is the natural map given
by mapping a k′-rational point of Gm,k′ to the conjugacy class of a
pro-Σ Galois section of Gm,k′/k

′ associated to the k′-rational point,
the right-hand upper horizontal arrow is the bijection of (i), the
left-hand vertical arrow is the natural identification by the fixed
invertible function u, the right-hand vertical arrow is the isomor-
phism induced by the isomorphism in question ∆Σ

Gm,k/k

∼→ ẐΣ(1),
the left-hand lower horizontal arrow is the natural homomorphism
[cf. Definition 3.1], and the right-hand lower horizontal arrow is
the natural isomorphism given by the Kummer theory.

(iii) Let S ⊆ Pf
k be a subset of Pf

k . Then there exists a natural isomor-
phism between the commutative diagram of sets

Gm,k(k) Gm,k(k) −−−→ GSΣ(Gm,k/k)y y
Gm,k(Af

k |S) −−−→ Gm,k(Ãf
k |S) −−−→

∏
p∈S GSΣ(Gm,kp/kp)

and the commutative diagram of modules

k× k× −−−→ k×[Σ]y y
(Af

k |S)× −−−→ (Ãf
k |S)× −−−→

∏
p∈S(k

×
p [Σ]) .

Proof. Assertion (i) follows immediately from the various definitions
involved. Next, we verify assertion (ii). For a positive integer n,
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write µn ⊆ k for the group of n-th roots of unity. Then, as is well-
known, for a positive Σ-integer n, there exist natural isomorphisms

H1(∆Σ
Gm,k/k

, µn)
∼−→ H1(Gm,k, µn)

∼←− k[u±1]×/(k[u±1]×)n .

Thus, the invertible function u ∈ k[u±1]× determines an element of

H1(∆Σ
Gm,k/k

, ẐΣ(1))
∼−→ Hom(∆Σ

Gm,k/k
, ẐΣ(1)) .

On the other hand, one verifies easily that the resulting homomor-
phism ∆Σ

Gm,k/k
→ ẐΣ(1) is an isomorphism and satisfies the condition

in the statement of assertion (ii). This completes the proof of asser-
tion (ii). Assertion (iii) follows immediately from assertion (ii). This
completes the proof of Lemma 3.2. □

Lemma 3.3. The following hold:
(i) The exact sequence of modules

1 −→ o×k −→ k× divk−→ Div(ok)

determines an exact sequence of modules

1 −→ o×k [Σ] −→ k×[Σ]
divk[Σ]−→ Div(ok)[Σ] .

(ii) There is no nontrivial element of the cokernel of the natural homo-
morphism k× → k×[Σ] which is annihilated by a Σ-integer.

Proof. First, we verify assertion (i). Write M
def
= Im(divk) ⊆ Div(ok)

for the image of divk. Then since M is a free Z-module, there ex-
ists a section of the natural surjection k× ↠ M ; thus, we obtain a
noncanonical isomorphism o×k ×M

∼→ k×. In particular, the natural
homomorphism o×k [Σ] → k×[Σ] is injective. Thus, to verify asser-
tion (i), it suffices to verify that the kernel of divk[Σ] is contained in
o×k [Σ] ⊆ k×[Σ], or, equivalently [by the existence of the noncanonical
isomorphism o×k ×M

∼→ k×], the natural homomorphism M [Σ] →
Div(ok)[Σ] is injective.

For an element
∑

ai ·pi ∈ Div(ok), where ai ∈ Z and pi ∈ Pf
k , write

[
∑

ai · pi] ∈ Pic(ok) = Div(ok)/M for the element of the cokernel of
divk determined by

∑
ai · pi ∈ Div(ok). Now, for an element a ∈

Pic(ok), let us fix a nonarchimedean prime qa ∈ Pf
k of k such that

a = [1 · qa]. [Note that it follows immediately from Chebotarev’s
density theorem that the subset of Pf

k consisting of p ∈ Pf
k such that

a = [1·p] is of density 1/♯Pic(ok); in particular, such a qa always exists.]
Write T

def
= { qa ∈ Pf

k | a ∈ Pic(ok) }. Moreover, for each p ∈ Pf
k \ T ,

write xp
def
= 1·p−1·q[1·p] ∈ Div(ok). Then one verifies easily that the Z-

submodule N ⊆ Div(ok) generated by {xp | p ∈ Pf
k \ T } is contained

in M and determines a section of the natural projection Div(ok) ↠
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p∈Pf

k\T
Z. In particular, we obtain a commutative diagram of free

Z-modules
0 −−−→ N −−−→ M −−−→ M/N −−−→ 0∥∥∥ y y
0 −−−→ N −−−→ Div(ok) −−−→ Div(ok)/N −−−→ 0

— where the horizontal sequences are exact, and the vertical arrows
are injective. On the other hand, since Pic(ok), hence also T , is finite,
M/N and Div(ok)/N are finitely generated free Z-modules. In particu-
lar, one verifies easily that the natural homomorphism (M/N)[Σ] →
(Div(ok)/N)[Σ] is injective. Thus, it follows immediately that the nat-
ural homomorphism in question M [Σ]→ Div(ok)[Σ] is injective. This
completes the proof of assertion (i).

Next, we verify assertion (ii). Now let us observe that one verifies
easily that there is no nontrivial element of the cokernel of the nat-
ural homomorphism Z → ẐΣ which is annihilated by a Σ-integer.
Thus, assertion (ii) follows immediately from the existence of the
[noncanonical] isomorphism o×k × M

∼→ k× obtained in the proof
of assertion (i), together with the well-known fact that o×k is finitely
generated. This completes the proof of assertion (ii). □
Remark 3.3.1. The observation given in the proof of Lemma 3.3 was
related to the author by A. Tamagawa and S. Yasuda.

Lemma 3.4. By applying Lemma 3.2, (iii), let us identify Gm,k(k) (respectively,
Gm,k(Af

k); GSΣ(Gm,k/k);
∏

p∈Pf
k
GSΣ(Gm,kp/kp)) with k× (respectively,

(Af
k)

×; k×[Σ];
∏

p∈Pf
k
(k×

p [Σ])). Suppose that k is either the field of ratio-
nal numbers or an imaginary quadratic field. Let

(ap)p∈Pf
k
∈ (Af

k)
× ≃ Gm,k(Af

k)

a ∈ k×[Σ] ≃ GSΣ(Gm,k/k)

be such that their images in
∏

p∈Pf
k
(k×

p [Σ]) ≃
∏

p∈Pf
k
GSΣ(Gm,kp/kp) [cf.

the diagrams of Lemma 3.2, (iii)] coincide. Then the following hold:
(i) adk ∈ k×[Σ] ≃ GSΣ(Gm,k/k) is contained in the image of the nat-

ural homomorphism k× ≃ Gm,k(k)→ k×[Σ] ≃ GSΣ(Gm,k/k).
(ii) If dk is a Σ-integer, then a ∈ k×[Σ] ≃ GSΣ(Gm,k/k) is con-

tained in the image of the natural homomorphism k× ≃ Gm,k(k)→
k×[Σ] ≃ GSΣ(Gm,k/k).

(iii) If dk is a Σ-integer, and we fix an element ã ∈ k× ≃ Gm,k(k)
whose image in k×[Σ] ≃ GSΣ(Gm,k/k) coincides with a [cf. (ii)],
then, for each p ∈ Pf

k whose residue characteristic is ∈ Σ, the differ-
ence ap · ã−1 ∈ k×

p is a root of unity whose order is a (Primes\Σ)-
integer.
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Proof. First, we verify assertion (i). Since the image of a ∈ k×[Σ] ≃
GSΣ(Gm,k/k) in

∏
p∈Pf

k
(k×

p [Σ]) ≃
∏

p∈Pf
k
GSΣ(Gm,kp/kp) is contained

in the image of the natural homomorphism (Af
k)

× ≃ Gm,k(Af
k) →∏

p∈Pf
k
(k×

p [Σ]) ≃
∏

p∈Pf
k
GSΣ(Gm,kp/kp), one verifies easily that the im-

age of a ∈ k×[Σ] by the homomorphism divk[Σ] : k
×[Σ]→ Div(ok)[Σ]

is contain in the Z-submodule Div(ok) ⊆ Div(ok)[Σ]. Thus, it follows
immediately from the definition of dk that there exists b̃ ∈ k× such
that the images b̃ and adk in Div(ok)[Σ] coincide. On the other hand,
since k is either the field of rational numbers or an imaginary quadratic
field, it holds that o×k is finite, which thus implies that o×k → o×k [Σ] is
surjective. Thus, it follows immediately from Lemma 3.3, (i), that, by
replacing b̃ by a suitable element of k×, we conclude that adk coin-
cides with the image of b̃ ∈ k× in k×[Σ]. This completes the proof of
assertion (i).

Assertion (ii) follows immediately from Lemma 3.3, (ii), together
with assertion (i); our assumption that dk is a Σ-integer. Finally, we
verify assertion (iii). One verifies easily that, for each p ∈ Pf

k whose
residue characteristic is ∈ Σ, the kernel of the natural homomor-
phism k×

p → k×
p [Σ] consists of roots of unity in kp whose orders are

(Primes \Σ)-integers. Thus, assertion (iii) follows immediately from
assertion (ii). This completes the proof of assertion (iii). □

Lemma 3.5. In the notation of Lemma 3.4, if Σ = Primes, then the com-
mutative diagram of sets

Gm,k(k) −−−→ GSΣ(Gm,k/k)y y
Gm,k(Af

k) −−−→
∏

p∈Pf
k
GSΣ(Gm,kp/kp)

is cartesian.

Proof. This follows immediately from Lemma 3.4, (ii), (iii). □

4. CONDITIONAL RESULTS ON THE BIRATIONAL SECTION
CONJECTURE

In the present §4, we prove conditional results on the birational
section conjecture for projective smooth curves over number fields.
We maintain the notation of the preceding §3.

First, let us recall the following result that was essentially proved
in [16]. It seems to the author that [at least, a similar result to] the fol-
lowing result is likely to be well-known to experts. Since, however,
the result could not be found in the literature, the author decided to
give a proof.
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Theorem 4.1. Let C be a full formation that contains all finite solvable
groups, k a number field [cf. §0], X a projective smooth curve (respectively,
hyperbolic curve) over k [cf. §0], and s a pro-C birational Galois sec-
tion (respectively, locally geometric pro-C Galois section) of X/k [cf.
Definition 1.2 (respectively, Definitions 1.2; 2.1)]. Write Pf

k for the set of
nonarchimedean primes of k and Xcpt for the [uniquely determined] smooth
compactification of X over k. For each p ∈ Pf

k , write kp for the p-adic com-
pletion of k. Then the following conditions are equivalent:

(1) s is geometric [cf. Definition 1.3].
(2) There exist a subset T ⊆ Pf

k of Pf
k of density 0 and a closed sub-

scheme Z ⊆ Xcpt of Xcpt which is finite over k such that, for each
p ∈ Pf

k\T , the [image of the uniquely determined — cf. Lemma 2.7]
kp-valued point of Xcpt associated to s [cf. Definition 2.6; Proposi-
tion 2.9 (respectively, Definition 2.3)] is contained in Z ⊆ Xcpt.

Proof. First, we verify Theorem 4.1 in the case where s is a locally geo-
metric pro-C Galois section. The implication (1)⇒ (2) is immediate [cf.
also Remark 2.3.1]. Next, we verify the implication (2) ⇒ (1). Now
observe that it follows from the equivalence (1)⇔ (2) of Lemma 1.5
that, to verify the implication (2) ⇒ (1), by replacing k by a suit-
able finite extension of k, we may assume without loss of generality
that k is totally imaginary. Next, observe that, for each open sub-
group H ⊆ ΠC

X/k of ΠC
X/k containing the image of s, if we write Y for

the connected finite étale covering of X corresponding to H ⊆ ΠC
X/k

[thus, ΠC
Y/k = H ⊆ ΠC

X/k], then since the morphism Y → X is finite,
one verifies easily that the pro-C Galois section of Y/k naturally de-
termined by s [which is necessarily locally geometric by the various
definitions involved] satisfies condition (2). Thus, to verify the im-
plication (2) ⇒ (1), by replacing X by such a suitable Y , we may
assume without loss of generality that X is of genus ≥ 2; moreover,
it follows from the equivalence (1) ⇔ (3) of Lemma 1.5 that, to ver-
ify the implication (2) ⇒ (1), by applying the conclusion to various
open subgroups of ΠC

X/k containg the image of s, it suffices to verify
that Xcpt(k) ̸= ∅. In particular, since X is of genus ≥ 2, and [one
verifies easily that] the pro-C Galois section of Xcpt/k naturally de-
termined by s is locally geometric and satisfies condition (2), to verify
that Xcpt(k) ̸= ∅, by replacing X by Xcpt, we may assume without
loss of generality that Xcpt = X .

Now since s is locally geometric, and k is totally imaginary, it follows
immediately from the definition of “X(Ak)

f-ab
• ” [cf. [16], Definition

5.4, (3)] that the [uniquely determined] kp-valued points of X asso-
ciated to s — where p ranges over nonarchimedean primes of k —
form a part of an element of X(Ak)

f-ab
• . Thus, it follows immediately

from [16], Theorem 8.2, together with condition (2), that Z(k) ̸= ∅,
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hence also X(k) ̸= ∅. This completes the proof of the implication
(2) ⇒ (1), hence also of Theorem 4.1 in the case where s is a locally
geometric pro-C Galois section.

Next, we verify Theorem 4.1 in the case where s is a pro-C birational
Galois section. The implication (1) ⇒ (2) is immediate [cf. also Re-
mark 2.6.1]. Next, we verify the implication (2)⇒ (1). First, observe
that it follows immediately from a similar argument to the argument
applied in the proof of Theorem 4.1 in the case where s is a locally
geometric pro-C Galois section that, to verify Theorem 4.1 in the case
where s is a pro-C birational Galois section, by replacing ΠC

k(X)/k by an
open subgroup of ΠC

k(X)/k containing the image of s, we may assume
without loss of generality that X is of genus ≥ 2; moreover, it fol-
lows from the equivalence (1)⇔ (3) of Lemma 1.6 that, to verify the
implication (2) ⇒ (1), by applying the conclusion to various open
subgroups of ΠC

k(X)/k containg the image of s, it suffices to verify
that X(k) ̸= ∅. On the other hand, since X is of genus ≥ 2, in light
of Proposition 2.11, by applying Theorem 4.1 in the case where s is
a locally geometric pro-C Galois section to the pro-C Galois section of
X/k naturally determined by s, we conclude that X(k) ̸= ∅. This
completes the proof of the implication (2)⇒ (1), hence also of Theo-
rem 4.1 in the case where s is a pro-C birational Galois section. □

Theorem 4.1 naturally leads to the following corollary that was
essentially proved by Stoll [cf., e.g., [16], Theorem 8.6].

Corollary 4.2. Let C be a full formation that contains all finite solvable
groups, k a number field [cf. §0], and X a projective smooth curve
(respectively, hyperbolic curve) over k [cf. §0]. Suppose that there exist
an abelian variety A over k and a nonconstant morphism X → A over
k such that both the Mordell-Weil group and the Shafarevich-Tate group of
A/k are finite. Then any pro-C birational Galois section (respectively,
any locally geometric pro-C Galois section) of X/k [cf. Definition 1.2
(respectively, Definitions 1.2; 2.1)] is geometric [cf. Definition 1.3].

Proof. Write

Ŝel
f
(A/k)

def
= lim←−

n

Ker
(
H1(k,A(k)[n])→

∏
p∈Pf

k

H1(kp, A(k))
)

— where the projective limit is over all positive integers n, and A(k)[n]

is the subgroup of A(k) consisting of elements of A(k) that are an-
nihilated by n. Then the well-known natural Gk-equivariant iso-
morphism A(k)[n]

∼→ ∆Primes
A/k /n∆Primes

A/k induces a natural injection

Ŝel
f
(A/k) ↪→ H1(k,∆Primes

A/k ); moreover, it follows immediately from
the various definitions involved that the pro-Primes Kummer ho-
momorphism A(k) → H1(k,∆Primes

A/k ) associated to A [cf., e.g., [6],
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Remark 1.1.4, (iii)] factors through Ŝel
f
(A/k) ⊆ H1(k,∆Primes

A/k ), which

thus implies that we have a natural injection A(k) ↪→ Ŝel
f
(A/k). [Here,

this injectivity is a formal consequence of the well-known fact that
there is no nontrivial divisible element of A(k).] On the other hand,
since the Shafarevich-Tate group of A/k is finite, in light of the fact
that the absolute Galois group of the completion of k at an archimedean
prime is either≃ Z/2Z or≃ {1}, one verifies easily that, for each pos-
itive integer n, the cokernel of the natural homomorphism

A(k)/nA(k) −→ Ker
(
H1(k,A(k)[n])→

∏
p∈Pf

k

H1(kp, A(k))
)

is annihilated by a positive integer which does not depend on n. Thus,
since the Mordell-Weil group of A/k is finite, it follows immediately

that the resulting injection A(k) ↪→ Ŝel
f
(A/k) is an isomorphism.

Let s be a pro-C birational Galois section (respectively, locally geo-
metric pro-C Galois section) of X/k. Write sA for the pro-Primes Ga-
lois section of A/k obtained as the composite

Gk
s−→ ΠC

k(X)/k −→ ΠC
X/k −→ ΠC

A/k = ΠPrimes
A/k

(respectively, Gk
s−→ ΠC

X/k −→ ΠC
A/k = ΠPrimes

A/k )

— where the third (respectively, second) arrow is the homomorphism
over Gk induced by the nonconstant morphism X → A over k. Then
sA naturally determines an element of H1(k,∆Primes

A/k ) [cf., e.g., [6],
Remark 1.1.4, (ii)]; moreover, it follows immediately from Propo-
sition 2.9 (respectively, our assumption that s is locally geometric),
together with the various definitions involved, that this element is

contained in A(k)
∼→ Ŝel

f
(A/k) ⊆ H1(k,∆Primes

A/k ). In particular, since
X → A is nonconstant, and the Mordell-Weil group A(k) is finite, it
follows immediately from the injectivity of the pro-Primes Kummer
homomorphism associated to A ⊗k kp [that is a formal consequence
of the well-known fact that there is no nontrivial divisible element of
A(kp)], together with [6], Remark 1.1.4, (iii), that s satisfies condition
(2) of Theorem 4.1. Thus, it follows from the implication (2) ⇒ (1)
of Theorem 4.1 that s is geometric. This completes the proof of Corol-
lary 4.2. □
Remark 4.2.1. As in the cases of [4], Theorem 17; [16], Theorem 8.6,
one may apply Corollary 4.2 to obtain some examples of projective
smooth curves over number fields for which any prosolvable bira-
tional Galois section [i.e., any pro-C birational Galois section in the
case where C consists of all finite solvable groups] is geometric [cf.,
e.g., the discussions in [4], Remark 18, (1); [16], Example 8.7; [16],
Corollary 8.8].
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Remark 4.2.2. The observation given in the proof of Corollary 4.2
was related to the author by A. Tamagawa and S. Yasuda.

Definition 4.3. Suppose that X is a hyperbolic curve over [the number
field] k. Let s be a pro-C Galois section of X/k [cf. Definition 1.2].

(i) We shall say that s is cuspidal if the image of s is contained in a
decomposition subgroup of ΠC

X/k associated to a cusp of X/k.
(ii) We shall say that s is unramified almost everywhere if the com-

posite
Gk

s−→ ΠC
X/k −→ Aut(∆C

X/k)

— where the second arrow is the action of ΠC
X/k on ∆C

X/k ob-
tained by conjugation — is unramified for all but finitely many
p ∈ Pf

k .

Remark 4.3.1. In the notation of Definition 4.3, it is immediate that
if s is cuspidal [cf. Definition 4.3, (i)], then s is geometric [cf. Defini-
tion 1.3].

Proposition 4.4. Suppose that Σ is finite. Then any geometric [cf. Def-
inition 1.3] pro-Σ Galois section [cf. Definition 1.2] of a hyperbolic curve
over a number field is either cuspidal [cf. Definition 4.3, (i)] or unrami-
fied almost everywhere [cf. Definition 4.3, (ii)].

Proof. This follows immediately from Proposition A.7. □

Next, we prove the main result of the present paper.

Theorem 4.5. Let C be a full formation, k either the field of rational
numbers or an imaginary quadratic field, X a projective smooth
curve over k [cf. §0], and s a pro-C birational Galois section of X/k

[cf. Definition 1.2]. Write ok for the ring of integers of k and Pf
k for the set

of nonarchimedean primes of k. For each p ∈ Pf
k , write kp for the p-adic

completion of k and op for the ring of integers of kp. Write, moreover, Af
k

for the finite part of the adele ring of k, i.e.,

Af
k

def
=

{
(ap)p∈Pf

k
∈

∏
p∈Pf

k

kp

∣∣∣ ap ∈ op for all but finitely many p
}
.

Suppose that the following three conditions are satisfied:
(a) The pro-C birational Galois section s is locally geometric [cf. Def-

inition 2.5].
(b) Σ(C) [cf. §0] is cofinite, i.e., Primes \ Σ(C) [cf. §0] is finite.
(c) Pic(ok)

def
= Pic(Spec ok) is annihilated by a Σ(C)-integer [cf. §0].

[Note that it follows from Proposition 2.9 that if Σ(C) = Primes, or, equiv-
alently [cf. §0], C contains all finite solvable groups, then the above three
conditions are satisfied.] Then the following conditions are equivalent:



CONDITIONAL RESULTS ON BIRATIONAL SECTION CONJECTURE 27

(1) The pro-C birational Galois section s is geometric [cf. Defini-
tion 1.3].

(2) The following two conditions are satisfied:
(2-i) There exist a finite morphism ϕ : X → P1

k over k and, for each
p ∈ Pf

k , a kp-valued point xp of X associated to s [cf. Defini-
tion 2.6; condition (a)] [note that if the residue characteristic
of p is ∈ Σ(C), then the kp-valued point xp of X associated
to s is uniquely determined — cf. Lemma 2.7] such that the
composite

Spec kp
xp−→ X

ϕ−→ P1
k

determines a kp-valued point of P1
k \ {0, 1,∞} ⊆ P1

k.
(2-ii) For each open subscheme U ⊆ X of X which is a hyperbolic

curve over k [cf. §0], there exists a prime number lU ∈ Σ(C)
contained in Σ(C) such that the pro-lU Galois section of U/k
[cf. Definition 1.2] naturally determined by s is either cusp-
idal [cf. Definition 4.3, (i)] or unramified almost every-
where [cf. Definition 4.3, (ii)].

(3) There exist a finite morphism ϕ : X → P1
k over k and an Af

k-valued
point xA of X associated to s [cf. Definition 2.6; condition (a)]

[note that if Σ(C) = Primes, then the Af
k-valued point xA of X

associated to s is uniquely determined — cf. Lemma 2.7] such that
the composite

SpecAf
k

xA−→ X
ϕ−→ P1

k

determines an Af
k-valued point of P1

k \ {0, 1,∞} ⊆ P1
k.

(4) There exist a finite subset T ⊆ Pf
k of Pf

k and a closed subscheme
Z ⊆ X of X which is finite over k such that, for each p ∈ Pf

k \ T
whose residue characteristic is ∈ Σ(C), the [image of the uniquely
determined — cf. Lemma 2.7] kp-valued point xp of X associated to
s [cf. Definition 2.6; condition (a)] is contained in Z ⊆ X .

Proof. The implication (1) ⇒ (2) follows immediately from Proposi-
tion 4.4, together with Remark 2.6.1. Next, we verify the implication
(2)⇒ (3). Suppose that condition (2) is satisfied. Then, by condition
(2-i), for each p ∈ Pf

k , the composite

Spec kp
xp−→ X

ϕ−→ P1
k

determines a kp-valued point of P1
k \ {0, 1,∞}. Thus, to verify the

implication (2) ⇒ (3), it suffices to verify that the above kp-valued
point of P1

k \{0, 1,∞} obtained as the composite ϕ◦xp determines an
op-valued point of P1

op \ {0, 1,∞} for all but finitely many p ∈ Pf
k . Write

U ⊆ X for the open subscheme of X obtained as the inverse image
of P1

k \ {0, 1,∞} ⊆ P1
k by ϕ. Then, by condition (2-ii), there exists
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a prime number lU ∈ Σ(C) contained in Σ(C) such that the pro-lU
Galois section sU of U/k obtained as the composite

Gk
s−→ ΠC

k(X)/k −→ Π
{lU}
U/k

is either cuspidal or unramified almost everywhere. Write sP for the pro-
lU Galois section of P1

k \ {0, 1,∞} obtained as the composite

Gk
s−→ ΠC

k(X)/k −→ Π
{lU}
U/k −→ Π

{lU}
(P1

k\{0,1,∞})/k

— where the third arrow is the homomorphism over Gk induced by
ϕ. Then since the morphism U → P1

k \{0, 1,∞} induced by ϕ is finite,
one verifies easily that the homomorphism Π

{lU}
U/k → Π

{lU}
(P1

k\{0,1,∞})/k

maps injectively any cuspidal decomposition subgroup of Π{lU}
U/k as-

sociated to a cusp of U/k to a cuspidal decomposition subgroup of
Π

{lU}
(P1

k\{0,1,∞})/k associated to a cusp of P1
k \ {0, 1,∞}. Thus, it follows

immediately that if sU is cuspidal, then sP is cuspidal. On the other
hand, by applying Lemma 1.4 [to “ϕ ◦ xp” for p ∈ Pf

k whose residue
characteristic is = lU ], it follows immediately from condition (2-i)
that sP is not cuspidal. Thus, we conclude that sU is not cuspidal,
hence also [by condition (2-ii)] unramified almost everywhere. In par-
ticular, it follows Proposition A.10, (ii), that sP is unramified almost
everywhere. Therefore, it follows immediately from Proposition A.7,
together with condition (2-i), that the kp-valued point of P1

k obtained
as the composite ϕ ◦xp determines an op-valued point of P1

op \ {0, 1,∞}
for all but finitely many p ∈ Pf

k . This completes the proof of the impli-
cation (2)⇒ (3).

Next, we verify the implication (3)⇒ (4). Suppose that condition
(3) is satisfied. Write sG for the pro-Σ(C) Galois section of Gm,k

def
=

P1
k \ {0,∞} over k obtained as the composite

Gk
s→ ΠC

k(X)/k → ΠC
k(P1

k)/k
↠ ΠC

Gm,k/k
= Π

Σ(C)
Gm,k/k

— where the second arrow is the homomorphism over Gk induced
by ϕ — and tG for the pro-Σ(C) Galois section of Gm,k over k obtained
as the composite

Gk
s→ ΠC

k(X)/k → ΠC
k(P1

k)/k

∼→ ΠC
k(P1

k)/k
↠ ΠC

Gm,k/k
= Π

Σ(C)
Gm,k/k

— where the second arrow is the homomorphism over Gk induced
by ϕ, and the third arrow is the automorphism over Gk induced
by the automorphism of P1

k over k given by “u 7→ 1 − u”. Then it
follows immediately from condition (3) that there exists an element
(ap)p∈Pf

k
∈ (Ãf

k)
× such that (ap)p∈Pf

k
, (1− ap)p∈Pf

k
∈ (Af

k)
× ≃ Gm,k(Af

k),
and, moreover, the respective images of the pro-Σ(C) Galois sec-
tions sG, tG ∈ GSΣ(C)(Gm,k/k) ≃ k×[Σ(C)] [cf. Lemma 3.2, (i), (ii)]
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in the set
∏

p∈Pf
k
GSΣ(C)(Gm,kp/kp) ≃

∏
p∈Pf

k
(k×

p [Σ(C)]) [cf. the di-
agrams of Lemma 3.2, (iii)] coincide with the respective images of
the elements (ap)p∈Pf

k
, (1 − ap)p∈Pf

k
∈ (Af

k)
× ≃ Gm,k(Af

k) in the set∏
p∈Pf

k
(k×

p [Σ(C)]) ≃
∏

p∈Pf
k
GSΣ(C)(Gm,kp/kp). Thus, it follows from

Lemma 3.4, (ii), (iii); together with condition (c), that

(∗): there exist ãs, ãt ∈ k× such that, for p ∈ Pf
k , if we

write up
def
= ap · ã−1

s , vp
def
= (1 − ap) · ã−1

t ∈ k×
p , and the

residue characteristic of p is ∈ Σ(C), then up, vp are roots
of unity of kp whose orders are (Primes\Σ(C))-integers.

Now let us observe that, for p ∈ Pf
k , the pair (up, vp) satisfies the

equation
1 = ãs · up + ãt · vp .

Thus, it follows immediately from [2], Theorem 1.1, together with
condition (b), that the set {(up, vp)}p∈Pf

k
, hence also the set {up}p∈Pf

k
,

is finite. In particular, since ap = ãs · up [cf. (∗)], it follows immedi-
ately that the pro-C birational Galois section of P1

k/k obtained as the
composite

Gk
s−→ ΠC

k(X)/k −→ ΠC
k(P1

k)/k

— where the second arrow is the homomorphism over Gk induced
by ϕ — satisfies condition (4). Therefore, since ϕ is finite, one verifies
easily that the pro-C birational Galois section s satisfies condition (4).
This completes the proof of the implication (3)⇒ (4).

Finally, we verify the implication (4) ⇒ (1). Suppose that condi-
tion (4) is satisfied. Let us fix an element p0 ∈ Pf

k \ T of Pf
k \ T such

that the residue characteristic of p0 is ∈ Σ(C) [note that, by condi-
tion (b), such a p0 always exists] and write r(p0) for the cardinality of
the set of roots of unity of kp0 . Now observe that, for any open sub-
group H ⊆ ΠC

k(X)/k of ΠC
k(X)/k containing the image of s, if we write

Y for the normalization of X in the finite extension of k(X) corre-
sponding to H ⊆ ΠC

k(X)/k [thus, ΠC
k(Y )/k = H ⊆ ΠC

k(X)/k], then since
the morphism Y → X is finite, the pro-C birational Galois section
of Y/k determined by s satisfies condition (4) relative to the finite
subset “T” ⊆ Pf

k appearing in condition (4). Thus, it follows from
the equivalence (1) ⇔ (3) of Lemma 1.6 that, to verify condition (1),
by applying the conclusion to various such H’s, it suffices to verify
that X admits a k(ζr(p0))-valued point — where we use the notation
ζr(p0) ∈ k to denote a primitive r(p0)-th root of unity.

For each p ∈ Pf
k , let us fix a kp-valued point xp of X associated to s

[cf. condition (a)]. Now since X is projective, there exists a closed im-
mersion X ↪→ PN

k over k for some positive integer N . Then it follows
immediately from condition (4) that there exists a hyperplane H ⊆
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PN
k defined over k such that, for any p ∈ Pf

k , [the image of] the fixed
kp-valued point xp of X is contained in X \ (X ∩H) ⊆ PN

k \H ≃ AN
k .

Moreover, again by condition (4) — by considering a suitable auto-
morphism of A1

k over k — we may assume without loss of generality
that, for each i ∈ {1, · · · , N} and p ∈ Pf

k , the kp-valued point of A1
k

obtained as the composite

Spec kp
xp→ X \ (X ∩H) ↪→ PN

k \H ≃ AN
k

pri→ A1
k

factors through Gm,k
def
= A1

k \ {0} ⊆ A1
k. Therefore, we conclude that

there exist an open subscheme U ⊆ X of X and a closed immersion
U ↪→ Gm,k ×k · · · ×k Gm,k over k such that the Ãf

k-valued point xA
def
=

(xp)p∈Pf
k

of X determined by the fixed kp-valued points xp lies on U .
On the other hand, again by condition (4), one verifies easily that,
for each i ∈ {1, · · · , N}, the Ãf

k-valued point of Gm,k obtained as the
composite

Spec Ãf
k

xA→ U ↪→ Gm,k ×k · · · ×k Gm,k
pri→ Gm,k

determines an Af
k-valued point of Gm,k. Thus, it follows immediately

from Lemma 3.4, (ii), (iii); condition (c), that, for each i ∈ {1, · · · , N},
the kp0-valued point of Gm,k obtained as the composite

Spec kp0
xp0→ U ↪→ Gm,k ×k · · · ×k Gm,k

pri→ Gm,k

determines a k(ζr(p0))-valued point of Gm,k. In particular, since U ↪→
Gm,k ×k · · · ×k Gm,k is a closed immersion, one verifies easily that the
kp0-valued point xp0 of U , hence also X , determines a k(ζr(p0))-valued
point. This completes the proof of the implication (4) ⇒ (1), hence
also of Theorem 4.5. □
Remark 4.5.1.

(i) Theorem 4.5 is a result without any assumption on the finiteness
of a Shafarevich-Tate group.

(ii) The equivalence (1) ⇔ (3) of Theorem 4.5 may be regarded
as a tripod analogue of [4], Theorem 17. The condition that k
is either the field of rational numbers or an imaginary qua-
dratic field [i.e., the assumption that o×k is finite] in the state-
ment of Theorem 4.5 may be regarded as an analogue of the
finiteness condition on the Mordell-Weil group in the state-
ment of [4], Theorem 17; the condition that Pic(ok) is annihi-
lated by a Σ(C)-integer in the statement of Theorem 4.5 may
be regarded as an analogue of the finiteness condition on the
Shafarevich-Tate group in the statement of [4], Theorem 17.
On the other hand, since any abelian variety is proper, in the
case of [4], Theorem 17, the condition corresponding to our
condition that the birational Galois section determines [not
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only an Ãf
k-valued point but also] an Af

k-valued point of the
tripod P1

k \ {0, 1,∞} in Theorem 4.5 is automatically satisfied.
(iii) If C contains all finite solvable groups, then Theorem 4.1 im-

plies the equivalence (1)⇔ (4) of Theorem 4.5.
(iv) One verifies easily that the proof of the equivalence (1)⇔ (4)

of Theorem 4.5 gives us an alternative proof of Corollary 4.2
in the case where s is a pro-C birational Galois section, and k is
either the field of rational numbers or an imaginary quadratic field.
Indeed, in the notation of Corollary 4.2, it follows from the
argument given in the proof of Corollary 4.2 that every pro-
C birational Galois section s of X/k satisfies condition (4) of
Theorem 4.5. Thus, it follows from the equivalence (1) ⇔ (4)
of Theorem 4.5 that s is geometric.

Corollary 4.6. Let k be either the field of rational numbers or an imag-
inary quadratic field and k an algebraic closure of k. Write Gk

def
=

Gal(k/k) and Pf
k for the set of nonarchimedean primes of k. For each

p ∈ Pf
k , write kp for the p-adic completion of k. Then the following as-

sertions are equivalent:

(1) Any pro-Primes birational Galois section [cf. Definition 1.2] of
any projective smooth curve over k [cf. §0] is geometric [cf. Defi-
nition 1.3].

(2) Any pro-Primes birational Galois section of P1
k/k is geometric.

(3) Any pro-Primes birational Galois section s of P1
k/k satisfies the

following two conditions:
(3-i) There exist three distinct elements a, b, c ∈ P1

k(k) of P1
k(k)

such that, for any nonarchimedean prime p of k, the [uniquely
determined — cf. Lemma 2.7] kp-valued point of P1

k associ-
ated to s [cf. Definition 2.6; Proposition 2.9] is ̸∈ {a, b, c} ⊆
(P1

k(k) ⊆) P1
k(kp).

(3-ii) There exists a prime number l such that the pro-l Galois section
of P1

k \ {0, 1,∞} [cf. Definition 1.2] naturally determined by
s is either cuspidal [cf. Definition 4.3, (i)] or unramified
almost everywhere [cf. Definition 4.3, (ii)].

(4) Any pro-Primes birational Galois section s of P1
k/k satisfies the

following two conditions:
(4-i) There exist three distinct elements a, b, c ∈ P1

k(k) of P1
k(k)

such that, for any nonarchimedean prime p of k, the [uniquely
determined — cf. Lemma 2.7] kp-valued point of P1

k associ-
ated to s [cf. Definition 2.6; Proposition 2.9] is ̸∈ {a, b, c} ⊆
(P1

k(k) ⊆) P1
k(kp).

(4-ii) Write sP for the pro-Primes Galois section of P1
k \ {0, 1,∞}

naturally determined by s. Then it holds either that sP is cus-
pidal, or that there exists a prime number l such that the l-adic
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Galois representation

Gk
sP−→ ΠPrimes

(P1
k\{0,1,∞})/k −→ GL2(Zl)

— where we refer to Definition 1.1, (ii), concerning the profi-
nite group ΠPrimes

(P1
k\{0,1,∞})/k; the second arrow ΠPrimes

(P1
k\{0,1,∞})/k →

GL2(Zl) is the l-adic representation determined by the Le-
gendre family of elliptic curves over P1

k \ {0, 1,∞}, i.e.,
the elliptic curve over P1

k \ {0, 1,∞} = Spec k[u±1, (1−u)−1]
determined by the equation “y2 = x(x − 1)(x − u)” — is
unramified at all but finitely many p ∈ Pf

k .

Proof. The implications (1) ⇒ (2) ⇒ (4) are immediate [cf. also Re-
mark 2.6.1]. On the other hand, the implication (2) ⇒ (1) follows
immediately from the fact that any projective smooth curve over k
may be obtained as the normalization of P1

k in the finite extension of
k(P1

k) corresponding to an open subgroup of ΠPrimes

k(P1
k)/k

. Moreover, let
us observe that it follows immediately from Proposition 4.4, together
with Remark 2.6.1, that the implications (2)⇒ (3) holds.

Finally, we verify the implication (3) ⇒ (2) (respectively, (4) ⇒
(2)). Suppose that assertion (3) (respectively, assertion (4)) holds. Let
s be a pro-Primes birational Galois section of P1

k/k. For each nonar-
chimedean prime p of k, write xp for the [uniquely determined] kp-
valued point of P1

k associated to s. Then it follows from condition
(3-i) (respectively, condition (4-i)) that, by considering a suitable au-
tomorphism of P1

k over k, we may assume without loss of generality
that, for any p ∈ Pf

k , xp ∈ P1
k(kp) is ̸∈ {0, 1,∞} ⊆ P1

k(kp). Thus, for
any prime number l, by applying Lemma 1.4 [to “xp” for p ∈ Pf

k

whose residue characteristic is = l], it follows immediately that the
pro-l Galois section sP,{l} of P1

k \ {0, 1,∞} obtained as the composite

Gk
s−→ ΠPrimes

k(P1
k)/k
−→ Π

{l}
(P1

k\{0,1,∞})/k ,

hence also the pro-Primes Galois section sP of P1
k \{0, 1,∞} obtained

as the composite

Gk
s−→ ΠPrimes

k(P1
k)/k
−→ ΠPrimes

(P1
k\{0,1,∞})/k ,

is not cuspidal. Thus, by condition (3-ii) (respectively, condition (4-
ii)), we conclude that there exists a prime number l0 such that sP,{l0}
is unramified almost everywhere (respectively, the l0-adic Galois repre-
sentation obtained as the displayed composite of condition (4-ii) is
unramified at all but finitely many p ∈ Pf

k). Thus, since [we have as-
sumed that] for any p ∈ Pf

k , xp ∈ P1
k(kp) is ̸∈ {0, 1,∞} ⊆ P1

k(kp),
it follows immediately from Proposition A.7 (respectively, [14], The-
orem 1) that the birational pro-Primes Galois section s of P1

k/k sat-
isfies condition (3) of Theorem 4.5, hence also [by the equivalence
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(1) ⇔ (3) of Theorem 4.5] that s is geometric. This completes the
proof of the implication (3) ⇒ (2) (respectively, (4) ⇒ (2)), hence
also of Corollary 4.6. □

APPENDIX A. RAMIFICATION OF GALOIS SECTIONS

In the present §A, we discuss the ramification of Galois sections of
hyperbolic curves over p-adic local fields. In the present §A, let Σ ⊆
Primes be a nonempty subset of Primes [cf. §0], k a p-adic local field
for some prime number p [cf. §0], k an algebraic closure of k, and X

a hyperbolic curve over k [cf. §0]. For a finite extension k′ (⊆ k) of k,
write

Gk′
def
= Gal(k/k′) ,

Ik′ ⊆ Gk′

for the inertia subgroup of Gk′ , and

ok′ ⊆ k′

for the ring of integers of k′. Write, moreover,

Xcpt

for the [uniquely determined] smooth compactification of X over k;

∆Σ
X/k

for the pro-Σ geometric fundamental group of X , i.e., the maximal pro-Σ
quotient of π1(X ⊗k k);

ΠΣ
X/k

for the geometrically pro-Σ fundamental group of X , i.e., the quotient
of π1(X) by the kernel of the natural surjection π1(X ⊗k k) ↠ ∆Σ

X/k.
Thus, we have an exact sequence of profinite groups [cf. [3], Exposé
IX, Théorème 6.1]

1 −→ ∆Σ
X/k −→ ΠΣ

X/k −→ Gk −→ 1 .

Let s be a pro-Σ Galois section of X/k [cf. [6], Definition 1.1, (i)], i.e.,
a section of the above exact sequence of profinite groups.

Definition A.1. We shall say that s is unramified (respectively, poten-
tially unramified) if the image of the composite

Ik −→ Gk
s−→ ΠΣ

X/k −→ Aut(∆Σ
X/k)

— where the third arrow is the action of ΠΣ
X/k on ∆Σ

X/k obtained by
conjugation — is trivial (respectively, finite).

Proposition A.2. The following hold:
(i) If p ∈ Σ, then any pro-Σ Galois section of X/k [cf. [6], Definition

1.1, (i)] is not potentially unramified, hence also not unrami-
fied [cf. Definition A.1].
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(ii) If X does not admit good reduction over ok [cf. §0], then any
pro-Σ Galois section of X/k is not unramified.

Proof. Let s be a pro-Σ Galois section of X/k. First, we verify asser-
tion (i). Now one verifies easily that there exists a characteristic open
subgroup H ⊆ ∆Σ

X/k of ∆Σ
X/k such that the connected finite étale cov-

ering of X corresponding to the open subgroup H · Im(s) of ΠΣ
X/k

topologically generated by H and Im(s) is of genus≥ 1. On the other
hand, since H ⊆ ∆Σ

X/k is characteristic, and [as is well-known] ∆Σ
X/k is

slim [cf. §0], it follows from [7], Lemma 5, that we have a natural in-
jection Aut(∆Σ

X/k) ↪→ Aut(H). Thus, to verify assertion (i), by replac-
ing ΠΣ

X/k by the open subgroup H · Im(s), we may assume without
loss of generality that Xcpt is of genus ≥ 1. Next, let us observe that,
as is well-known, since p ∈ Σ, and Xcpt is of genus ≥ 1, there exist
Gk-equivariant isomorphisms

H2(∆Σ
Xcpt/k,Zp) ≃ H2(Xcpt ⊗k k,Zp) ≃ Zp(1)

— where “(1)” denotes a Tate twist. In particular, [the restriction to Ik
of] the p-adic cyclotomic representation χp : Ik → Aut(Zp(1)) factors
through the displayed composite of Definition A.1. On the other
hand, one may verify easily that the image of χp is infinite. Thus, s is
not potentially unramified. This completes the proof of assertion (i).

Next, we verify assertion (ii). Suppose that X does not admit good
reduction over ok. Now it follows from assertion (i) that, to verify
assertion (ii), we may assume without loss of generality that p ̸∈ Σ.
Then it follows immediately from [17], Theorem 0.8, that the image
of the composite

Ik −→ Aut(∆Σ
X/k) −→ Out(∆Σ

X/k)

— where the first arrow is the displayed composite of Definition A.1
— is nontrivial, hence that s is not unramified. This completes the
proof of assertion (ii). □

Definition A.3. If X admits good reduction X over ok [cf. §0], then we
shall write

(π1(X) ↠ ΠΣ
X/k ↠)ΠΣ-ét

X/k

for the quotient of π1(X) by the normal closed subgroup topolog-
ically normally generated by the kernels of the natural surjections
π1(X) ↠ ΠΣ

X/k, π1(X) ↠ π1(X ). Thus, the natural surjection ΠΣ
X/k ↠

Gk determines a surjection ΠΣ-ét
X/k ↠ Gk/Ik. We shall write

∆Σ-ét
X/k
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for the kernel of the surjection ΠΣ-ét
X/k ↠ Gk/Ik. Thus, we have a com-

mutative diagram of profinite groups

1 −−−→ ∆Σ
X/k −−−→ ΠΣ

X/k −−−→ Gk −−−→ 1y y y
1 −−−→ ∆Σ-ét

X/k −−−→ ΠΣ-ét
X/k −−−→ Gk/Ik −−−→ 1

— where the horizontal sequences are exact.

Remark A.3.1. In the notation of Definition A.3, as is well-known, if
p ̸∈ Σ, then the left-hand vertical arrow ∆Σ

X/k → ∆Σ-ét
X/k of the com-

mutative diagram of Definition A.3 is an isomorphism. In particular,
the right-hand upper horizontal arrow ΠΣ

X/k → Gk induces an iso-
morphism Ker(ΠΣ

X/k ↠ ΠΣ-ét
X/k)

∼→ Ik, and the right-hand square of the
commutative diagram of Definition A.3 is cartesian.

Proposition A.4. The following conditions are equivalent:
(1) s is unramified [cf. Definition A.1].
(2) p ̸∈ Σ, X admits good reduction over ok [cf. §0], and the image

of the composite

Ik ↪→ Gk
s→ ΠΣ

X/k ↠ ΠΣ-ét
X/k

[cf. Definition A.3] is trivial.
(3) p ̸∈ Σ, X admits good reduction over ok, and the composite

Ik ↪→ Gk
s→ ΠΣ

X/k

determines an isomorphism

Ik
∼−→ Ker(ΠΣ

X/k ↠ ΠΣ-ét
X/k) .

(4) p ̸∈ Σ, and, for any open subgroup H ⊆ ΠΣ
X/k of ΠΣ

X/k containing
the image of s, the connected finite étale covering of X correspond-
ing to H ⊆ ΠΣ

X/k admits good reduction over ok.

Proof. First, we verify the equivalence (1) ⇔ (2). It follows immedi-
ately from Proposition A.2 that both (1) and (2) imply that p ̸∈ Σ, and
that X admits good reduction over ok. Thus, suppose that these condi-
tions are satisfied. Write J for the image of the displayed composite
of condition (2). Then it follows immediately from the existence of
the commutative diagram of Definition A.3 that J ⊆ ∆Σ-ét

X/k ⊆ ΠΣ-ét
X/k.

Thus, it follows immediately from Remark A.3.1 that the displayed
composite Ik → Aut(∆Σ

X/k) of Definition A.1 factors as

Ik ↠ J ↪→ ∆Σ-ét
X/k → Aut(∆Σ-ét

X/k)
∼← Aut(∆Σ

X/k)

— where the third arrow is the action of ∆Σ-ét
X/k on ∆Σ-ét

X/k obtained by
conjugation. Now since, as is well-known, ∆Σ

X/k

∼→ ∆Σ-ét
X/k is center-

free, the third arrow of this composite is injective. Therefore, it follows
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immediately that the condition that s is unramified is equivalent to the
condition that J = {1}. This completes the proof of the equivalence
(1)⇔ (2).

The equivalence (2)⇔ (3) follows immediately from Remark A.3.1.
Next, we verify the implication (3) ⇒ (4). Suppose that condition
(3) is satisfied. Then it is immediate that if an open subgroup of ΠΣ

X/k

contains the image of s, then it arises from an open subgroup of ΠΣ-ét
X/k;

thus, it follows immediately from the various definitions involved
that the corresponding connected finite étale covering of X admits
good reduction over ok. This completes the proof of the implication
(3)⇒ (4).

Finally, we verify the implication (4) ⇒ (3). Suppose that con-
dition (4) is satisfied. Let H ⊆ ΠΣ

X/k be an open subgroup of ΠΣ
X/k

containing the image of s. Write Y → X for the connected finite
étale covering of X corresponding to H ⊆ ΠΣ

X/k; thus, ΠΣ
Y/k = H ⊆

ΠΣ
X/k. Then it follows from condition (4) that Y admits good reduc-

tion over ok. Thus, it follows from [9], Lemma 8.3, that the mor-
phism Y → X extends to a morphism between their [uniquely deter-
mined] smooth models. In particular, it follows immediately from the
definitions of ΠΣ-ét

X/k and ΠΣ-ét
Y/k that the inclusion ΠΣ

Y/k ⊆ ΠΣ
X/k deter-

mines an inclusion Ker(ΠΣ
Y/k ↠ ΠΣ-ét

Y/k ) ⊆ Ker(ΠΣ
X/k ↠ ΠΣ-ét

X/k). Thus, it
follows immediately from Remark A.3.1 that Ker(ΠΣ

Y/k ↠ ΠΣ-ét
Y/k ) =

Ker(ΠΣ
X/k ↠ ΠΣ-ét

X/k), hence that Ker(ΠΣ
X/k ↠ ΠΣ-ét

X/k) ⊆ ΠΣ
Y/k = H .

Therefore, by considering the intersection of such H’s, we obtain
that Ker(ΠΣ

X/k ↠ ΠΣ-ét
X/k) ⊆ Im(s). Thus, again by Remark A.3.1, we

conclude that condition (3) holds. This completes the proof of the
implication (4)⇒ (3), hence also of Proposition A.4. □

Lemma A.5. Suppose that p ̸∈ Σ, and that X admits good reduction
over ok [cf. §0]. Let Π ⊆ ΠΣ-ét

X/k be an open subgroup of ΠΣ-ét
X/k. Write

so for the composite Gk
s→ ΠX/k ↠ ΠΣ-ét

X/k, k′ (⊆ k) for the [necessarily
unramified] finite extension of k corresponding to the image of the com-
posite Π ↪→ ΠΣ-ét

X/k ↠ Gk/Ik, Y → X for the connected finite étale cov-
ering of X corresponding to the open subgroup Π ⊆ ΠΣ-ét

X/k, and Y cpt for
the [uniquely determined] smooth compactification of Y over k′. [Here, it
follows immediately from the various definitions involved that Y is a hy-
perbolic curve over k′; Y , hence also Y cpt, admits good reduction over
ok′ ; ΠΣ-ét

Y/k′ = Π ⊆ ΠΣ-ét
X/k.] Suppose, moreover, that Y is of genus ≥ 2. Then

the image of the composite

so(Ik) ∩∆Σ-ét
Y/k′ ↪→ ∆Σ-ét

Y/k′ ↠ ∆Σ-ét
Y cpt/k′ ↠ (∆Σ-ét

Y cpt/k′)
ab

— where the second arrow is the surjection induced by the open immersion
Y ↪→ Y cpt — is trivial.
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Proof. This follows immediately from a similar argument to the ar-
gument used in the proof of assertion (ii) in the proof of [6], Lemma
3.3. □

Proposition A.6. Suppose that p ̸∈ Σ, and that X admits good reduc-
tion over ok [cf. §0]. Then the following conditions are equivalent:

(1) s is ramified, i.e., not unramified [cf. Definition A.1].
(2) The image of the composite

Ik ↪→ Gk
s→ ΠΣ

X/k ↠ ΠΣ-ét
X/k

is a nontrivial closed subgroup of a cuspidal inertia sub-
group of ΠΣ-ét

X/k associated to a cusp of X/k.
(3) The image of the composite

Ik ↪→ Gk
s→ ΠΣ

X/k ↠ ΦΣ
X/k

— where ΦΣ
X/k is the quotient of ΠΣ

X/k defined in [7], Definition
1, (iv), i.e., the quotient of ΠΣ

X/k by the kernel ZΠΣ
X/k

(∆Σ
X/k) of the

homomorphism ΠΣ
X/k → Aut(∆Σ

X/k) obtained by conjugation — is
a nontrivial closed subgroup of a cuspidal inertia subgroup
of ΦΣ

X/k associated to a cusp of X/k.
(4) There exists an element l ∈ Σ of Σ such that the pro-l Galois section

of X/k [cf. [6], Definition 1.1, (i)] naturally determined by s is
ramified.

Proof. First, we verify the equivalence (1) ⇔ (2). It follows from the
equivalence (1) ⇔ (2) of Lemma A.4 that s is ramified if and only
if the image of the composite of condition (2) is nontrivial. On the
other hand, it follows immediately from the existence of the com-
mutative diagram of Definition A.3, together with Remark A.3.1,
that the composite of condition (2) factors through the maximal pro-
Σ quotient of Ik, which is, as is well-known, procyclic. Thus, it fol-
lows immediately from Lemma A.5, together with [5], Lemma 1.6,
that the equivalence (1) ⇔ (2) holds. This completes the proof of
the equivalence (1) ⇔ (2). Next, let us observe that the implication
(3)⇒ (1) follows immediately from the various definitions involved
[cf. also the definition of the quotient ΦΣ

X/k]. Next, we verify the im-
plication (2) ⇒ (3). Since, as is well-known, ∆Σ

X/k is slim [cf. §0],
it follows from [7], Proposition 6, (ii), together with Remark A.3.1,
that we have a sequence of natural surjections ΠΣ

X/k ↠ ΠΣ-ét
X/k ↠ ΦΣ

X/k,
which induces an injection ∆Σ

X/k

∼→ ∆Σ-ét
X/k ↪→ ΦΣ

X/k. Thus, one veri-
fies easily that the implication (2) ⇒ (3) holds. This completes the
proof of the implication (2)⇒ (3). Finally, we verify the equivalence
(1) ⇔ (4). For each nonempty subset Σ′ ⊆ Σ of Σ, write JΣ′ for the
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image of the composite

Ik ↪→ Gk
s→ ΠΣ

X/k ↠ ΠΣ′

X/k ↠ ΠΣ′-ét
X/k .

Then it follows immediately from the verified equivalence (1) ⇔
(2), together with the well-known structure of the maximal pro-Σ
quotient of the fundamental group of a smooth curve over an alge-
braically closed field of characteristic ̸∈ Σ, that, for each nonempty
subset Σ′ ⊆ Σ of Σ, the image JΣ′ is procyclic, and, moreover, JΣ′

is the maximal pro-Σ′ quotient of JΣ [relative to the natural surjection
JΣ ↠ JΣ′]. In particular, we conclude that JΣ = {1} if and only
if J{l} = {1} for any l ∈ Σ, i.e., the equivalence (1) ⇔ (4) holds.
This completes the proof of the equivalence (1) ⇔ (4), hence also of
Proposition A.6. □
Proposition A.7. Suppose that p ̸∈ Σ, and that s is geometric [cf. [6],
Definition 1.1, (iii)]. Let x ∈ Xcpt(k) be a k-rational point of Xcpt such
that a decomposition subgroup of ΠΣ

X/k associated to x contains the image
of s. Consider the following three conditions:

(1) s is unramified [cf. Definition A.1].
(2) x ∈ X(k), and the hyperbolic curve X \ {x}, hence also the hyper-

bolic curve X , over k admits good reduction over ok [cf. §0].
(3) x ̸∈ X(k).

Then we have implications

(2) =⇒ (1) =⇒ either (2) or (3) .

In particular, if x ∈ X(k), then we have an equivalence

(1)⇐⇒ (2) .

Proof. To verify Proposition A.7, it is immediate that it suffices to ver-
ify that if x ∈ X(k), then condition (1) is equivalent to condition (2).
Thus, suppose that x ∈ X(k). Now let us observe that it follows
immediately from Proposition A.2, (ii), that both (1) and (2) imply
that X admits good reduction over ok. Thus, we may assume without
loss of generality that X admits good reduction over ok. Moreover,
observe that it follows immediately from the equivalence (1) ⇔ (4)
of Proposition A.6 that, to verify the equivalence (1) ⇔ (2), by con-
sidering the pro-l Galois section of X/k naturally determined by s —
where l ranges over elements of Σ — we may assume without loss of
generality that Σ is of cardinality 1. On the other hand, since Σ is of
cardinality 1, it follows immediately from [7], Proposition 19, (ii), that
the kernel of the composite Gk

s→ ΠΣ
X/k → Aut(∆Σ

X/k) coincides with
the kernel of the pro-Σ outer Galois representation associated to the
hyperbolic curve X \{x} over k. Thus, the equivalence (1)⇔ (2) fol-
lows immediately from [17], Theorem 0.8. This completes the proof
of Proposition A.7. □
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Proposition A.8. Suppose that p ̸∈ Σ, that X admits good reduction
over ok [cf. §0], and that X is proper over k. Then any pro-Σ Galois section
of X/k [cf. [6], Definition 1.1, (i)] is unramified [cf. Definition A.1].

Proof. This follows immediately from the equivalence (1) ⇔ (2) of
Proposition A.6. □
Remark A.8.1. Proposition A.8 may be regarded as a Galois section
version of the valuative criterion for properness of morphisms of schemes.

Remark A.8.2. In [13], Saı̈di proved the existence of a nongeomet-
ric pro-Σ Galois section in the situation of Proposition A.8 [cf. [13],
Proposition 4.2.1].

Proposition A.9. Suppose that p ̸∈ Σ, and that X admits good reduc-
tion over ok [cf. §0]. Then s is unramified if and only if s is potentially
unramified [cf. Definition A.1].

Proof. This follows immediately from the equivalence (1) ⇔ (2) of
Proposition A.6, together with the well-known fact that any cuspidal
inertia subgroup of ΠΣ-ét

X/k associated to a cusp of X/k is isomorphic
to ẐΣ as an abstract profinite group. □
Proposition A.10. Let Y be a hyperbolic curve over k and X → Y a
dominant morphism over k. Write sY for the pro-Σ Galois section of Y/k
[cf. [6], Definition 1.1, (i)] determined by s, i.e., the composite Gk

s→
ΠΣ

X/k → ΠΣ
Y/k. Then the following hold:

(i) Write ΦΣ
X/k, ΦΣ

Y/k for the respective quotients of ΠΣ
X/k, ΠΣ

Y/k defined
in [7], Definition 1, (iv) [cf. also the statement of condition (3) of
Proposition A.6]. Then the natural homomorphism ΠΣ

X/k → ΠΣ
Y/k

induces a homomorphism ΦΣ
X/k → ΦΣ

Y/k.
(ii) If s is unramified (respectively, potentially unramified) [cf. Def-

inition A.1], then sY is unramified (respectively, potentially unramified).
(iii) Suppose that X → Y is finite, and that X and Y admit good

reduction over ok [cf. §0]. Then s is unramified if and only if sY
is unramified.

Proof. First, we verify assertion (i). Now since, as is well-known, the
profinite group ∆Σ

Y/k is slim [cf. §0], for any open subgroup H ⊆ ∆Σ
Y/k

of ∆Σ
Y/k, it follows immediately from [7], Lemma 5, that NΠΣ

Y/k
(H) ∩

ZΠΣ
Y/k

(∆Σ
Y/k) = ZΠΣ

Y/k
(H). Thus, it follows immediately from the

fact that the natural homomorphism ∆Σ
X/k → ∆Σ

Y/k is open that the
natural homomorphism ΠΣ

X/k → ΠΣ
Y/k induces a homomorphism

ΦΣ
X/k → ΦΣ

Y/k. This completes the proof of assertion (i). Assertion
(ii) follows immediately from the various definitions involved, to-
gether with assertion (i) [cf. also the definitions of the quotients
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ΦΣ
X/k, ΦΣ

Y/k]. Finally, we verify assertion (iii). It follows from Propo-
sition A.2, (i), that both the condition that s is unramified and the
condition that sY is unramified imply that p ̸∈ Σ. Thus, suppose that
p ̸∈ Σ. On the other hand, since X → Y is finite, one verifies easily
that the restriction of the natural homomorphism ∆Σ

X/k → ∆Σ
Y/k to

any cuspidal inertia subgroup of ΠΣ
X/k associated to a cusp of X/k is

injective. Thus, assertion (iii) follows immediately from assertions (i),
(ii); the equivalence (1) ⇔ (3) of Proposition A.6, together with the
fact that the sequences of natural surjections ΠΣ

X/k ↠ ΠΣ-ét
X/k ↠ ΦΣ

X/k,
ΠΣ

Y/k ↠ ΠΣ-ét
Y/k ↠ ΦΣ

Y/k induce injections ∆Σ
X/k

∼→ ∆Σ-ét
X/k ↪→ ΦΣ

X/k,
∆Σ

Y/k

∼→ ∆Σ-ét
Y/k ↪→ ΦΣ

Y/k, respectively [cf. the proof of the implication
(2) ⇒ (3) of Proposition A.6]. This completes the proof of assertion
(iii). □
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