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1. Introduction

Let F be a totally real field, p > 2 a prime, F∞ ⊂ F (µp∞) the cyclotomic
Zp-extension of F with Galois group Γ = Zp = 〈γ〉. This short note is a
sequel to [5]. The sole aim is to point out the ubiquity of a phenomenon di-
cussed in a particular case in our previous paper. Namely, the (arithmetic)
eigenvalues of γ acting on Galois groups of maximal p-abelian unramified
extensions of F (µp∞) intertwine with the eigenvalues acting on inertia sub-
groups of ramified p-abelian extensions of F (µp∞). We make this vague
philosophy precise in the text below after alluding for mise-en-scène to the
p-adic L-functions that lurk suggestively in the wings, but do not play an
explicit role in the algebraic computations of this note.

Let ψ be an even Dirichlet character of F . Consider the p-adic L function
ζF,p(s, ψ) = Lp(s, ψ), s ∈ Zp, which is characterised by the interpolation
property Lp(1−n, ψ) = L(1−n, ψω−n)Πv|p(1−ψω−n(v)N(v)n−1), for n ≥ 1
a positive integer. When ψ = 1, we denote the corresponding L-function by
ζF,p(s).

It is known that Lp(s, ψ) is holomorphic outside s = 1, is holomorphic
everywhere when ψ 6= 1, and otherwise has at most a simple pole at s = 1.
This pole is predicted to exist by the conjecture of Leopoldt, which asserts
the non-vanishing of the the p-adic regulator of units of F . The residue of
ζF,p at s = 1 has been computed by Pierre Colmez:

Ress=1ζF,p(s) =
2dRF,phF

2
√
DF

,

where RF,p is the p-adic regulator for F . The non-vanishing of RF,p is the
Leopoldt conjecture for F and p.

We recall a folklore conjecture that is a very particular case of the general
conjectures of Jannsen ([4]) about the non-vanishing of higher regulators.

Conjecture 1.1. (Non-vanishing of higher p-adic regulators) For an integer
m 6= 0, LF,p(m,ψ) 6= 0 if either m 6= 1 or ψ 6= 1. Furthermore, ζF,p(s) has
a pole at s = 1.
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As a supplement in the case m = 0, the case of “trivial zeros”, the mul-
tiplicity of the zero at s = 0 of Lp(s, ψ) is conjectured to be given by the
number of v|p such that (1− ψω−1(v)) = 0.

We call the zeros of ζF,p(s) unramified zeros following a similar usage in
[8].

The main conjecture of Iwasawa theory realises the zeros of the L-functions
as roots of the characteristic polynomial of γ acting on “unramified arith-
metic spaces”. Nevertheless it gives no direct information about the zeros,
belying the Hilbert-Polya philosophy in this case!

Our basic observation, coming from [5] that we reinforce here, is that
the unramified zeros (of the p-adic L-function) always intertwine with (the
eigenvalues of γ acting on) ramification at p. Further the Leopoldt zeros,
i.e. eigenvalues of Γ that correspond on a finite index subgroup to its action
on p-power roots of unity, intertwine with ramification at Q, for finite sets
of primes away from p, for a generic choice of Q.

This shows that the non-vanishing of p-adic regulators is equivalent to
splitting of ramification in naturally occuring exact sequences of Iwasawa
modules. The reader is referred to Theorems 4.2, 4.6 and 4.7 for precise
statements.

The proofs of these theorems rely on numerical coincidences between
– dimensions of certain Galois cohomology groups whose computation

result from the work of Soulé and Poitou-Tate duality,
– dimensions of Iwasawa modules that follows from theorems of Iwasawa

describing the structure of inertia at p (resp. at a set Q of auxiliary primes)
in the Galois group of the maximal odd abelian p-extension of F (µp∞) that
is unramified outside p (resp. Q).

2. Galois cohomology

2.1. In our previous paper [5] we paid attention to integral questions, while
here we work over Qp exclusively. We consider F a totally real field, an odd
prime p. We consider a sufficiently large finite extension K of Qp with ring
of integers O (that will contain values of the character under consideration).

Let Sp be the set of places of F above p and∞ and let S be a finite subset
of places of F containing Sp. Let GS be a Galois group of the maximal
algebraic extension of F unramified outside S. We consider a potentially
crystalline, or arithmetic, character χ of GS , of (parallel) weight m and
thus of the form ηχmp where χp is the p-adic cyclotomic character, and η a
finite order character. We impose that χ(c) is independent of the choice of
complex conjugation c ∈ GF , and call it odd or even according as this value is
either −1 or 1. We denote by ω the Teichmüller character. We consider the
cohomology subgroup H1

(p)f (GS ,K(ηχmp )) of H1(GS ,K(ηχmp )) defined by

imposing for v ∈ S, v /∈ Sp the condition to be unramified (although χ might
be ramified at these v). We denote by H1

f (GS ,K(ηχmp )) their Bloch-Kato
subgroups, where for v primes over p, we impose the Bloch-Kato finiteness
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condition ([2]). We denote the dimensions over K of H1
(p)f (GS ,K(ηχmp )) and

H1
f (GS ,K(ηχmp )) by h1(χ) and h1

f (χ). We use h1
split(χ) to denote dimensions

of cohomology groups where we ask that the classes are split locally at all
places above p and unramified at other primes. We have the tables.

2.2. Odd χ.

χ = ηχmp , χ odd m > 1 m = 1 m ≤ 0

h1(χ) d d+
∑

v|p h
0(Gv, η

−1)− δχ,χp d

h1
f (χ) d d− δχ,χp 0

2.3. Even χ.

χ = ηχmp , χ even m > 1 m = 1 m ≤ 0

h1(χ) 0
∑

v|p h
0(Gv, η

−1) δχ,id + h1
split(χpχ

−1)

h1
f (χ) 0 0 0

Remark. The situation for even χ is thus not satisfactory as we do not
have an explicit formula in all cases for h1(χ). The conjectures in [4], con-
cerning non-vanishing of higher p-adic regulators, predict the vanishing of
h1
split(χpχ

−1) for χ an even arithmetic character of GF (see also [1] 5.2).
This follows from the main conjecture of Iwasawa theory if the weight of χ
is > 0.

2.4. Ingredients of the computation. We justify the values in the ta-
bles. We need the following ingredients:

• (Bloch-Kato) h1
f (χ) = dimK K(χ)GF + ords=1−mL(η−1, s)

• (global duality) χ even:

h1(χ) = h1
split(χpχ

−1) + δχ,id +
∑
v|p

h0(Gv, χpχ
−1)

• (global duality) χ odd:

h1(χ) = d+ h1
split(χpχ

−1)− δχ,χp +
∑
v|p

h0(Gv, χpχ
−1)

The (global duality) equalities follow from Theorem 8.7.9. of [6] and:

• (local Euler Poincaré characteristic)

h1(Gv, V ) = h0(Gv, V ) + h2(Gv, V ) + [Fv : Qp]dimK(V )

where v|p
• (local duality) h0(Gv, V

∗(1)) = h2(Gv, V )

The Bloch-Kato formula, which directly implies the bottom row of both
tables, follows from a theorem of Soulé (Theorem 1 of [7]) and duality as we
justify.

– The theorem of Soulé directly implies Bloch-Kato formula for h1
f (χ) for

m > 1.
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– The case of m = 1 for the bottom rows follows from Kummer theory.
– We have the equality for m ≤ 0 and χ even:

h1
f (χ) = h1

f (χpχ
−1)− d+ δχ,id,

and for m ≤ 0 and χ odd:

h1
f (χ) = h1

f (χpχ
−1).

These equalities follow from Theorem 8.7.9 of [6] and the fact that for m ≤ 0,
H1
f (Gv, χ) coincides with the unramified cohomology H1

ur(Gv, χ). These two
equalities allow to deduce the case m ≤ 0 of the Bloch-Kato formula from
the Theorem of Soulé (see also [1], §4.3.1).

This checks the second rows of both the tables.
Let us check the first row. For the first column in the case m > 1, we

use the fact that h1(Gv, χ) = h1
f (Gv, χ). The case m ≤ 0 even χ follows

from (global duality) as h0(Gv, χpχ
−1) = 0 for all v above p. For the case

m = 1, we use global duality and that h1
split(η

−1) = 0 which follows easily
from the fact that a Zp-extension of a number field has to be ramified at a
place above p. For χ odd and m ≤ 0, we use global duality and the fact
that h1

split(χpχ
−1) ≤ h1

f (χpχ
−1) = 0.

2.5. Galois groups. We consider ε totally odd and ψ totally even finite
order characters of GF , such that εψ = ω. We set ψ(n) = ψ(ω−1χp)

n :=
ψκn, and likewise for ε(n). We consider characters ψζ of Γ that send a
chosen generator γ of Γ to a p-power root of unity ζ and consider ψ(n)ψζ ,
ε(n)ψζ .

We assume that ψ is of type S, i.e. we assume that the field Fψ cut out
by ψ is linearly disjoint from the cyclotomic Zp-extension F∞ of F . We
denote by Γ the Galois group of F∞/F with choice of generator γ, consider
Λ the completed group algebra Zp[[Γ]] that is isomorphic to Zp[[T ]] via the
homomorphism which sends γ → 1 + T .

We let ΛK = Λ⊗K. We consider the Galois group Gψ = Gε = Gal(Fψ(µp)/F )×
Gal(F∞/F ) of Fψ(µp∞) over F . A continuous character χ of Gψ with
values in O∗ is the product of a finite character χψ of Gal(Fψ(µp)/F )
and a character χΓ of Γ. The character χΓ induces a K-algebra map
ΛK → K. We denote by Pχ the corresponding prime ideal of ΛK kernel
of this map. It is generated by γ − χ(γ). The character χψ induces a mor-
phism fχ : Zp[Gal(Fψ(µp)/F )] → O ⊂ K. The morphism Zp[[Gψ]] → K
induced by χ is the composite of the map Zp[[Gψ]]→ ΛK induced by fχ and
the morphism ΛK → K.

We consider the maximal, abelian pro-p extension L∞ of Fψ(µp∞) unram-
ified everywhere: we denote its Galois group by X ′∞ and set X∞ = X ′∞⊗K.
We set X∞,ε to be the maximal quotient of X∞ on which Gal(Fψ(µp)/F )
acts by ε.
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We also consider the analogous extensions L∞,ε(Q) and corresponding
Galois group X∞,ε,Q when Q is any set of places of F and we allow ramifi-
cation above Q. There are two natural cases to consider:

• Q is all the places above p, and then we replace Q by p in the
notation;
• Q is a finite set of places disjoint from the places above p.

Let Fψ,∞ be the cyclotomic Zp-extension of the totally real field Fψ. We
denote by Y ′∞ the Galois group of the maximal abelian prop-p extension of
Fψ,∞ that is unramified outside p, and Y∞ = Qp⊗Y ′∞. As above, we denote
by Y∞,ψ the related quotient on which Gal(Fψ(µp)/F ) acs by ψ, and recall
the perfect Γ-equivariant Iwasawa pairing

Y∞,ψ ×X∞,ε → K(1).

Lemma 2.1. Let ψ be an even character of GF of type S and n ∈ Z.

(1) We have h1(ψζψ(n)) = dimK(Y∞,ψ/Pψζψ(n)) if ψζψ(n) is not trivial,

and h1(ψζε(n)) = dimK(X∞,ε,p/Pψζε(n)).

(2) We have that

dimK((X∞,ε)Pψζε(−n)
/Pψζε(−n)) = dimK((Y∞,ψ)P

ψ−1
ζ

ψ(n+1)
/Pψ−1

ζ ψ(n+1)).

Proof. For (i) we use the inflation-restriction sequence relative to GS → Gψ.
Recall that the unramified condition for η ∈ H1

(p)f (GS ,K(εχmp )) at v not

above p and such that ψ is ramified at v (section 2.1). We check that this
condition is equivalent to that the restriction of η to the kernel of the map
GS → Gψ is unramified at v.

For (ii), we invoke the pairing of Iwasawa. We use the cyclicity of Γ to
identify dimensions of twisted invariants and covariants for Γ.

�

We rederive a standard result about trivial zeros of p-adic L-functions,
usually proved using genus theory, which is a corollary to the lemma.

Proposition 2.2. Suppose ε is an odd character of Gal(Fψ(µp)/F ) as be-
fore. Then

dimK((X∞,ε)Pψζε/Pψζε) = h1(χpψ
−1
ζ ε−1) =

∑
v|p

h0(Gv, ψ
−1
ζ ε−1).

Proof. We deduce the first equality using (2) of earlier lemma for n = 0 and
the second equality using the above table for m = 1 even χ. �

Note that
∑

v|p h
0(Gv, ψ

−1
ζ ε−1) is the number of places v|p such that the

Euler factor (1 − ψ−1
ζ ε−1(v)) is 0. It is conjectured by Greenberg that the

trivial zeros occur semisimply i.e. dimK(X∞,ε/Pψζε) = dimK(X∞,ε)Pψζε .
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3. Main conjecture and higher regulators

We consider the Deligne-Ribet p-adic L-function ζF,p(s, ψ) for an even
character ψ of F of type S. It is defined on Zp when ψ is non-trivial, and
on Zp\{1} when ψ is trivial. It is characterised by the interpolation formula
that for integers n ≥ 1,

ζF,p(1− n, ψ) = Lp(1− n, ψω−n),

where the superscript denotes that we have dropped the Euler factors at
p. There is a power series Wψ(T ) in ΛK = Zp[[Γ]] ⊗ K (the latter by the
isomorphism that sends a chosen generator γ of Γ = Gal(F∞/F ) to 1 + T
and u := χp(γ)), with the property that:

Wψ(us − 1)

u1−s − 1
= ζF,p(s, ψ)

when ψ is trivial, and

Wψ(us − 1) = ζF,p(s, ψ)

otherwise. Furthermore we have :

Wψψζ (T ) = Wψ(ζ−1(1 + T )− 1);

see the introduction of [8], where the notation is Gψ(T ) for Wψ(u(1+T )−1−
1).

Then the main conjecture asserts for characters ψ of type S that

(Wψ(T )) = charΛK (X∞,ψ−1ω),

i.e. the characteristic polynomial of the action of γ on the finite dimensional
K-vector space X∞,ε generates the same ideal as Wψ(T ). (We ignore µ-
invariants via this formulation.)

When m is an integer 6= 0, Conjecture 1.1 is equivalent via the main con-
jecture to the statement that the generalised ζum-eigenspace of X∞,ψ−1ω ⊗
Qp for the action of γ is trivial . When m = 0, via the main conjecture, we
have that the generalised ζ-eigenspace is of dimension given by the number
of v|p of F such that (1− ψ−1

ζ ε−1(v)) = 0

4. Intertwining of ramified and unramified zeros

4.1. Ramification at p. We consider the exact sequences:

0→ IQ → X∞,ε,Q → X∞,ε → 0,

of finitely generated ΛK-modules with Q = p (see 2.5).
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4.1.1. Ramification at p and intertwining with non-trivial unramified zeros.
Next theorem follows from Th. 25 of [3] :

Theorem 4.1. We have an ismorphism of ΛK-modules

Ip =
{ΛdK

⊕
⊕sj=1IndΓ

G℘j
K(1)}

K(1)
,

where G℘ are the decomposition groups of the places ℘ above p in Γ.

We deduce from this and the computations in Galois cohomology earlier:

Theorem 4.2. Let χ = εψζκ
m be an odd arithmetic character of Gε of

weight m, and let Pχ be the corresponding prime ideal of ΛO for O such that
χ is valued in O∗. Then the exact sequence

0→ (Ip)Pχ → (X∞,ε,p)Pχ → (X∞,ε)Pχ → 0,

of finitely generated ΛK-modules splits if and only if (X∞,ε)Pχ vanishes.

This is equivalent to that ζF,p(m,ψ
−1
ζ ε−1ω) 6= 0 when χ 6= χp, and when

χ = χp, to that ζF,p(s) has a pole at s = 1.

Proof. One direction is trivial. For the other direction, one notes by the theo-
rem of Iwasawa that dimK((Ip)Pχ/Pχ) is d ifm 6= 1 and d+

∑
v|p h

0(Gv, ε
−1)−

δχ,χp if m = 1. We have the numerical coincidence :

dimK((Ip)Pχ/Pχ) = h1(χ).

Further one notes from Lemma 2.1 that h1(χ) = dimK(X∞,ε,p)Pχ/Pχ. Thus
if the exact sequence in the theorem splits, we deduce that (X∞,ε)Pχ/Pχ = 0,
which is equivalent to the vanishing of (X∞,ε)Pχ .

By the main conjecture proved by Wiles, the vanishing of (X∞,ε)Pχ/Pχ
is equivalent to the vanishing of Wψ at ζum − 1. It is equivalent to the

vanishing of ζp(m,ψψ
−1
ζ ) = ζF,p(m,ψ

−1
ζ ε−1ω).

�

Remarks.
1. We also deduce that an equivalent formulation of the non-vanishing of

the higher regulator conjecture is the conjecture that the exact sequence

0→ (Ip)Pχ → (X∞,ε,p)Pχ → (X∞,ε)Pχ → 0,

of compact finitely generated ΛO-modules splits for all odd arithmetic char-
acters χ of G of non-zero weight.

2. As trivial zeros (in weight 0) do occur we get examples of Iwasawa mod-
ules in which ramification is allowed at p such that γ acts non-semisimply.

We have a conditional result for any character χ = εκs of Gε not neces-
sarily arithmetic, and that follows by similar arguments.



8 CHANDRASHEKHAR KHARE AND J-P. WINTENBERGER

Proposition 4.3. Let χ = εκs be any odd character of Gε. Assume further
that H1

split(GF,p, χpχ
−1) is trivial. Then the exact sequence

0→ (Ip)Pχ → (X∞,ε,p)Pχ → (X∞,ε)Pχ → 0,

of compact finitely generated ΛK-modules splits if and only if (X∞,ε)Pχ = 0.

Remark: Note that the vanishing of H1
split(GF,p, χpχ

−1) = 0 is predicted by
Greenberg’s conjecture that the p-part of the the class group of the cyclo-
tomic Zp-extension F∞ of F is finite. The above proposition suggests that
there may be a formulation of the main conjecture using ExtΛK (X∞,ε, Ip).

4.2. Ramification away from p.

4.2.1. ψ and ψζ trivial. Consider the maximal abelian p-extension L∞ of
F , and denote its Zp-rank by 1 + δ. The Leopoldt conjecture asserts that
δ = 0.

Definition 4.4. (generic sets Q) We say that a finite set of primes Q of
cardinality r away from p is generic if the rank rQ of the subgroup generated
by the Frobq’s for q ∈ Q in Gal(L∞/F ) is min(r, 1 + δ).

The terminology is meant to reflect the fact that when δ > 0, the Frobq1 ,Frobq2
will be linearly independent in Z1+δ

p = Gal(L∞/F ) for most choices of q1, q2.
If r = 2 and we choose a prime q1 freely, then for a density one set of primes
q2, the set Q = {q1, q2} is generic.

We now show the intertwining of the Leopoldt zero u = uγ with the
ramification at Q provided Q is a generic set of primes with |Q| > 1.

Proposition 4.5. Let Q be a finite set of primes of F away from p. Then
the subgroup IQ of X∞,ω,Q generated by the conjugacy class of the inertia
groups Iq for q ∈ Q is isomorphic as a Gal(F∞/F ) = Gal(F (µp)/F ) × Γ-
module to

(Πq∈QIndΓ
GqK(1))

K(1)

where Gq is the decomposition subgroup at q in Γ = Gal(F∞/F ), and where
we declare that Gal(F (µp)/F ) acts by ω.

Proof. This follows from class field theory. �

Note that when the primes q are inert in F∞/F then IQ = K(1)r−1.

Theorem 4.6. Let Q be generic set of primes Q of cardinality r ≥ 2. Then
the exact sequence

0→ (IQ)Pχp → (X∞,ω,Q)Pχp → (X∞,ω)Pχp → 0

splits if and only if (X∞,ω)Pχp = 0, i.e., if and only if the Leopoldt conjecture
is true.

Thus if there is a Leopoldt zero, then it intertwines with the ramified
zeros at Q for a generic set of primes (away from p) with |Q| ≥ 2.
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Proof. If Leopoldt conjecture is true, (X∞,ω)Pχp = 0 and the exact sequence
splits.

Let us prove the converse.
For a finite dimensional vector space V over K endowed with a continuous

action of GF that is unramified outside a finite set of places, and a set of
Selmer conditions L = {Lv} for Lv ⊂ H1(Fv, V ) where Lv is outside a finite
set of places the unramified subgroup, we have the formula :

h1
L(F, V )−h1

L⊥(F, V ∗(1)) = h0(F, V )−h0(F, V ∗(1))+
∑
v

(dimKLv−h0(Fv, V )).

We apply this formula for V = K(1), and with the Selmer conditions L
to be unramified everywhere. In particular the Selmer condition is trivial at
places v above p as V Iv = 0 for v above p. We get :

h1
L(F, V )− h1

L⊥(F, V ∗(1)) = −1.

Furthermore, we have h1
L⊥(F,K) = 1 + δ.

Consider the Selmer conditions LQ that arise when we allow ramification
at Q, i.e., (LQ)v = Lv for v /∈ Q and (LQ)v = H1(Gv,K(1)) for v ∈ Q. We
get :

h1
LQ(F, V )− h1

L⊥Q
(F, V ∗(1)) = −1 + r.

Furthermore, we have h1
L⊥Q

(F,K) = 1 + δ − rQ. We see that :

h1
LQ(F,K(1)) = h1

L(F,K(1)) + r − rQ.

If the exact sequence splits, it remains exact after reduction modulo Pχp ,
hence we have :

h1
LQ(F,K(1)) = h1

L(F,K(1)) + r − 1.

Thus we get rQ = 1. As Q is generic and | Q |≥ 2, i.e., rQ = min(r, 1 + δ)
with r ≥ 2, we get that 1 + δ = 1, thus δ = 0 and Leopoldt conjecture is
true.

�

4.2.2. Weight 1, ψ or ψζ non-trivial.

Theorem 4.7. Consider the exact sequence

0→ (Iq)Pψζεκ → (X∞,ε,q)Pψζεκ → (X∞,ε)Pψζεκ → 0.

Assume ε 6= ω or that ζ 6= 1. Then the sequence splits for all choices of
primes q of F away from p, if and only if (X∞,ε)Pψζεκ = 0.

Proof. We only sketch the proof as its very similar to the proof of Theorem
4.6.

By 2) of lemma 2.1, if (X∞,ε)Pψζεκ 6= 0, the maximal abelian p-extension

L of Fε−1ψ−1
ζ ω = Fψψ−1

ζ
on which Gal(Fψψ−1

ζ
/F ) acts by ψψ−1

ζ and which
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is unramified outside p, has Galois group that is of positive rank as a Zp-
module. Let q be a prime of F away from p, that splits in Fψψ−1

ζ
, such

that the Frobenius at a prime above q of Fψψ−1
ζ

is a non-torsion element in

Gal(L/Fψψ−1
ζ

). With V = K(ψζεκ) and the Selmer conditions as above, it

follows that h1
L⊥ − h

1
L⊥q

= 1.

Using the above formula, we get h1
Lq − h

1
L⊥q
− h1

L + h1
L⊥ = 0. If the exact

sequence were to split, we would have h1
Lq = h1

L, which is a contradiction.

�
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