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An experiment on detergents

In a consumer experiment, twelve housewives volunteer to test
new detergents. There are 16 new detergents to compare, but it
is not realistic to ask any one volunteer to compare this many
detergents.

Each housewife tests one detergent per washload for each of
four washloads, and assesses the cleanliness of each washload.

The experimental units are the 48 washloads.
The housewives form 12 blocks of size 4.

The treatments are the 16 new detergents.
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Experiments in blocks

I have v treatments that I want to compare.
I have b blocks, with k plots in each block.

blocks b k treatments v
housewives 12 4 detergents 16

How should I choose a block design
for these values of b, v and k?

What makes a block design good?
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Two designs with v = 5, b = 7, k = 3: which is better?

Conventions: columns are blocks;
order of treatments within each block is irrelevant;
order of blocks is irrelevant.

1 1 1 1 2 2 2
2 3 3 4 3 3 4
3 4 5 5 4 5 5

1 1 1 1 2 2 2
1 3 3 4 3 3 4
2 4 5 5 4 5 5

binary non-binary

A design is binary if no treatment occurs more than once in any
block.
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Two designs with v = 15, b = 7, k = 3: which is better?

1 1 2 3 4 5 6
2 4 5 6 10 11 12
3 7 8 9 13 14 15

1 1 1 1 1 1 1
2 4 6 8 10 12 14
3 5 7 9 11 13 15

replications differ by ≤ 1 queen-bee design

The replication of a treatment is its number of occurrences.

A design is a queen-bee design if there is a treatment that
occurs in every block.
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Two designs with v = 7, b = 7, k = 3: which is better?

1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2

balanced (2-design) non-balanced

A binary design is balanced if every pair of distinct treaments
occurs together in the same number of blocks.
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Experimental units and incidence matrix

There are bk experimental units.

If ω is an experimental unit, put

f (ω) = treatment on ω

g(ω) = block containing ω.

For i = 1, . . . , v put

ri = |{ω : f (ω) = i}| = replication of treatment i.

For i = 1, . . . , v and j = 1, . . . , b, let

nij = |{ω : f (ω) = i and g(ω) = j}|

= number of experimental units in block j which have
treatment i.

The v× b incidence matrix N has entries nij.
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Levi graph

The Levi graph G̃ of a block design ∆ has

I one vertex for each treatment,
I one vertex for each block,
I one edge for each experimental unit,

with edge ω joining vertex f (ω) to vertex g(ω).

It is a bipartite graph,
with nij edges between treatment-vertex i and block-vertex j.
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Example 1: v = 4, b = k = 3
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Example 2: v = 8, b = 4, k = 3

1 2 3 4
2 3 4 1
5 6 7 8

x x xx
x x x

x

�

�

�

�

�
�

�
�

@
@

@
@

�
�

�
�

@
@

@
@

1
5

2

63
7

4

8

10/49



Example 2: v = 8, b = 4, k = 3

1 2 3 4
2 3 4 1
5 6 7 8

x x xx
x x x

x

�

�

�

�

�
�

�
�

@
@

@
@

�
�

�
�

@
@

@
@

1
5

2

63
7

4

8

10/49



Concurrence graph

The concurrence graph G of a block design ∆ has

I one vertex for each treatment,
I one edge for each unordered pair α, ω, with α 6= ω,

g(α) = g(ω) and f (α) 6= f (ω):
this edge joins vertices f (α) and f (ω).

There are no loops.

If i 6= j then the number of edges between vertices i and j is

λij =
b

∑
s=1

nisnjs;

this is called the concurrence of i and j,
and is the (i, j)-entry of Λ = NN>.
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Example 1: v = 4, b = k = 3
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can recover design may have more symmetry
more vertices

more edges if k = 2 more edges if k ≥ 4
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Example 2: v = 8, b = 4, k = 3
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Example 3: v = 15, b = 7, k = 3
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Laplacian matrices

The Laplacian matrix L of the concurrence graph G is a
v× v matrix with (i, j)-entry as follows:

I if i 6= j then
Lij = −(number of edges between i and j) = −λij;

I Lii = valency of i = ∑
j 6=i

λij.

The Laplacian matrix L̃ of the Levi graph G̃ is a
(v + b)× (v + b) matrix with (i, j)-entry as follows:

I L̃ii = valency of i

=

{
k if i is a block
replication ri of i if i is a treatment

I if i 6= j then Lij = −(number of edges between i and j)

=


0 if i and j are both treatments
0 if i and j are both blocks
−nij if i is a treatment and j is a block, or vice versa.
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Connectivity

All row-sums of L and of L̃ are zero,
so both matrices have 0 as eigenvalue
on the appropriate all-1 vector.

Theorem
The following are equivalent.
1. 0 is a simple eigenvalue of L;
2. G is a connected graph;
3. G̃ is a connected graph;
4. 0 is a simple eigenvalue of L̃;
5. the design ∆ is connected in the sense that all differences between

treatments can be estimated.

From now on, assume connectivity.

Call the remaining eigenvalues non-trivial.
They are all non-negative.
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Generalized inverse

Under the assumption of connectivity,
the Moore–Penrose generalized inverse L− of L is defined by

L− =

(
L +

1
v

Jv

)−1

− 1
v

Jv,

where Jv is the v× v all-1 matrix.

(The matrix
1
v

Jv is the orthogonal projector onto the null space
of L.)

The Moore–Penrose generalized inverse L̃− of L̃ is defined
similarly.
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Estimation

We measure the response Yω on each experimenal unit ω.

If experimental unit ω has treatment i and is in block m
(f (ω) = i and g(ω) = m), then we assume that

Yω = τi + βm + random noise.

We will do an experiment, collect data yω on each experimental
unit ω, then want to estimate certain functions of the treatment
parameters using functions of the data.

We want to estimate contrasts ∑i xiτi with ∑i xi = 0.

In particular, we want to estimate all the simple differences
τi − τj.
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Variance: why does it matter?

We want to estimate all the simple differences τi − τj.

Put Vij = variance of the best linear unbiased estimator for
τi − τj.

The length of the 95% confidence interval for τi − τj is
proportional to

√
Vij.

(If we always present results using a
95% confidence interval, then our interval will contain the true
value in 19 cases out of 20.)

The smaller the value of Vij, the smaller is the confidence
interval, the closer is the estimate to the true value
(on average), and the more likely are we to detect correctly
which of τi and τj is bigger.

We can make better decisions about new drugs, about new
varieties of wheat, about new engineering materials . . . if we
make all the Vij small.
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How do we calculate variance?

Theorem
Assume that all the noise is independent, with variance σ2.
If ∑i xi = 0, then the variance of the best linear unbiased estimator of
∑i xiτi is equal to

(x>L−x)kσ2.

In particular, the variance of the best linear unbiased estimator of the
simple difference τi − τj is

Vij =
(

L−ii + L−jj − 2L−ij
)

kσ2.

(This follows from assumption

Yω = τi + βm + random noise.

by using standard theory of linear models.)
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. . . Or we can use the Levi graph

Theorem
The variance of the best linear unbiased estimator of the simple
difference τi − τj is

Vij =
(

L̃−ii + L̃−jj − 2L̃−ij
)

σ2.

(Or βi − βj, appropriately labelled.)

(This follows from assumption

Yω = τi − β̃m + random noise.

by using standard theory of linear models.)
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Electrical networks

We can consider the concurrence graph G as an electrical
network with a 1-ohm resistance in each edge.
Connect a 1-volt battery between vertices i and j.
Current flows in the network, according to these rules.
1. Ohm’s Law:

In every edge, voltage drop = current × resistance =
current.

2. Kirchhoff’s Voltage Law:
The total voltage drop from one vertex to any other vertex
is the same no matter which path we take from one to the
other.

3. Kirchhoff’s Current Law:
At every vertex which is not connected to the battery, the
total current coming in is equal to the total current going
out.

Find the total current I from i to j, then use Ohm’s Law to
define the effective resistance Rij between i and j as 1/I.
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Electrical networks: variance

Theorem
The effective resistance Rij between vertices i and j in G is

Rij =
(

L−ii + L−jj − 2L−ij
)

.

So
Vij = Rij × kσ2.

Effective resistances are easy to calculate without
matrix inversion if the graph is sparse.
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Example 2 calculation: v = 8, b = 4, k = 3

V = 23 I = 24 R =
23
24
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. . . Or we can use the Levi graph

If i and j are treatment vertices in the Levi graph G̃
and R̃ij is the effective resistance between them in G̃ then

Vij = R̃ij × σ2.
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Example 2 yet again: v = 8, b = 4, k = 3
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Optimality: Average pairwise variance

The variance of the best linear unbiased estimator of the simple
difference τi − τj is

Vij =
(

L−ii + L−jj − 2L−ij
)

kσ2 = Rijkσ2.

We want all of the Vij to be small.

Put V̄ = average value of the Vij. Then

V̄ =
2kσ2 Tr(L−)

v− 1
= 2kσ2 × 1

harmonic mean of θ1, . . . , θv−1
,

where θ1, . . . , θv−1 are the nontrivial eigenvalues of L.
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A-Optimality

A block design is called A-optimal if it minimizes the average
of the variances Vij;

—equivalently, it maximizes the harmonic mean of the
non-trivial eigenvalues of the Laplacian matrix L;
over all block designs with block size k and the given v and b.
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Optimality: Confidence region

When v > 2 the generalization of confidence interval is the
confidence ellipsoid around the point (τ̂1, . . . , τ̂v) in the
hyperplane in Rv with ∑i τi = 0. The volume of this confidence
ellipsoid is proportional to√√√√v−1

∏
i=1

1
θi

= (geometric mean of θ1, . . . , θv−1)
−(v−1)/2

=
1√

v× number of spanning trees for G
.
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D-Optimality

A block design is called D-optimal if it minimizes the volume
of the confidence ellipsoid for (τ̂1, . . . , τ̂v) ;

—equivalently, it maximizes the geometric mean of the
non-trivial eigenvalues of the Laplacian matrix L;
—equivalently, it maximizes the number of spanning trees for
the concurrence graph G;
—equivalently, it maximizes the number of spanning trees for
the Levi graph G̃;
over all block designs with block size k and the given v and b.
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non-trivial eigenvalues of the Laplacian matrix L;
—equivalently, it maximizes the number of spanning trees for
the concurrence graph G;
—equivalently, it maximizes the number of spanning trees for
the Levi graph G̃;
over all block designs with block size k and the given v and b.
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Optimality: Worst case

If x is a contrast in Rv then the variance of the estimator of x>τ
is (x>L−x)kσ2.

If we multiply every entry in x by a constant c then this
variance is multiplied by c2; and so is x>x.

The worst case is for contrasts x giving the maximum value of

x>L−x
x>x

.

These are precisely the eigenvectors corresponding to θ1,
where θ1 is the smallest non-trivial eigenvalue of L.
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E-Optimality

A block design is called E-optimal if it maximizes the
smallest non-trivial eigenvalue of the Laplacian matrix L;

over all block designs with block size k and the given v and b.
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BIBDs are optimal

Theorem (Kshirsagar, 1958; Kiefer, 1975)

If there is a balanced incomplete-block design (BIBD) (2-design)
for v treatments in b blocks of size k,
then it is A-, D- and E-optimal.
Moreover, no non-BIBD is A-, D- or E-optimal.
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D-optimality: spanning trees

A spanning tree for the graph is a collection of edges of the
graph which form a tree (connected graph with no cycles)
and which include every vertex.

Cheng (1981), after Gaffke (1978), after Kirchhoff (1847):

product of non-trivial eigenvalues of L
= v× number of spanning trees.

So a design is D-optimal if and only if its concurrence graph G
has the maximal number of spanning trees.

This is easy to calculate by hand when the graph is sparse.
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What about the Levi graph?

Theorem (Gaffke)

Let G and G̃ be the concurrence graph and Levi graph for a connected
incomplete-block design for v treatments in b blocks of size k.
Then the number of spanning trees for G̃ is equal to
kb−v+1 times the number of spanning trees for G.

So a block design is D-optimal if and only if
its Levi graph maximizes the number of spanning trees.

If v ≥ b + 2 it is easier to count spanning trees in the Levi graph
than in the concurrence graph.
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Example 2 one last time: v = 8, b = 4, k = 3
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E-optimality: the edge-cutset lemma

A design is E-optimal if it maximizes the smallest non-trivial
eigenvalue θ1 of the Laplacian L of the concurrence graph G.

Lemma
Let G have an edge-cutset of size c
(set of c edges whose removal disconnects the graph)
whose removal separates the graph into components of sizes m and n.
Then

θ1 ≤ c
(

1
m

+
1
n

)
.

If c is small but m and n are both large, then θ1 is small.
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E-optimality: the vertex-cutset lemma

A design is E-optimal if it maximizes the smallest non-trivial
eigenvalue θ1 of the Laplacian L of the concurrence graph G.

Lemma
Let G have a vertex-cutset of size c
(set of c vertices whose removal disconnects the graph)
whose removal separates the graph into components of sizes m and n,
with m′ and n′ edges between them and the vertices in the cutset.
Then

θ1 ≤
m′n2 + n′m2

mn(n + m)
,

which is at most c is no multiple edges are involved.

If m′ << m and n′ << n then θ1 is small.
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Minimal connectivity

If the block design is connected then bk ≥ b + v− 1.

If the block design is connected and b(k− 1) = v− 1 then
the Levi graph is a tree and
the concurrence graph is a b-tree of k-cliques.
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Optimality of minimally connected designs

The Levi graph is a tree,
so all connected designs are equally good under the D-criterion.

The Levi graph is a tree,
so effective resistance = graph distance,
so the only A-optimal designs are the queen-bee designs.

The concurrence graph is a b-tree of k-cliques,
so the Cutset Lemmas show that
the only E-optimal designs are the queen-bee designs.
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Can we use the Levi graph to find E-optimal designs?

For binary designs with equal replication,
θ1(L) is a monotonic increasing function of θ1(L̃).

But, queen-bee designs are E-optimal under minimal
connectivity,
and some non-binary designs are E-optimal.

For general block designs, we do not know if we can use the
Levi graph to investigate E-optimality.
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Large blocks; many unreplicated treatments

Suppose that r̄ = ∑i ri

v
< 2.

New conventions: blocks are rows, and block size = k + n.

b blocks



k plots n plots

...
...

v treatments bn treatments
all single replication

whole design ∆

Whole design ∆ has v + bn treatments in b blocks of size k + n;
the subdesign Γ has v core treatments in b blocks of size k;
call the remaining treatments orphans.
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Levi graph: 10 + 5n treatments in 5 blocks of 4 + n plots
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Pairwise resistance
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Resistance(A1, A2) = 2
Resistance(A1, B1) = 2 + Resistance(block A, block B) in Γ

Resistance(A1, 8) = 1 + Resistance(block A, 8) in Γ
Resistance(1, 8) = Resistance(1, 8) in Γ
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Sum of the pairwise variances

Theorem (cf Herzberg and Jarrett, 2007)

The sum of the variances of treatment differences in ∆

= constant + V1 + nV3 + n2V2,
where

V1 = the sum of the variances of treatment differences in Γ
V2 = the sum of the variances of block differences in Γ
V3 = the sum of the variances of sums of

one treatment and one block in Γ.

(If Γ is equi-replicate then V2 and V3 are both increasing
functions of V1.)

Consequence

For a given choice of k, make Γ as efficient as possible.
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A less obvious consequence

Consequence

If n or b is large,
and we want an A-optimal design,
it may be best to make Γ a complete block design for k′ controls,
even if there is no interest in
comparisons between new treatments and controls,
or between controls.
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Spanning trees

A spanning tree for the Levi graph is a collection edges which
provides a unique path between every pair of vertices.
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The orphans make no difference to the number of spanning
trees for the Levi graph.
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D-optimality under very low replication

Consequence

The whole design ∆ is D-optimal
for v + bn treatments in b blocks of size k + n
if and only if the core design Γ is D-optimal
for v treatments in b blocks of size k.

Consequence

Even when n or b is large,
D-optimal designs do not include uninteresting controls.
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Conjectures

Conjecture (Underpinned by theoretical work by C.-S. Cheng)

If the A-optimal design is very different from the D-optimal design,
then the E-optimal design is (almost) the same as the A-optimal
design.

Conjecture (Underpinned by theoretical work by C.-S. Cheng)

If the connectivity is more than minimal, then all D-optimal designs
have (almost) equal replication.

Conjecture (Underpinned by theoretical work by J. R. Johnson
and M. Walters)

If r̄ > 3.5 then designs optimal under one criterion are (almost)
optimal under the other criteria.
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