Difference Equations on Graphs

Józef Dodziuk
Queens College and the Graduate Center of The City University of New York
LMS Symposium on Graph Theory
July, 2013

First LMS Durham Symposium Schedule

Laplacian in Graph and Riemannian Settings

In Riemannian Geometry the Laplacian on functions is defined as

$$
\Delta u=-\frac{1}{\sqrt{g}} \sum \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}}\right)=-g^{i j} \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}+\ldots
$$

where $g_{i j}$ are components of the metric tensor, $g=\operatorname{det}\left(g_{i j}\right)$, and $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$. Thus the Laplace operator contains in it the complete information about the geometry.

Laplacian in Graph and Riemannian Settings

In Riemannian Geometry the Laplacian on functions is defined as

$$
\Delta u=-\frac{1}{\sqrt{g}} \sum \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}}\right)=-g^{i j} \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}+\ldots
$$

where $g_{i j}$ are components of the metric tensor, $g=\operatorname{det}\left(g_{i j}\right)$, and $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$. Thus the Laplace operator contains in it the complete information about the geometry.

For a graph $K=(V, E)$ (without loops and double connections) and a real-valued function u on the set V of vertices, the combinatorial Laplacian is given by

$$
L u(x)=\sum_{y \sim x}(u(x)-u(y))
$$

Laplacian in Graph and Riemannian Settings

In Riemannian Geometry the Laplacian on functions is defined as

$$
\Delta u=-\frac{1}{\sqrt{g}} \sum \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}}\right)=-g^{i j} \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}+\ldots
$$

where $g_{i j}$ are components of the metric tensor, $g=\operatorname{det}\left(g_{i j}\right)$, and $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$. Thus the Laplace operator contains in it the complete information about the geometry.

For a graph $K=(V, E)$ (without loops and double connections) and a real-valued function u on the set V of vertices, the combinatorial Laplacian is given by

$$
L u(x)=\sum_{y \sim x}(u(x)-u(y))=-m(x)\left(\frac{1}{m(x)}\left(\sum_{y \sim x} u(y)\right)-u(x)\right)
$$

Note that according to the first expression $z \sim x$ if and only if $L \delta_{z}(x)=-1$.

Laplacian in Graph and Riemannian Settings

In Riemannian Geometry the Laplacian on functions is defined as

$$
\Delta u=-\frac{1}{\sqrt{g}} \sum \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}}\right)=-g^{i j} \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}+\ldots
$$

where $g_{i j}$ are components of the metric tensor, $g=\operatorname{det}\left(g_{i j}\right)$, and $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$. Thus the Laplace operator contains in it the complete information about the geometry.

For a graph $K=(V, E)$ (without loops and double connections) and a real-valued function u on the set V of vertices, the combinatorial Laplacian is given by

$$
L u(x)=\sum_{y \sim x}(u(x)-u(y))=-m(x)\left(\frac{1}{m(x)}\left(\sum_{y \sim x} u(y)\right)-u(x)\right)
$$

Note that according to the first expression $z \sim x$ if and only if $L \delta_{z}(x)=-1$. Thus the combinatorial Laplacian contains the full information about the graph.

A continuous analog of the second expression for $L u$.

We do it in \mathbb{R}^{2} to simplify the notation. By Taylor's Theorem
$u(x, y)=u\left(x_{0}, y_{0}\right)+\left(x u_{x}+y u_{y}\right)+(1 / 2)\left(x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}\right)+O\left(r^{3}\right)$
where the subscripts denote partial derivatives and partials are evaluated at $\left(x_{0}, y_{0}\right)$.

A continuous analog of the second expression for $L u$.

We do it in \mathbb{R}^{2} to simplify the notation. By Taylor's Theorem
$u(x, y)=u\left(x_{0}, y_{0}\right)+\left(x u_{x}+y u_{y}\right)+(1 / 2)\left(x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}\right)+O\left(r^{3}\right)$
where the subscripts denote partial derivatives and partials are evaluated at $\left(x_{0}, y_{0}\right)$. Average over a circle C_{r} of small radius $r>0$ to yield

$$
\frac{1}{2 \pi r} \int_{C_{r}} u d s=u\left(x_{0}, y_{0}\right)-\frac{r^{2}}{4} \Delta u\left(x_{0}, y_{0}\right)+O\left(r^{3}\right) .
$$

A continuous analog of the second expression for $L u$.

We do it in \mathbb{R}^{2} to simplify the notation. By Taylor's Theorem
$u(x, y)=u\left(x_{0}, y_{0}\right)+\left(x u_{x}+y u_{y}\right)+(1 / 2)\left(x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}\right)+O\left(r^{3}\right)$
where the subscripts denote partial derivatives and partials are evaluated at $\left(x_{0}, y_{0}\right)$. Average over a circle C_{r} of small radius $r>0$ to yield

$$
\frac{1}{2 \pi r} \int_{C_{r}} u d s=u\left(x_{0}, y_{0}\right)-\frac{r^{2}}{4} \Delta u\left(x_{0}, y_{0}\right)+O\left(r^{3}\right)
$$

This translates to

$$
\Delta u\left(x_{0}, y_{0}\right)=-\lim _{r \rightarrow 0} \frac{4}{r^{2}}\left(\frac{1}{2 \pi r} \int_{C_{r}} u d s-u\left(x_{0}, y_{0}\right)\right) .
$$

A continuous analog of the second expression for $L u$.

We do it in \mathbb{R}^{2} to simplify the notation. By Taylor's Theorem
$u(x, y)=u\left(x_{0}, y_{0}\right)+\left(x u_{x}+y u_{y}\right)+(1 / 2)\left(x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}\right)+O\left(r^{3}\right)$
where the subscripts denote partial derivatives and partials are evaluated at $\left(x_{0}, y_{0}\right)$. Average over a circle C_{r} of small radius $r>0$ to yield

$$
\frac{1}{2 \pi r} \int_{C_{r}} u d s=u\left(x_{0}, y_{0}\right)-\frac{r^{2}}{4} \Delta u\left(x_{0}, y_{0}\right)+O\left(r^{3}\right)
$$

This translates to

$$
\Delta u\left(x_{0}, y_{0}\right)=-\lim _{r \rightarrow 0} \frac{4}{r^{2}}\left(\frac{1}{2 \pi r} \int_{C_{r}} u d s-u\left(x_{0}, y_{0}\right)\right) .
$$

This is analogous to our second expression for $L u$

$$
L u(x)=-m(x)\left(\frac{1}{m(x)}\left(\sum_{y \sim x} u(y)\right)-u(x)\right)
$$

The Maximum Principle

Proposition. Suppose $L u \geq 0$ and for every $y \sim x u(y) \geq u(x)$. Then $u(y)=u(x)$ for every neighbor y of x.

The Maximum Principle

Proposition. Suppose $L u \geq 0$ and for every $y \sim x u(y) \geq u(x)$. Then $u(y)=u(x)$ for every neighbor y of x.
Proof.

$$
0 \geq-L u(x)=\sum_{y \sim x}(u(y)-u(x)) \geq 0
$$

The Maximum Principle

Proposition. Suppose $L u \geq 0$ and for every $y \sim x u(y) \geq u(x)$. Then $u(y)=u(x)$ for every neighbor y of x.
Proof.

$$
0 \geq-L u(x)=\sum_{y \sim x}(u(y)-u(x)) \geq 0
$$

The proposition ought to be called "the minimum principle". Applying it to $-u$ and reversing all inequalities one obtains "the maximum principle." In particular, a harmonic function ($L u=0$) cannot attain an "interior" extremum.

Harnack inequality

Proposition. Suppose $x \sim y$ are two neighboring vertices of K and $u \geq 0$ is a function on V with $L u(x) \geq 0$ and $L u(y) \geq 0$. Then

$$
\frac{1}{m(y)} u(x) \leq u(y) \leq m(x) u(x)
$$

Harnack inequality

Proposition. Suppose $x \sim y$ are two neighboring vertices of K and $u \geq 0$ is a function on V with $L u(x) \geq 0$ and $L u(y) \geq 0$. Then

$$
\frac{1}{m(y)} u(x) \leq u(y) \leq m(x) u(x)
$$

If $u(x)>0$ we get more symmetric inequalities

$$
\frac{1}{m(y)} \leq \frac{u(y)}{u(x)} \leq m(x)
$$

Harnack inequality

Proposition. Suppose $x \sim y$ are two neighboring vertices of K and $u \geq 0$ is a function on V with $L u(x) \geq 0$ and $L u(y) \geq 0$. Then

$$
\frac{1}{m(y)} u(x) \leq u(y) \leq m(x) u(x)
$$

If $u(x)>0$ we get more symmetric inequalities

$$
\frac{1}{m(y)} \leq \frac{u(y)}{u(x)} \leq m(x)
$$

Proof.

$$
0 \leq L u(x)=m(x) u(x)-\sum_{x \sim z} u(z) \leq m(x) u(x)-u(y)
$$

Some definitions

$$
C^{0}(K)=\{u: V \longrightarrow \mathbb{R}\}
$$

Some definitions

$$
C^{0}(K)=\{u: V \longrightarrow \mathbb{R}\}
$$

$C_{c}^{0}(K)=\{u: V \longrightarrow \mathbb{R} \mid u$ has finite support $\}$

Some definitions

$C^{0}(K)=\{u: V \longrightarrow \mathbb{R}\}$
$C_{c}^{0}(K)=\{u: V \longrightarrow \mathbb{R} \mid u$ has finite support $\}$
$C^{1}(K)=\{\phi: \tilde{E} \longrightarrow \mathbb{R} \mid \phi([x, y])=-\phi([y, x])\}$ where \tilde{E} is the set of oriented edges of K.

Some definitions

$C^{0}(K)=\{u: V \longrightarrow \mathbb{R}\}$
$C_{c}^{0}(K)=\{u: V \longrightarrow \mathbb{R} \mid u$ has finite support $\}$
$C^{1}(K)=\{\phi: \tilde{E} \longrightarrow \mathbb{R} \mid \phi([x, y])=-\phi([y, x])\}$ where \tilde{E} is the set of oriented edges of K.

$$
\ell_{2,0}=\left\{u: V \longrightarrow \mathbb{R} \mid \sum_{x \in V} u(x)^{2}<\infty\right\}
$$

Some definitions

$C^{0}(K)=\{u: V \longrightarrow \mathbb{R}\}$
$C_{c}^{0}(K)=\{u: V \longrightarrow \mathbb{R} \mid u$ has finite support $\}$
$C^{1}(K)=\{\phi: \tilde{E} \longrightarrow \mathbb{R} \mid \phi([x, y])=-\phi([y, x])\}$ where \tilde{E} is the set of oriented edges of K.

$$
\begin{aligned}
& \ell_{2,0}=\left\{u: V \longrightarrow \mathbb{R} \mid \sum_{x \in V} u(x)^{2}<\infty\right\} \\
& \ell_{2,1}=\left\{\phi: \tilde{E} \longrightarrow \mathbb{R} \mid \sum_{[x, y] \in \tilde{E}} \phi([x, y])^{2}<\infty\right\}
\end{aligned}
$$

Some definitions

$C^{0}(K)=\{u: V \longrightarrow \mathbb{R}\}$
$C_{c}^{0}(K)=\{u: V \longrightarrow \mathbb{R} \mid u$ has finite support $\}$
$C^{1}(K)=\{\phi: \tilde{E} \longrightarrow \mathbb{R} \mid \phi([x, y])=-\phi([y, x])\}$ where \tilde{E} is the set of oriented edges of K.

$$
\begin{aligned}
& \ell_{2,0}=\left\{u: V \longrightarrow \mathbb{R} \mid \sum_{x \in V} u(x)^{2}<\infty\right\} \\
& \ell_{2,1}=\left\{\phi: \tilde{E} \longrightarrow \mathbb{R} \mid \sum_{[x, y] \in \tilde{E}} \phi([x, y])^{2}<\infty\right\}
\end{aligned}
$$

The last two spaces become Hilbert spaces if equipped with the natural inner products

$$
(u, v)=\sum_{x \in V} u(x) v(x) \quad \text { and } \quad(\phi, \psi)=\frac{1}{2} \sum_{[x, y] \in \tilde{E}} \phi([x, y]) \psi([x, y])
$$

respectively.

L^{2}, self-adjointness, and the spectrum

There are natural maps from functions to cochains and back.

$$
d u([x, y])=u(y)-u(x) \quad \text { and } \quad d^{*} \phi(x)=\sum_{y \sim x} \phi([y, x])
$$

which are adjoints with respect to the inner products defined above. d is the difference analog of the gradient while $-d^{*}$ is the analog of the divergence.

L^{2}, self-adjointness, and the spectrum

There are natural maps from functions to cochains and back.

$$
d u([x, y])=u(y)-u(x) \quad \text { and } \quad d^{*} \phi(x)=\sum_{y \sim x} \phi([y, x])
$$

which are adjoints with respect to the inner products defined above. d is the difference analog of the gradient while $-d^{*}$ is the analog of the divergence. A simple check shows that

$$
L u=d^{*} d
$$

in analogy with

$$
\Delta u=-\operatorname{div} \operatorname{grad} u
$$

L^{2}, self-adjointness, and the spectrum

There are natural maps from functions to cochains and back.

$$
d u([x, y])=u(y)-u(x) \quad \text { and } \quad d^{*} \phi(x)=\sum_{y \sim x} \phi([y, x])
$$

which are adjoints with respect to the inner products defined above. d is the difference analog of the gradient while $-d^{*}$ is the analog of the divergence. A simple check shows that

$$
L u=d^{*} d
$$

in analogy with

$$
\Delta u=-\operatorname{div} \operatorname{grad} u
$$

Clearly

$$
(L u, v)=\left(d^{*} d u, v\right)=(d u, d v)
$$

if at least one of u, v has finite support.
L^{2}, self-adjointness, and the spectrum - continued
Our graphs will be always connected and for the most part infinite. If the valence function $m(x)$ is bounded, the Laplacian is a bounded operator on on $\ell_{2}(K)$. It is also symmetric and hence self-adjoint.

L^{2}, self-adjointness, and the spectrum - continued

Our graphs will be always connected and for the most part infinite. If the valence function $m(x)$ is bounded, the Laplacian is a bounded operator on on $\ell_{2}(K)$. It is also symmetric and hence self-adjoint. In general, when the valence is not bounded we have

Theorem. L with the domain $C_{c}^{0}(K)$ is a symmetric, positive, essentially self-adjoint operator on $\ell_{2}(K)$.

L^{2}, self-adjointness, and the spectrum - continued

Our graphs will be always connected and for the most part infinite. If the valence function $m(x)$ is bounded, the Laplacian is a bounded operator on on $\ell_{2}(K)$. It is also symmetric and hence self-adjoint. In general, when the valence is not bounded we have

Theorem. L with the domain $C_{c}^{0}(K)$ is a symmetric, positive, essentially self-adjoint operator on $\ell_{2}(K)$.

This is analogous to the fact that the Laplacian Δ on a complete Riemannian manifold M with the domain $C_{0}^{\infty}(M)$ is essentially self-adjoint.
L^{2}, self-adjointness, and the spectrum - continued
Our graphs will be always connected and for the most part infinite. If the valence function $m(x)$ is bounded, the Laplacian is a bounded operator on on $\ell_{2}(K)$. It is also symmetric and hence self-adjoint. In general, when the valence is not bounded we have

Theorem. L with the domain $C_{c}^{0}(K)$ is a symmetric, positive, essentially self-adjoint operator on $\ell_{2}(K)$.

This is analogous to the fact that the Laplacian Δ on a complete Riemannian manifold M with the domain $C_{0}^{\infty}(M)$ is essentially self-adjoint.
In view of the theorem we can talk unambiguously about the spectrum of L and derive invariants of the graph from it.
L^{2}, self-adjointness, and the spectrum - continued
Our graphs will be always connected and for the most part infinite. If the valence function $m(x)$ is bounded, the Laplacian is a bounded operator on on $\ell_{2}(K)$. It is also symmetric and hence self-adjoint. In general, when the valence is not bounded we have

Theorem. L with the domain $C_{c}^{0}(K)$ is a symmetric, positive, essentially self-adjoint operator on $\ell_{2}(K)$.

This is analogous to the fact that the Laplacian Δ on a complete Riemannian manifold M with the domain $C_{0}^{\infty}(M)$ is essentially self-adjoint.
In view of the theorem we can talk unambiguously about the spectrum of L and derive invariants of the graph from it. In particular,

$$
\lambda_{0}(K)=\inf \{\lambda \in \operatorname{Spec}(L)\}=\inf \left\{\left.\frac{(d u, d u)}{(u, u)} \right\rvert\, u \in C_{c}^{0}(K) \backslash\{0\}\right\}
$$

is a very important one.

Cheeger's constant and bounds on $\lambda_{0}(K)$

Define, for a finite subgraph N of K,

$$
h(N)=\frac{\#\{x \in V \mid x \in N, \exists y \in V, y \notin N, y \sim x\}}{\#\{y \in V \mid y \in N\}}=\frac{L(\partial N)}{A(V)}
$$

Cheeger's constant and bounds on $\lambda_{0}(K)$

Define, for a finite subgraph N of K,

$$
h(N)=\frac{\#\{x \in V \mid x \in N, \exists y \in V, y \notin N, y \sim x\}}{\#\{y \in V \mid y \in N\}}=\frac{L(\partial N)}{A(V)}
$$

and

$$
h=h(K)=\inf _{N} h(N) .
$$

Cheeger's constant and bounds on $\lambda_{0}(K)$

Define, for a finite subgraph N of K,

$$
h(N)=\frac{\#\{x \in V \mid x \in N, \exists y \in V, y \notin N, y \sim x\}}{\#\{y \in V \mid y \in N\}}=\frac{L(\partial N)}{A(V)}
$$

and

$$
h=h(K)=\inf _{N} h(N)
$$

Theorem. Suppose K satisfies $m(x) \leq m$ for all $x \in V$. Then

$$
\frac{h^{2}}{2 m} \leq \lambda_{0}(K) \leq h
$$

Comments on Cheeger Inequality

- The proof of the lower bound was motivated by and followed the same pattern as the proof of corresponding result in Riemannian Geometry.

Comments on Cheeger Inequality

- The proof of the lower bound was motivated by and followed the same pattern as the proof of corresponding result in Riemannian Geometry.
- An analog for finite graphs is more important and gave rise to an explosion of research on expanding graphs.

Comments on Cheeger Inequality

- The proof of the lower bound was motivated by and followed the same pattern as the proof of corresponding result in Riemannian Geometry.
- An analog for finite graphs is more important and gave rise to an explosion of research on expanding graphs.
- The appearance of m in the denominator of the lower bound is counterintuitive. Understanding the formulation that would not have this defect came in a recent work of Bauer, Keller and Wojciechowski using the new notion of intrinsic metric on a graph to modify the way that the size of the boundary is measured.

Cheeger constant and smallest positive eigenvalue for finite graphs

For finite graphs $\lambda_{0}=0$ (constant eigenfunction).

Cheeger constant and smallest positive eigenvalue for finite

 graphsFor finite graphs $\lambda_{0}=0$ (constant eigenfunction). One looks instead at

$$
\lambda_{1}=\inf _{u \neq 0, \sum_{x \in V} u(x)=0}\left\{\frac{(d u, d u)}{(u, u)}\right\} .
$$

Cheeger constant and smallest positive eigenvalue for finite graphs

For finite graphs $\lambda_{0}=0$ (constant eigenfunction). One looks instead at

$$
\lambda_{1}=\inf _{u \neq 0, \sum_{x \in V} u(x)=0}\left\{\frac{(d u, d u)}{(u, u)}\right\} .
$$

The appropriate isoperimetric (Cheeger) constant is

$$
h=h(K)=\inf _{N \subset V,|N| \leq(1 / 2)|V|} \frac{L(\partial N)}{A(N)}
$$

and the estimates above hold for λ_{1} and h i.e.

$$
\frac{h^{2}}{2 m} \leq \lambda_{1}(K) \leq h
$$

It is worth pointing out that the two results (about λ_{0} for infinite graphs and λ_{1} for finite ones, at least the lower bounds, are proved in practically the same way.

To see the connection note that the first eigenfunction ϕ_{1} of L is perpendicular to constants, i.e. $\sum_{x \in V} \phi(x)=0$. Replacing ϕ by its negative if necessary, we can assume that $\#\{x \in V \mid \phi(x)>0\} \leq(1 / 2) \# V$.

To see the connection note that the first eigenfunction ϕ_{1} of L is perpendicular to constants, i.e. $\sum_{x \in V} \phi(x)=0$. Replacing ϕ by its negative if necessary, we can assume that $\#\{x \in V \mid \phi(x)>0\} \leq(1 / 2) \# V$. Define $\phi_{+}=\max (\phi, 0)$. We then have

$$
\lambda_{1}=\frac{\left(L \phi, \phi_{+}\right)}{\left(\phi_{+}, \phi_{+}\right)} \geq \frac{\left(L \phi_{+}, \phi_{+}\right)}{\left(\phi_{+}, \phi_{+}\right)}=\frac{\left(d \phi_{+}, d \phi_{+}\right)}{\left(\phi_{+}, \phi_{+}\right)}
$$

since for points x where $\phi(x)>0 L \phi(x) \geq L \phi_{+}(x)$.

To see the connection note that the first eigenfunction ϕ_{1} of L is perpendicular to constants, i.e. $\sum_{x \in V} \phi(x)=0$. Replacing ϕ by its negative if necessary, we can assume that $\#\{x \in V \mid \phi(x)>0\} \leq(1 / 2) \# V$. Define $\phi_{+}=\max (\phi, 0)$. We then have

$$
\lambda_{1}=\frac{\left(L \phi, \phi_{+}\right)}{\left(\phi_{+}, \phi_{+}\right)} \geq \frac{\left(L \phi_{+}, \phi_{+}\right)}{\left(\phi_{+}, \phi_{+}\right)}=\frac{\left(d \phi_{+}, d \phi_{+}\right)}{\left(\phi_{+}, \phi_{+}\right)}
$$

since for points x where $\phi(x)>0 L \phi(x) \geq L \phi_{+}(x)$. Thus to give a lower bound for λ_{1} we estimate the Rayleigh-Ritz quotient of a function with finite support which is precisely what we need to do to estimate λ_{0} in the case of an infinite graph.

Surjectivity of the Laplacian

T. Ceccherini-Silberstein, M. Coornaert, JD

Theorem. Suppose K is an infinite connected graph. Then $L: C^{0}(K) \longrightarrow C^{0}(K)$ is surjective.

Remarks.

- For finite graphs, the image of L is perpendicular to constants.
- The proof uses only the maximum principle. Therefore the theorem holds for a large class of operators.
Outline of proof. Consider the equation $L u=f$ for a fixed, arbitrary f.
Step 1. Take an exhaustion of the graph by finite subgraphs and solve the difference equation on each subgraph.
Step 2. Pass to the limit to get the solution on the whole graph.

Step 1

Fix $x_{0} \in V$ and consider $B_{n}=\left\{x \in V \mid d\left(x, x_{0}\right) \leq n\right\}$. Let K_{n} be the full subgraph with B_{n} as the set of vertices. Let F_{n} be the set of all real-valued functions on B_{n}. Define $L_{n}: F_{n} \longrightarrow F_{n}$ as follows.

$$
L_{n} u=\left.(L \tilde{u})\right|_{B_{n}}
$$

where \tilde{u} denotes the extension by zero of u to V.

Step 1

Fix $x_{0} \in V$ and consider $B_{n}=\left\{x \in V \mid d\left(x, x_{0}\right) \leq n\right\}$. Let K_{n} be the full subgraph with B_{n} as the set of vertices. Let F_{n} be the set of all real-valued functions on B_{n}. Define $L_{n}: F_{n} \longrightarrow F_{n}$ as follows.

$$
L_{n} u=\left.(L \tilde{u})\right|_{B_{n}}
$$

where \tilde{u} denotes the extension by zero of u to V.
Lemma. L_{n} is surjective.

Proof.

We show that L_{n} is injective. Suppose $u \in F_{n}$ is in the kernel of L_{n}. Then \tilde{u} is harmonic on B_{n} and vanishes on its boundary. By the maximum principle \tilde{u} and hence u are identically zero.
Fix $f \in C^{0}(K)$. The lemma implies that the set
$S_{n}=\left\{u \in F_{n}\left|L_{n} u=f\right|_{B_{n}}\right\}$ is nonempty for every n.

Step 2

For $m \geq n$, let $r_{m, n}: F_{m} \longrightarrow F_{n}$ be the restriction $r_{m, n} u=\left.u\right|_{B_{n}}$. Consider the sets

$$
X_{m, n}=r_{m, n}\left(S_{m}\right) \subset F_{n}
$$

Step 2

For $m \geq n$, let $r_{m, n}: F_{m} \longrightarrow F_{n}$ be the restriction $r_{m, n} u=\left.u\right|_{B_{n}}$. Consider the sets

$$
X_{m, n}=r_{m, n}\left(S_{m}\right) \subset F_{n}
$$

These sets are affine subspaces of F_{n}, are nonempty by the Lemma, and form a decreasing sequence, i.e. $X_{m+1, n} \subset X_{m, n}$. It follows that they stabilize in the sense that there exists $m_{0}(n)$ such that $X_{m_{0}(n), n}=\bigcap_{m \geq n} X_{m, n}=: U_{n}$.

Step 2

For $m \geq n$, let $r_{m, n}: F_{m} \longrightarrow F_{n}$ be the restriction $r_{m, n} u=\left.u\right|_{B_{n}}$. Consider the sets

$$
X_{m, n}=r_{m, n}\left(S_{m}\right) \subset F_{n}
$$

These sets are affine subspaces of F_{n}, are nonempty by the Lemma, and form a decreasing sequence, i.e. $X_{m+1, n} \subset X_{m, n}$. It follows that they stabilize in the sense that there exists $m_{0}(n)$ such that $X_{m_{0}(n), n}=\bigcap_{m \geq n} X_{m, n}=: U_{n}$.

Lemma. For every $n \geq 1, r_{n+1, n}: U_{n+1} \longrightarrow U_{n}$ is surjective.

Step 2

For $m \geq n$, let $r_{m, n}: F_{m} \longrightarrow F_{n}$ be the restriction $r_{m, n} u=\left.u\right|_{B_{n}}$.
Consider the sets

$$
X_{m, n}=r_{m, n}\left(S_{m}\right) \subset F_{n}
$$

These sets are affine subspaces of F_{n}, are nonempty by the Lemma, and form a decreasing sequence, i.e. $X_{m+1, n} \subset X_{m, n}$. It follows that they stabilize in the sense that there exists $m_{0}(n)$ such that $X_{m_{0}(n), n}=\bigcap_{m \geq n} X_{m, n}=: U_{n}$.

Lemma. For every $n \geq 1, r_{n+1, n}: U_{n+1} \longrightarrow U_{n}$ is surjective.

Proof.

Take $u \in U_{n}$ and choose $m \geq \max \left\{m_{0}(n), m_{0}(n+1)\right\}$. There exists $v \in S_{m}$ such that $r_{m, n} v=u$. Now $u^{\prime}=r_{m, n+1} v \in U_{n+1}$ and $r_{n+1, n} u^{\prime}=u$.
Now take $u_{1} \in U_{1}$ and choose inductively $u_{n+1} \in U_{n+1}$ so that $\left.u_{n+1}\right|_{B_{n}}=u_{n}$. Then define u on V by $u(x)=u_{n}(x)$ if $x \in B_{n}$. Clearly, u is well defined and satisfies $L u=f$.

