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Bar-and-Joint Frameworks

A d-dimensional bar-and-joint framework is a pair (G , p),
where G = (V ,E ) is a graph and p is a map from V to Rd .
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Bar-and-Joint Frameworks

A d-dimensional bar-and-joint framework is a pair (G , p),
where G = (V ,E ) is a graph and p is a map from V to Rd .

We consider the framework to be a straight line realization of
G in Rd in which the length of an edge uv ∈ E is given by the
Euclidean distance ‖p(u)− p(v)‖ between the points p(u)
and p(v).
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Rigidity and Global Rigidity

Two frameworks (G , p) and (G , q) are:
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Rigidity and Global Rigidity

Two frameworks (G , p) and (G , q) are:

equivalent if ‖p(u)− p(v)‖ = ‖q(u)− q(v)‖ for all uv ∈ E ;

congruent if ‖p(u)− p(v)‖ = ‖q(u)− q(v)‖ for all u, v ∈ V .

A framework (G , p) is:

globally rigid if every framework which is equivalent to (G , p)
is congruent to (G , p);

rigid if there exists an ǫ > 0 such that every framework (G , q)
which is equivalent to (G , p) and satisfies ‖p(v)− q(v)‖ < ǫ

for all v ∈ V , is congruent to (G , p). (This is equivalent to
saying that every continuous motion of the vertices of (G , p)
which preserves the lengths of all edges of (G , p), also
preserves the distances between all pairs of vertices of (G , p).)

Bill Jackson Rigidity of Graphs and Frameworks



Example
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Figure : A 2-dimensional example. The framework (G , p1) can be
obtained from (G , p0) by a continuous motion which preserves all edge
lengths, but changes the distance between v1 and v3. Thus (G , p0) is not
rigid.
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Figure : A rigid 2-dimensional framework which is not globally rigid. All
edges in both frameworks have the same length, but the distance from v1
to v3 is different.
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Complexity

It is NP-hard to determine whether a given d -dimensional
framework (G , p) is globally rigid for d ≥ 1 (J. B. Saxe), or
rigid for d ≥ 2 (Abbot).
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Complexity

It is NP-hard to determine whether a given d -dimensional
framework (G , p) is globally rigid for d ≥ 1 (J. B. Saxe), or
rigid for d ≥ 2 (Abbot).

These problems becomes more tractable if we restrict
attention to ‘generic’ frameworks (those for which the set of
coordinates of all points p(v), v ∈ V , is algebraically
independent over Q).
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The Rigidity Matrix

The rigidity matrix R(G , p) of a framework (G , p) is an
|E | × d |V | matrix with rows indexed by E and sequences of d
consecutive columns indexed by V .
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The Rigidity Matrix

The rigidity matrix R(G , p) of a framework (G , p) is an
|E | × d |V | matrix with rows indexed by E and sequences of d
consecutive columns indexed by V .

The entries in the row corresponding to an edge e ∈ E and
columns corresponding to a vertex u ∈ V are given by the vector
p(u)− p(v) if e = uv is incident to u and is the zero vector if e is
not incident to u.
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The Rigidity Matrix

The rigidity matrix R(G , p) of a framework (G , p) is an
|E | × d |V | matrix with rows indexed by E and sequences of d
consecutive columns indexed by V .

The entries in the row corresponding to an edge e ∈ E and
columns corresponding to a vertex u ∈ V are given by the vector
p(u)− p(v) if e = uv is incident to u and is the zero vector if e is
not incident to u.

The rigidity matrix is the Jacobean matrix of the rigidity map

fG : Rdn → Rm defined by

fG (p) = (ℓp(e1), ℓp(e2), . . . , ℓp(em))

where ℓp(ei ) is the squared length of edge ei in (G , p).
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Rigidity matrix: Example
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p(v1)− p(v2) p(v2)− p(v1) 0 0

0 p(v2)− p(v3) p(v3)− p(v2) 0

0 0 p(v3)− p(v4) p(v4)− p(v3)
p(v1)− p(v4) 0 0 p(v4)− p(v1)

0 p(v2)− p(v4) 0 p(v4)− p(v2)
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The Rigidity Matrix: Theorem

Theorem [Asimow and Roth, 1979]

Let (G , p) be a d -dimensional framework with n ≥ d + 1 vertices.
Then:

rank R(G , p) ≤ nd −
(

d+1

2

)

.

If rank R(G , p) = nd −
(

d+1

2

)

then (G , p) is rigid.

When (G , p) is generic, (G , p) is rigid if and only if

rank R(G , p) = nd −

(

d + 1

2

)

.

Bill Jackson Rigidity of Graphs and Frameworks



The Rigidity Matrix: Theorem

Theorem [Asimow and Roth, 1979]

Let (G , p) be a d -dimensional framework with n ≥ d + 1 vertices.
Then:

rank R(G , p) ≤ nd −
(

d+1

2

)

.

If rank R(G , p) = nd −
(

d+1

2

)

then (G , p) is rigid.

When (G , p) is generic, (G , p) is rigid if and only if

rank R(G , p) = nd −

(

d + 1

2

)

.

It follows that the rigidity of a generic framework (G , p) depends
only on the graph G .
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Independent graphs

A graph G is independent in Rd if the rows of R(G , p) are
linearly independent for any generic (G , p).
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linearly independent for any generic (G , p).

If we can determine when G is independent in Rd then we can
decide if G is rigid.
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Independent graphs

A graph G is independent in Rd if the rows of R(G , p) are
linearly independent for any generic (G , p).

If we can determine when G is independent in Rd then we can
decide if G is rigid.

A necessary condition for independence in Rd is that

i(X ) ≤ d |X | −

(

d + 1

2

)

for all X ⊆ V with |X | ≥ d + 1 (where i(X ) denotes the
number of edges of G joining vertices in X .)
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Independent graphs

A graph G is independent in Rd if the rows of R(G , p) are
linearly independent for any generic (G , p).

If we can determine when G is independent in Rd then we can
decide if G is rigid.

A necessary condition for independence in Rd is that

i(X ) ≤ d |X | −

(

d + 1

2

)

for all X ⊆ V with |X | ≥ d + 1 (where i(X ) denotes the
number of edges of G joining vertices in X .)

This necessary condition is sufficient to imply independence
when d = 1 and when d = 2 (Laman 1970). It is not
sufficient when d ≥ 3.
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The Stress Matrix

A stress for a framework (G , p) is a map w : E → Rm such that,
for all v ∈ V ,

∑

uv∈E

we(p(u)− p(v)) = 0.
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The Stress Matrix

A stress for a framework (G , p) is a map w : E → Rm such that,
for all v ∈ V ,

∑

uv∈E

we(p(u)− p(v)) = 0.

The associated stress matrix S(G , p,w) is the n × n matrix with
rows and columns indexed by V in which the entry corresponding
to an edge uv ∈ E is we , all other off-diagonal entries are zero, and
the diagonal entries are chosen to give zero row and column sums.
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The Stress Matrix: Theorem

Theorem [Connelly (2005); Gortler, Healy and Thurston (2010)]

Let (G , p) be a generic d -dimensional framework with n ≥ d + 1
vertices. Then

rank S(G , p,w) ≤ n − d − 1 for all stresses w for (G , p).

(G , p) is globally rigid if and only if (G , p) has a stress w such
that rank S(G , p,w) = n− d − 1.
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The Stress Matrix: Theorem

Theorem [Connelly (2005); Gortler, Healy and Thurston (2010)]

Let (G , p) be a generic d -dimensional framework with n ≥ d + 1
vertices. Then

rank S(G , p,w) ≤ n − d − 1 for all stresses w for (G , p).

(G , p) is globally rigid if and only if (G , p) has a stress w such
that rank S(G , p,w) = n− d − 1.

This implies that the global rigidity of a generic framework (G , p)
depends only on the graph G .
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Global rigidity

Theorem [Hendrickson (1992)]

If G is globally rigid in Rd and n ≥ d+1 then G is d +1-connected
and redundantly rigid i.e. G − e is rigid for all e ∈ E .
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Global rigidity

Theorem [Hendrickson (1992)]

If G is globally rigid in Rd and n ≥ d+1 then G is d +1-connected
and redundantly rigid i.e. G − e is rigid for all e ∈ E .

These necessary conditions for global rigidity are sufficient when
d = 1 and when d = 2 (Connelly, 2005; Jackson and Jordán,
2005). They are not sufficient for d ≥ 3.
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Point-Line Frameworks

Let G = (P ∪ L,E ) be a graph with two types of vertices
representing points and lines in R2. A point-line framework is
defined by a map p : P ∪ L → R2, where p(v) gives the
coordinates of v for v ∈ P and p(l) gives the cartesian equation
for l when l ∈ L.
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Determine when a generic point-line framework is rigid.
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Point-Line Frameworks

Let G = (P ∪ L,E ) be a graph with two types of vertices
representing points and lines in R2. A point-line framework is
defined by a map p : P ∪ L → R2, where p(v) gives the
coordinates of v for v ∈ P and p(l) gives the cartesian equation
for l when l ∈ L.

Edges of G from P to P ∪ L represent distance constraints, edges
from L to L represent angle constraints.

Problem [John Owen]

Determine when a generic point-line framework is rigid.

Two necessary conditions for generic independence are that:
i(X ) ≤ 2|X | − 3 for all X ⊆ P ∪ L with |X | ≥ 2;
i(X ) ≤ |X | − 1 for all X ⊆ L with |X | ≥ 1.
These conditions are not sufficient.
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Scaler-Product Rigidity

Two d -dimensional frameworks (G , p) and (G , q) are:

equivalent if p(u) · p(v) = q(u) · q(v) for all uv ∈ E ;

congruent if p(u) · p(v) = q(u) · q(v) for all u, v ∈ V .

Rigidity and global rigidity are defined analogously.
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Scaler-Product Rigidity

Two d -dimensional frameworks (G , p) and (G , q) are:

equivalent if p(u) · p(v) = q(u) · q(v) for all uv ∈ E ;

congruent if p(u) · p(v) = q(u) · q(v) for all u, v ∈ V .

Rigidity and global rigidity are defined analogously.
Two necessary conditions for generic independence of G are that:

i(X ) ≤ d |X | −
(

d
2

)

for all X ⊆ V with |X | ≥ d ;

|E (H)| ≤ d |V (H)| − d2 for all bipartite subgraphs H ⊆ G

with at least d vertices on each side of their bipartition.
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Scaler-Product Rigidity

Two d -dimensional frameworks (G , p) and (G , q) are:

equivalent if p(u) · p(v) = q(u) · q(v) for all uv ∈ E ;

congruent if p(u) · p(v) = q(u) · q(v) for all u, v ∈ V .

Rigidity and global rigidity are defined analogously.
Two necessary conditions for generic independence of G are that:

i(X ) ≤ d |X | −
(

d
2

)

for all X ⊆ V with |X | ≥ d ;

|E (H)| ≤ d |V (H)| − d2 for all bipartite subgraphs H ⊆ G

with at least d vertices on each side of their bipartition.

Singer and Cucirangu (2010) show that these conditions are
sufficient to characterise independence (and hence rigidity) when
d = 1. They also show that G is generically globally rigid when
d = 1 if and only if G is connected and not bipartite.
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Scaler-Product Rigidity

Two d -dimensional frameworks (G , p) and (G , q) are:

equivalent if p(u) · p(v) = q(u) · q(v) for all uv ∈ E ;

congruent if p(u) · p(v) = q(u) · q(v) for all u, v ∈ V .

Rigidity and global rigidity are defined analogously.
Two necessary conditions for generic independence of G are that:

i(X ) ≤ d |X | −
(

d
2

)

for all X ⊆ V with |X | ≥ d ;

|E (H)| ≤ d |V (H)| − d2 for all bipartite subgraphs H ⊆ G

with at least d vertices on each side of their bipartition.

Singer and Cucirangu (2010) show that these conditions are
sufficient to characterise independence (and hence rigidity) when
d = 1. They also show that G is generically globally rigid when
d = 1 if and only if G is connected and not bipartite.
The necessary conditions for generic independence are not
sufficient when d ≥ 2.
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