Rigidity of Graphs and Frameworks

Bill Jackson
School of Mathematical Sciences
Queen Mary, University of London
England

Durham, 16 July, 2013

Bar-and-Joint Frameworks

- A d-dimensional bar-and-joint framework is a pair (G, p), where $G=(V, E)$ is a graph and p is a map from V to \mathbb{R}^{d}.

Bar-and-Joint Frameworks

- A d-dimensional bar-and-joint framework is a pair (G, p), where $G=(V, E)$ is a graph and p is a map from V to \mathbb{R}^{d}.
- We consider the framework to be a straight line realization of G in \mathbb{R}^{d} in which the length of an edge $u v \in E$ is given by the Euclidean distance $\|p(u)-p(v)\|$ between the points $p(u)$ and $p(v)$.

Rigidity and Global Rigidity

Two frameworks (G, p) and (G, q) are:

Rigidity and Global Rigidity

Two frameworks (G, p) and (G, q) are:

- equivalent if $\|p(u)-p(v)\|=\|q(u)-q(v)\|$ for all $u v \in E$;

Rigidity and Global Rigidity

Two frameworks (G, p) and (G, q) are:

- equivalent if $\|p(u)-p(v)\|=\|q(u)-q(v)\|$ for all $u v \in E$;
- congruent if $\|p(u)-p(v)\|=\|q(u)-q(v)\|$ for all $u, v \in V$.

Rigidity and Global Rigidity

Two frameworks (G, p) and (G, q) are:

- equivalent if $\|p(u)-p(v)\|=\|q(u)-q(v)\|$ for all $u v \in E$;
- congruent if $\|p(u)-p(v)\|=\|q(u)-q(v)\|$ for all $u, v \in V$.

A framework (G, p) is:

- globally rigid if every framework which is equivalent to (G, p) is congruent to (G, p);

Rigidity and Global Rigidity

Two frameworks (G, p) and (G, q) are:

- equivalent if $\|p(u)-p(v)\|=\|q(u)-q(v)\|$ for all $u v \in E$;
- congruent if $\|p(u)-p(v)\|=\|q(u)-q(v)\|$ for all $u, v \in V$.

A framework (G, p) is:

- globally rigid if every framework which is equivalent to (G, p) is congruent to (G, p);
- rigid if there exists an $\epsilon>0$ such that every framework (G, q) which is equivalent to (G, p) and satisfies $\|p(v)-q(v)\|<\epsilon$ for all $v \in V$, is congruent to (G, p). (This is equivalent to saying that every continuous motion of the vertices of (G, p) which preserves the lengths of all edges of (G, p), also preserves the distances between all pairs of vertices of (G, p).)

Example

Figure: A 2-dimensional example. The framework (G, p_{1}) can be obtained from (G, p_{0}) by a continuous motion which preserves all edge lengths, but changes the distance between v_{1} and v_{3}. Thus (G, p_{0}) is not rigid.

Example

Figure : A rigid 2-dimensional framework which is not globally rigid. All edges in both frameworks have the same length, but the distance from v_{1} to v_{3} is different.

Complexity

- It is NP-hard to determine whether a given d-dimensional framework (G, p) is globally rigid for $d \geq 1$ (J. B. Saxe), or rigid for $d \geq 2$ (Abbot).

Complexity

- It is NP-hard to determine whether a given d-dimensional framework (G, p) is globally rigid for $d \geq 1$ (J. B. Saxe), or rigid for $d \geq 2$ (Abbot).
- These problems becomes more tractable if we restrict attention to 'generic' frameworks (those for which the set of coordinates of all points $p(v), v \in V$, is algebraically independent over \mathbb{Q}).

The rigidity matrix $R(G, p)$ of a framework (G, p) is an $|E| \times d|V|$ matrix with rows indexed by E and sequences of d consecutive columns indexed by V.

The rigidity matrix $R(G, p)$ of a framework (G, p) is an $|E| \times d|V|$ matrix with rows indexed by E and sequences of d consecutive columns indexed by V.

The entries in the row corresponding to an edge $e \in E$ and columns corresponding to a vertex $u \in V$ are given by the vector $p(u)-p(v)$ if $e=u v$ is incident to u and is the zero vector if e is not incident to u.

The Rigidity Matrix

The rigidity matrix $R(G, p)$ of a framework (G, p) is an $|E| \times d|V|$ matrix with rows indexed by E and sequences of d consecutive columns indexed by V.

The entries in the row corresponding to an edge $e \in E$ and columns corresponding to a vertex $u \in V$ are given by the vector $p(u)-p(v)$ if $e=u v$ is incident to u and is the zero vector if e is not incident to u.

The rigidity matrix is the Jacobean matrix of the rigidity map $f_{G}: \mathbb{R}^{d n} \rightarrow \mathbb{R}^{m}$ defined by

$$
f_{G}(p)=\left(\ell_{p}\left(e_{1}\right), \ell_{p}\left(e_{2}\right), \ldots, \ell_{p}\left(e_{m}\right)\right)
$$

where $\ell_{p}\left(e_{i}\right)$ is the squared length of edge e_{i} in (G, p).

Rigidity matrix: Example

$$
\left(\begin{array}{cccc}
p\left(v_{1}\right)-p\left(v_{2}\right) & p\left(v_{2}\right)-p\left(v_{1}\right) & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & p\left(v_{2}\right)-p\left(v_{3}\right) & p\left(v_{3}\right)-p\left(v_{2}\right) & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & p\left(v_{3}\right)-p\left(v_{4}\right) & p\left(v_{4}\right)-p\left(v_{3}\right) \\
p\left(v_{1}\right)-p\left(v_{4}\right) & \mathbf{0} & \mathbf{0} & p\left(v_{4}\right)-p\left(v_{1}\right) \\
\mathbf{0} & p\left(v_{2}\right)-p\left(v_{4}\right) & \mathbf{0} & p\left(v_{4}\right)-p\left(v_{2}\right)
\end{array}\right)
$$

The Rigidity Matrix: Theorem

Theorem [Asimow and Roth, 1979]
Let (G, p) be a d-dimensional framework with $n \geq d+1$ vertices. Then:

- rank $R(G, p) \leq n d-\binom{d+1}{2}$.
- If rank $R(G, p)=n d-\binom{d+1}{2}$ then (G, p) is rigid.
- When (G, p) is generic, (G, p) is rigid if and only if

$$
\operatorname{rank} R(G, p)=n d-\binom{d+1}{2}
$$

The Rigidity Matrix: Theorem

Theorem [Asimow and Roth, 1979]

Let (G, p) be a d-dimensional framework with $n \geq d+1$ vertices. Then:

- rank $R(G, p) \leq n d-\binom{d+1}{2}$.
- If rank $R(G, p)=n d-\binom{d+1}{2}$ then (G, p) is rigid.
- When (G, p) is generic, (G, p) is rigid if and only if

$$
\operatorname{rank} R(G, p)=n d-\binom{d+1}{2}
$$

It follows that the rigidity of a generic framework (G, p) depends only on the graph G.

Independent graphs

- A graph G is independent in \mathbb{R}^{d} if the rows of $R(G, p)$ are linearly independent for any generic (G, p).

Independent graphs

- A graph G is independent in \mathbb{R}^{d} if the rows of $R(G, p)$ are linearly independent for any generic (G, p).
- If we can determine when G is independent in \mathbb{R}^{d} then we can decide if G is rigid.

Independent graphs

- A graph G is independent in \mathbb{R}^{d} if the rows of $R(G, p)$ are linearly independent for any generic (G, p).
- If we can determine when G is independent in \mathbb{R}^{d} then we can decide if G is rigid.
- A necessary condition for independence in \mathbb{R}^{d} is that

$$
i(X) \leq d|X|-\binom{d+1}{2}
$$

for all $X \subseteq V$ with $|X| \geq d+1$ (where $i(X)$ denotes the number of edges of G joining vertices in X.)

Independent graphs

- A graph G is independent in \mathbb{R}^{d} if the rows of $R(G, p)$ are linearly independent for any generic (G, p).
- If we can determine when G is independent in \mathbb{R}^{d} then we can decide if G is rigid.
- A necessary condition for independence in \mathbb{R}^{d} is that

$$
i(X) \leq d|X|-\binom{d+1}{2}
$$

for all $X \subseteq V$ with $|X| \geq d+1$ (where $i(X)$ denotes the number of edges of G joining vertices in X.)

- This necessary condition is sufficient to imply independence when $d=1$ and when $d=2$ (Laman 1970). It is not sufficient when $d \geq 3$.

A stress for a framework (G, p) is a map $w: E \rightarrow \mathbb{R}^{m}$ such that, for all $v \in V$,

$$
\sum_{u v \in E} w_{e}(p(u)-p(v))=\mathbf{0}
$$

A stress for a framework (G, p) is a map $w: E \rightarrow \mathbb{R}^{m}$ such that, for all $v \in V$,

$$
\sum_{u v \in E} w_{e}(p(u)-p(v))=\mathbf{0} .
$$

The associated stress matrix $S(G, p, w)$ is the $n \times n$ matrix with rows and columns indexed by V in which the entry corresponding to an edge $u v \in E$ is w_{e}, all other off-diagonal entries are zero, and the diagonal entries are chosen to give zero row and column sums.

The Stress Matrix: Theorem

Theorem [Connelly (2005); Gortler, Healy and Thurston (2010)]

Let (G, p) be a generic d-dimensional framework with $n \geq d+1$ vertices. Then

- rank $S(G, p, w) \leq n-d-1$ for all stresses w for (G, p).
- (G, p) is globally rigid if and only if (G, p) has a stress w such that rank $S(G, p, w)=n-d-1$.

Theorem [Connelly (2005); Gortler, Healy and Thurston (2010)]

Let (G, p) be a generic d-dimensional framework with $n \geq d+1$ vertices. Then

- rank $S(G, p, w) \leq n-d-1$ for all stresses w for (G, p).
- (G, p) is globally rigid if and only if (G, p) has a stress w such that rank $S(G, p, w)=n-d-1$.

This implies that the global rigidity of a generic framework (G, p) depends only on the graph G.

Global rigidity

Theorem [Hendrickson (1992)]

If G is globally rigid in \mathbb{R}^{d} and $n \geq d+1$ then G is $d+1$-connected and redundantly rigid i.e. $G-e$ is rigid for all $e \in E$.

Global rigidity

Theorem [Hendrickson (1992)]

If G is globally rigid in \mathbb{R}^{d} and $n \geq d+1$ then G is $d+1$-connected and redundantly rigid i.e. $G-e$ is rigid for all $e \in E$.

These necessary conditions for global rigidity are sufficient when $d=1$ and when $d=2$ (Connelly, 2005; Jackson and Jordán, 2005). They are not sufficient for $d \geq 3$.

Point-Line Frameworks

Let $G=(P \cup L, E)$ be a graph with two types of vertices representing points and lines in \mathbb{R}^{2}. A point-line framework is defined by a map $p: P \cup L \rightarrow \mathbb{R}^{2}$, where $p(v)$ gives the coordinates of v for $v \in P$ and $p(I)$ gives the cartesian equation for I when $I \in L$.

Let $G=(P \cup L, E)$ be a graph with two types of vertices representing points and lines in \mathbb{R}^{2}. A point-line framework is defined by a map $p: P \cup L \rightarrow \mathbb{R}^{2}$, where $p(v)$ gives the coordinates of v for $v \in P$ and $p(I)$ gives the cartesian equation for I when $I \in L$.

Edges of G from P to $P \cup L$ represent distance constraints, edges from L to L represent angle constraints.

Point-Line Frameworks

Let $G=(P \cup L, E)$ be a graph with two types of vertices representing points and lines in \mathbb{R}^{2}. A point-line framework is defined by a map $p: P \cup L \rightarrow \mathbb{R}^{2}$, where $p(v)$ gives the coordinates of v for $v \in P$ and $p(I)$ gives the cartesian equation for I when $I \in L$.

Edges of G from P to $P \cup L$ represent distance constraints, edges from L to L represent angle constraints.

Problem [John Owen]

Determine when a generic point-line framework is rigid.

Point-Line Frameworks

Let $G=(P \cup L, E)$ be a graph with two types of vertices representing points and lines in \mathbb{R}^{2}. A point-line framework is defined by a map $p: P \cup L \rightarrow \mathbb{R}^{2}$, where $p(v)$ gives the coordinates of v for $v \in P$ and $p(I)$ gives the cartesian equation for I when $I \in L$.

Edges of G from P to $P \cup L$ represent distance constraints, edges from L to L represent angle constraints.

Problem [John Owen]

Determine when a generic point-line framework is rigid.

Two necessary conditions for generic independence are that:
$i(X) \leq 2|X|-3$ for all $X \subseteq P \cup L$ with $|X| \geq 2$;
$i(X) \leq|X|-1$ for all $X \subseteq L$ with $|X| \geq 1$.
These conditions are not sufficient.

Scaler-Product Rigidity

Two d-dimensional frameworks (G, p) and (G, q) are:

- equivalent if $p(u) \cdot p(v)=q(u) \cdot q(v)$ for all $u v \in E$;
- congruent if $p(u) \cdot p(v)=q(u) \cdot q(v)$ for all $u, v \in V$.

Rigidity and global rigidity are defined analogously.

Scaler-Product Rigidity

Two d-dimensional frameworks (G, p) and (G, q) are:

- equivalent if $p(u) \cdot p(v)=q(u) \cdot q(v)$ for all $u v \in E$;
- congruent if $p(u) \cdot p(v)=q(u) \cdot q(v)$ for all $u, v \in V$.

Rigidity and global rigidity are defined analogously.
Two necessary conditions for generic independence of G are that:

- $i(X) \leq d|X|-\binom{d}{2}$ for all $X \subseteq V$ with $|X| \geq d$;
- $|E(H)| \leq d|V(H)|-d^{2}$ for all bipartite subgraphs $H \subseteq G$ with at least d vertices on each side of their bipartition.

Scaler-Product Rigidity

Two d-dimensional frameworks (G, p) and (G, q) are:

- equivalent if $p(u) \cdot p(v)=q(u) \cdot q(v)$ for all $u v \in E$;
- congruent if $p(u) \cdot p(v)=q(u) \cdot q(v)$ for all $u, v \in V$.

Rigidity and global rigidity are defined analogously.
Two necessary conditions for generic independence of G are that:

- $i(X) \leq d|X|-\binom{d}{2}$ for all $X \subseteq V$ with $|X| \geq d$;
- $|E(H)| \leq d|V(H)|-d^{2}$ for all bipartite subgraphs $H \subseteq G$ with at least d vertices on each side of their bipartition.
Singer and Cucirangu (2010) show that these conditions are sufficient to characterise independence (and hence rigidity) when $d=1$. They also show that G is generically globally rigid when $d=1$ if and only if G is connected and not bipartite.

Scaler-Product Rigidity

Two d-dimensional frameworks (G, p) and (G, q) are:

- equivalent if $p(u) \cdot p(v)=q(u) \cdot q(v)$ for all $u v \in E$;
- congruent if $p(u) \cdot p(v)=q(u) \cdot q(v)$ for all $u, v \in V$.

Rigidity and global rigidity are defined analogously.
Two necessary conditions for generic independence of G are that:

- $i(X) \leq d|X|-\binom{d}{2}$ for all $X \subseteq V$ with $|X| \geq d$;
- $|E(H)| \leq d|V(H)|-d^{2}$ for all bipartite subgraphs $H \subseteq G$ with at least d vertices on each side of their bipartition.
Singer and Cucirangu (2010) show that these conditions are sufficient to characterise independence (and hence rigidity) when $d=1$. They also show that G is generically globally rigid when $d=1$ if and only if G is connected and not bipartite.
The necessary conditions for generic independence are not sufficient when $d \geq 2$.

