Property Testing for Sparse Graphs: Structural graph theory meets Property testing

Ken-ichi Kawarabayashi
National Institute of Informatics (NII) & JST, ERATO, Kawarabayashi Large Graph Project

Joint work with Yuichi Yoshida (NII).

STOC’13
Purpose of this talk

- How Structural graph theory helps property testing?

- Warning: I am NOT an expert on property testing.
Contents

• What is the property testing?
• Dense graphs model.
• Bounded degree graphs with separators.
• Bounded degree graphs with no separators
 our main contribution
• Tools from property testing and graph minors
• Summary
Property Testing

• Dense Graph Model:
 Connected to Szemeredi’s Regularity Lemma
 (Due to Alon et al.)

• Bounded Degree Model:
 Connected to Structural Graph Theory and
 Graph Minor (from this work!)
Property Testing (Informal Definition)

For a fixed property P and any object O, determine whether O has property P, or whether O is far from having property P (i.e., far from any other object having P).

Task should be performed by querying the object (in as few places as possible. Sublinear or even constant time).
Examples

• The object can be a graph (represented by its adjacency matrix), and the property can be 3-colorability.

• The object can be a string and the property can be membership in a given regular language L.

• The object can be a function and the property can be linearity.
When can Property Testing be Useful?

- Object is to too large to even fully scan, so must make approximate decision.
- Object is not too large but
 1. Exact decision is NP-hard (e.g. coloring)
 2. Prefer sub-linear approximate algorithm to polynomial exact algorithm.
Actual Computation Results for the Shortest Paths Problem Using High-Performance Computer (HPC) (2011)

Based on Dijkstra's algorithm (Running time: $O(n \log n)$)

- **Graph of the entire United States** ($n=24,000,000$ points, $58,000,000$ edges): 3 seconds
- **Very large scale graph** ($n=10^9$ points, 2×10^9 edges): 870s

Individual personal computers need >1000 times!

We cannot use Dijkstra’s algorithm!
Graph Property Testing

Very general setting:

\(P = \) graph property to test

\((k\text{-colorability, planarity, non-existence of a copy of } H, \text{ etc.})\)

Input: graph \(G \) on \(n \) vertices, \(n \to \infty \)

Promise: \(G \in P \) (positive)

or: \(G \) is \(\varepsilon \)-far from \(P \) (negative)

(More than \(\varepsilon \)-percentage of description of \(G \) should be changed to get \(G \in P \))

Algorithm: (typically randomized): Constant time (Sublinear)

\(G \in P \Rightarrow \Pr[A \text{ accepts } G] \geq 2/3 \)

\(G \) is \(\varepsilon \)-far from \(P \Rightarrow \Pr[A \text{ rejects } G] \geq 2/3 \)

\(G \in P, \Pr[A \text{ accepts } G] = 1 \) — **one-sided error algorithm**

Edge Addition or Edge Deletion

two-sided error
Contents

• What is the property testing?
• Dense graphs model
• Bounded degree graphs with separators
• Bounded degree graphs with no separators
 our main contribution
• Tools from property testing and graph minors
• Summary
Property Testing in Dense Graphs

- Formally defined in GGR’98
 (appeared implicitly in combinatorial papers in 70’s, 80’s)

Input graph description: adjacency matrix $G=(V,E)$, $V=[n]$

$A_{n \times n}$

$$a_{ij} = \begin{cases}
1, & (i, j) \in E(G) \\
0, & \text{otherwise}
\end{cases}$$

Algorithm: queries the adjacency matrix of G

Want: Constant-time query!

Distance: G is ε-far from P if $\geq \varepsilon n^2$ entries in $A(G)$ need to be changed to get $G \in P$ \textit{(addition or deletion)}
Property Testing in Dense Graphs - Brief Summary

“... It’s all about REGULARITY.” (Alon, Fischer, Newman and Shapira’06)

Every ``heredity property(closed under deletion)” is constant-time testable if and only if there is a “Szemeredi partition”.

• Very strong (and fruitful) connection between property testing in dense graphs and the Szemerédi Regularity Lemma and its versions
Dense Graph Model - limitations

- Suitable/tailored for dense graphs only

- **Degenerate** for many graph properties

 Ex. : $P = \text{"G is connected"}$

 - Always answer "YES"

 (Imagine edge addition: $\text{dist}(G,P) \leq n-1 \ll \epsilon n^2$)
Property Testing

• Dense Graph Model:
 Connected to Szemeredi’s Regularity Lemma
 (Due to Alon et al.)

• Bounded Degree Model:
 Connected to Structural Graph Theory and
 Graph Minor (from this work!)
Contents

• What is the property testing?
• Dense graphs model
• **Bounded degree graphs with separator**
• Bounded degree graphs with no separators: our main contribution
• Tools from property testing and graph minors
• Summary
Property Testing in Bounded Degree Graphs

Introduced by Goldreich and Ron'97 (GR97)

- **Assumption**: max degree of an input graph $G \leq d=constant, \ \varepsilon \ll 1/d$

- **Graph representation**: by incidence lists $L(v_i)=(v_{i,1},\ldots,v_{i,d})$ - list of neighbors of v_i

- **Distance**: G is ε-far from P if need $\geq \varepsilon dn$ modifications in incidence lists to get $H \in P$ (addition or deletion)
Bounded Degree Graphs - an Example

Th. (GR'97): Connectivity in bounded degree model can be tested in $O(1/\varepsilon^2)$ queries

Proof: Assume: G is ε-far from being connected

G has $\geq \varepsilon n$ connected components

G has $\geq \varepsilon n/2$ con. components of size $\leq 2/\varepsilon$ (= small components)

$\geq \varepsilon/2$ percentage of all vertices in small components
Property Testing in Bounded Degree Graphs

Algorithm: Repeat $O(1/\varepsilon)$ times:

1. Sample a random vertex $v \in \mathcal{R} \mathcal{V}$
2. Explore the connected component $C(v)$ of v till accumulate $2/\varepsilon$ vertices
3. If $|C(v)| \leq 2/\varepsilon$ - reject (G is ε-far from being connected)

If never reject - accept

One-sided error algorithm with complexity $O(1/\varepsilon^2)$

More careful analysis $\tilde{O} (1/\varepsilon)$ queries
Three reasons of Constant-time testability in bounded-degree model

<table>
<thead>
<tr>
<th>Properties</th>
<th>Why is it testable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>△-freeness, H-freeness [GR02]</td>
<td>Locally determined</td>
</tr>
<tr>
<td>k-edge-connectivity [GR02]</td>
<td>Edge-augmentation / matroid theory.</td>
</tr>
<tr>
<td>k edge-disjoint spanning trees [ITY’12]</td>
<td></td>
</tr>
<tr>
<td>Planarity, H-minor-freeness [BSS08, HKNO09]</td>
<td>Existence of separators</td>
</tr>
</tbody>
</table>

Is there any other kind of testable properties?
A graph G has a minor H if H can be formed by removing and contracting edges of G.

Minor-closed: Closed under minor operations. For example, Planar graphs are minor-closed.

Kuratowski's theorem
H-minor-free in Constant-time testing (BSS08)

Can figure out

G has no ϵdn edges (or ϵn vertices) X such that $G-X$ has no H-minor (or is nonplanar).

in constant time!
Three reasons of testability in bounded-degree model

<table>
<thead>
<tr>
<th>Properties</th>
<th>Why is it testable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>△-freeness, H-freeness [GR02]</td>
<td>Locally determined</td>
</tr>
<tr>
<td>k-edge-connectivity [GR02]</td>
<td>Edge-augmentation / matroid theory.</td>
</tr>
<tr>
<td>k edge-disjoint spanning trees [ITY’ 12]</td>
<td></td>
</tr>
<tr>
<td>Planarity, H-minor-freeness [BSS08, HKNO09]</td>
<td>Existence of separators</td>
</tr>
</tbody>
</table>

Is there any other kind of testable properties?
Given a graph G, if $V(G)$ can be partitioned into three parts A, B, C such that

1. there is no edge between A and B, and
2. $|G|/3 \leq |A|, |B| < 2|G|/3$,

Then C is called a separator.

We are interested in a separator of SMALL order, i.e., sublinear order.

Separator Theorem: Every H-minor-free graph has a separator of order $o(n)$.
Using separators: Decomposition lemma

Consider a H-minor-free graph G.

\[\forall |H| \text{ and } \epsilon, \ \exists s \text{ s.t. we can decompose } G \text{ by removing } \epsilon n \text{ edges into component of size } \leq s, \]

H-minor-free:

\[\leq s \]

of edges crossing is \(\leq \epsilon dn \)
Sketch for H−minor−free Constant−time testing\((BSS08) \)

• Structural graph theory approach
 Using separators, decompose H−minor−free graphs into small graphs (easily follows from separators.)

• Partitioning oracle (Tools from Property testing)
Using Decomposition thm: Partitioning oracle

- It suffices if we can access the graph G' given by the decomposition lemma. How?

- **Partitioning oracle** provide query access to a decomposition, designed for H-minor-free graphs. [HKNO09]

H-minor-free:

\[\text{# of edges crossing} \leq s \]

\[\text{is } \leq \varepsilon dn \]
Keys for H-minor-free testing (BSS08)

Need to combine Structure graph theory and Property testing!

- **Structural graph theory approach**
 Using separators, decompose H-minor-free graphs into small graphs.
 ⇒ Easy.
- **Partitioning oracle** (Tools from Property testing)
 ⇒ Main Task

How about subdivision-free?
Subdivision of a graph: replacing each edge by a path of length 1 or more.

G contains a subdivision of H if G contains a subgraph H' that is a subdivision of H.

Branch Vertices: vertices of H that correspond to "vertices" (not in a path of length 1 or more)
Kuratowski's Theorem Ver 2

• A graph is planar (can be embedded in a plane without edge crossings) if and only if it contains neither K_5 nor $K_{3,3}$ as a
Main contribution

K_t-subdivision-freeness is constant-time testable for any $t \geq 1$.

Can figure out

G has no ϵdn edges (or ϵn vertices) X such that $G-X$ has no K_t-subdivision.

in constant time!
Main contribution

- Not locally determined
- Nothing to do with edge-augmentation / matroids.
- May not have separators
 - an expander graph with max degree $t-2$.
- First Property that can contain an expander!

K_t-subdivision-freeness is constant-time testable for any $t \geq 1$.
Expander Graph

- **Intuitively**: a graph for which any “small” subset of vertices has a relatively “large” neighborhood.

- **Hence no separator of order** $o(n)$.

- Can be defined in Algebraic sense and in Probabilistic sense too!

- **Property**: It behaves like a (sparse) random graph!

- Used many areas in Math and CS!
Contents

• What is the property testing?
• Dense graphs model
• Bounded degree graphs with separators
• Bounded degree graphs with no separators
 our main contribution
• Tools from property testing and graph minors
• Summary
Proof Sketch
Reminder: Sketch for H-minor-free testing

Need to combine the two approaches

• Structural graph theory approach
 Using separators, decompose H-minor-free graphs into small graphs (easily follows from separators).

• Partitioning oracle (Tools from Property testing)

⇒ Main Task

Warning: No separator for the subdivision case.
So decomposition thm for subdivision case is not trivial. Need “deeper” structural graph approach! (then can combine with property testing)
Testing K_t-subdivision-freeness: High level

Basically following the minor case!

Combinations of Structural graph and Property testing!

Decomposition thm

- Decompose G into components by removing $\varepsilon \cdot n$ edges
 - of constant size, or
- with large clique minor and no small cut
- Design a tester that works locally given the decomposition.

Constant-time tester for K_t-sub.-freeness

- Use and modify “partitioning oracle” to obtain query access to the decomposition \Rightarrow Not hard.
Decomposition lemma

\(l \)-hidden cut \(C \): every component in \(G - C \) has size at least \(l|C| \).

- No separator, but using graph minor(tangle), we have the following!

\[\forall t, t', \varepsilon, \exists s \text{ s.t. we can decompose } G \text{ by removing } \varepsilon n \text{ edges into components} \]

1) of size \(\leq s \), or

2) with \(K_{t'} \)-minor and no \((1/\varepsilon) \)-hidden cut of size \(< t - 1 \).
Using Decomposition lemma

Decompose G by removing $\varepsilon'dn \ll \varepsilon dn$ edges into

1) small components
2) components with K_t-minor and no hidden cut of size $< t - 1$.

It suffices to test the resulting graph $G'(after removing edges).

- If G is K_t-sub.-free $\Rightarrow G'$ is K_t-sub.-free
- If G is ε-far $\Rightarrow G'$ is $(\varepsilon-\varepsilon')$-far
Our algorithm, at a high level

Suppose that we can access the decomposition!

1) small components
 • easy to test (exactly same as the minor case)

Need to look at the following case!

2) large components with K_t-minor and no l-hidden cut of size $< t - 1$.
 • Estimate # of dangerous vertices w.r.t. small neighborhood and accept if it is $< \varepsilon n/4$.
 • Can be done in constant time.
A vertex v is **dangerous** w.r.t. $S \subseteq V$ if v is not separated in S by a cut of size $< t - 1$.

- We cannot exclude the possibility that v is a branch of K_t-subdivision.

Ex.

[Diagram showing a vertex v and a set S with a red cut indicating why v is not dangerous w.r.t. K_4.]

v is not dangerous w.r.t. K_4 because of the red cut.
Correctness

If G' is ε-far:

- Many ($\geq \varepsilon n/2$) dangerous vertices as otherwise we can remove edges incident to them.

If G' is K_t-subdivision-free.

- Want to show there are a few ($\leq \varepsilon n/1000$) dangerous vertices.
- How many dangerous vertices can a large component have? Use tools from Graph Minor!
Contents

• What is the property testing?
• Dense graphs model.
• Bounded degree graphs with separator
• Bounded degree graphs with no separators: our main contribution
• Tools from property testing and graph minors.
• Summary
Suppose that there is a set S of $|V(H)|$ vertices that are very far (only depending on $|V(H)|$) from each other, and each having degree $> |V(H)|$. Suppose there is a large clique minor.

Graph Minor tells only
Two possibilities:

(1) There are many disjoint paths from S to the clique minor

⇒ Using the clique minor as a crossbar, we can complete the paths into a H-subdivision

Winning!
Tools from graph minors

Suppose that there is a set S of $|V(H)|$ vertices that are very far (only depending on $|V(H)|$) from each other, and each having degree $> |V(H)|$. Suppose there is a large clique minor.

Graph Minor tells only Two possibilities:

(2) There is a small separator between S and the clique minor

Remember!

Big Piece: 1. More than constant size.
2. No “hidden” cut.
3. contains a large clique minor.

So (2) does not happen! So small # of dangerous vertices!
Correctness

If G' is K_t-sub-free.

• Each large component has c dangerous vertices.
• There are at most n/s large components.
• Thus, there are at most $cn/s \ll \varepsilon n/1000$ dangerous vertices.
• Remaining task:

How to access the decomposition??
Last step: How to access the decomposition?
Constant-time tester
Reminder: Partitioning oracle

- **Partitioning oracle** provide query access to a decomposition, originally designed for H-minor-free graphs. [HKNO09]

H-minor-free:

\[
\text{# of edges crossing} \leq \varepsilon d n
\]
Reminder: Decomposition lemma for subdivision

\(l \)-hidden cut \(C \): every component in \(G - C \) has size at least \(l|C| \).

- Hard for local algorithms to detect

\(\forall t, t' \) and \(\epsilon \), \(\exists s \) s.t. we can decompose \(G \) by removing \(\epsilon n \) edges into components
 1) of size \(\leq s \), or
 2) with \(K_{t'} \)-minor and no \((1/\epsilon)\)-hidden cut of size \(< t - 1 \).
Modified Partitioning oracle

Modify [HKNO09] to give query access to G' for K_t-sub.-free graph. *(not hard)*

Though we have a little error, it does not affect the # of dangerous vertices too much.
Conclusions

Main result:

\(K_t \)-sub.-freeness is constant-time testable.

Structure Graph Theory: Decomposition

Property Testing: Accessing the decomposition

Nice combination of Structural graph theory and Property testing!

Previously, property testing is harder, but in our case, structural part is harder!
Property Testing

• Dense Graph Model: Connected to Szemeredi’s Regularity Lemma (Due to Alon et al.)

• Bounded Degree Model: Connected to Structural Graph Theory and Graph Minor (from this work!)
Future work

Open problems:

• Query complexity: $2^{(d^{\text{poly}}(\varepsilon/2^{\text{poly}(t)}))}$.

• Can we test H–(topological–)minor–freeness in adjacency list model?

• Some other classes? (Immersion is done by this work, but what else?)
Thank you for your attention!

Any Question?

Many Thanks!
A sufficient condition to have K_t-tm

\(\forall t \) and \(l \), \(\exists t', c, \) and \(r \) such that

- $K_{t'}$-minor
- no \(l \)-hidden cut of size \(< t - 1 \).
- \(\geq c \) dangerous vertices w.r.t. radius-r balls

\(\Rightarrow \) K_t-topological-minor
Main Tools

Th. $P = \text{“} G \text{ is } K_t \text{-subdivision-free}\text{”}$

P can be tested in time $O_{\varepsilon}(1)$ in bounded degree graphs by a 2-sided error algorithm.

Main Tools

1. Extension of partitioning oracle (correctness based on graph minor)

2. Tools from graph minor!