EvDRG

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof

Eigenvalues and distance-regularity of graphs

Edwin van Dam

Dept. Econometrics and Operations Research
 Tilburg University

Graph Theory and Interactions, Durham, July 20, 2013

Dedication

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues Ugly DRGs Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof

David Gregory
Durham, July 20, 2013

Spectrum

EvDRG
Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof

A (finite simple) graph Γ on n vertices

The spectrum (of eigenvalues) $\lambda_{1} \geq \ldots \geq \lambda_{n}$ of the (a) 01-adjacency matrix A of Γ

Two many

EvDRG
Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions Polynomials Projection Spectral Excess
Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

There are 2 graphs on 30 vertices with spectrum

12, $2(9 x), 0(15 x),-6(5 x)$.

There are more than 60,000 graphs on 30 vertices with spectrum

$$
12,3(10 x), 0(5 x),-3(14 x) .
$$

Distance-regular

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof

Distance-regularity: there are $c_{i}, a_{i}, b_{i}, i=0,1, \ldots, d$ such that for every pair of vertices u and w at distance i :
\# neighbors z of w at distance $i-1$ from u equals c_{i} \# neighbors z of w at distance i from u equals a_{i} \# neighbors z of w at distance $i+1$ from u equals b_{i}

Distance-regular

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof

Distance-regularity: there are $c_{i}, a_{i}, b_{i}, i=0,1, \ldots, d$ such that for every pair of vertices u and w at distance i :
\# neighbors z of w at distance $i-1$ from u equals c_{i}
\# neighbors z of w at distance i from u equals a_{i}
\# neighbors z of w at distance $i+1$ from u equals b_{i}
Complete graphs, Strongly regular graphs (among which are regular complete multipartite graphs), Cycles,

Hamming graphs, Johnson graphs, Grassmann graphs, Odd graphs

Distance-regular

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Distance-regularity: there are $c_{i}, a_{i}, b_{i}, i=0,1, \ldots, d$ such that for every pair of vertices u and w at distance i :
\# neighbors z of w at distance $i-1$ from u equals c_{i}
\# neighbors z of w at distance i from u equals a_{i}
\# neighbors z of w at distance $i+1$ from u equals b_{i}
Complete graphs, Strongly regular graphs (among which are regular complete multipartite graphs), Cycles,

Hamming graphs, Johnson graphs, Grassmann graphs, Odd graphs
Fon-Der-Flaass (2002) \Rightarrow Almost all distance-regular graphs are not determined by the spectrum.
cf. EvD \& Haemers (2003) 'would bet' that almost all graphs are determined by the spectrum.

Walks

EvDRG

Dedication
Spectrum
Two many
Distance-regular

Walks

Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof
A_{i} is the distance- i adjacency matrix, $A=A_{1}$:

$$
\left.A A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1}\right\} \quad i=0,1, \ldots, d,
$$

$A_{i}=p_{i}(A)$ for a polynomial p_{i} of degree i

Rowlinson (1997): A graph is a DRG iff the number of walks of length ℓ from x to y depends only on ℓ and the distance between x and y

Walks

EvDRG

Dedication
Spectrum
Two many
Distance-regular

Walks

Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof
A_{i} is the distance- i adjacency matrix, $A=A_{1}$:

$$
\left.A A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1}\right\} \quad i=0,1, \ldots, d,
$$

$A_{i}=p_{i}(A)$ for a polynomial p_{i} of degree i

Rowlinson (1997): A graph is a DRG iff the number of walks of length ℓ from x to y depends only on ℓ and the distance between x and y

Distance-regular graphs: intersection numbers \leftrightarrow eigenvalues
Intersection numbers do not determine the graph (in general)

Do the eigenvalues determine distance-regularity ?

Central equation

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof

$$
\pi
$$

$$
\sum_{u}\left(A^{\ell}\right)_{v u}=\operatorname{tr} A^{\ell}=\sum_{i} \lambda_{i}^{\ell}
$$

$$
\sum_{u} p(A)_{u u}=\operatorname{tr} p(A)=\sum_{i} p\left(\lambda_{i}\right)
$$

$$
\text { for every polynomial } p
$$

All spectral information is in these equations

Structure

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof

The following can be derived from the spectrum:

- number of vertices
- number of edges
- number of triangles
- number of closed walks of length ℓ
- bipartiteness
- regularity
- regularity + connectedness
- regularity + girth
- odd-girth

Twisted and odd

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues Ugly DRGs Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof

Distance-regularity is not determined by the spectrum

Note: Desargues is Doubled Petersen

Good conditions

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Theorem. If Γ is distance-regular, diameter d, valency k, girth g, distinct eigenvalues $k=\theta_{0}, \theta_{1}, \ldots, \theta_{d}$, satisfying one of the following properties, then every graph cospectral with Γ is also distance-regular:

Good conditions

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Theorem. If Γ is distance-regular, diameter d, valency k, girth g, distinct eigenvalues $k=\theta_{0}, \theta_{1}, \ldots, \theta_{d}$, satisfying one of the following properties, then every graph cospectral with Γ is also distance-regular:

1. $g \geq 2 d-1$ (BroumererHaemers),
2. $g \geq 2 d-2$ and Γ is bipartite (EvD\&Haemers),
3. $g \geq 2 d-2$ and $c_{d-1} c_{d}<-\left(c_{d-1}+1\right)\left(\theta_{1}+\ldots+\theta_{d}\right)$ (EvDRHAemers),
4. $c_{1}=\ldots=c_{d-1}=1$ (EvDRHAemers),
5. $\quad \Gamma=$ dodecahedron or icosahedron (HaemerseSpence),
6. $\quad \Gamma=$ coset graph extended ternary Golay code (EvDRHaemers),
7. $\Gamma=$ Ivanov-Ivanov-Faradjev graph (EvD\&Haemers\&Koolen 2 Spence),
8. $\Gamma=$ line graph Petersen graph or line graph Hoffman-Singleton graph (EvDRHaemers),
9. $\Gamma=$ Hamming graph $H(3, q), q \geq 36$ (Bang\&EvD\&Koolen),
10. $\Gamma=$ generalized odd graph $\left(a_{1}=\ldots=a_{d-1}=0, a_{d} \neq 0\right)$ (Huang\&Liu).

Polynomials

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof

Consider the spectrum of a k-regular graph

Inner product $\langle p, q\rangle=\frac{1}{n} \operatorname{tr}(p(A) q(A))=\frac{1}{n} \sum_{i} p\left(\lambda_{i}\right) q\left(\lambda_{i}\right)$ on the space of polynomials mod minimal polynomial

Polynomials

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof

Consider the spectrum of a k-regular graph
Inner product $\langle p, q\rangle=\frac{1}{n} \operatorname{tr}(p(A) q(A))=\frac{1}{n} \sum_{i} p\left(\lambda_{i}\right) q\left(\lambda_{i}\right)$
on the space of polynomials mod minimal polynomial
Orthogonal system of predistance polynomials p_{i} of degree i normalized such that $\left\langle p_{i}, p_{i}\right\rangle=p_{i}(k) \neq 0$

$$
x p_{i}=\beta_{i-1} p_{i-1}+\alpha_{i} p_{i}+\gamma_{i+1} p_{i+1}, \quad i=0,1, \ldots, d,
$$

compare to

$$
A A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1}, \quad i=0,1, \ldots, d,
$$

$H=\sum_{i} p_{i}$ is the Hoffman polynomial: $H(A)=J$

Projection

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof
$\langle X, Y\rangle=\frac{1}{n} \operatorname{tr}(X Y)$: inner product on symmetric matrices of size n

$$
\langle p(A), q(A)\rangle=\langle p, q\rangle
$$

Projection

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof
$\langle X, Y\rangle=\frac{1}{n} \operatorname{tr}(X Y)$: inner product on symmetric matrices of size n

$$
\langle p(A), q(A)\rangle=\langle p, q\rangle
$$

Project A_{d} onto the space \mathcal{A} of polynomials in A :

$$
\widetilde{A_{d}}=\sum_{i=0}^{d} \frac{\left\langle A_{d}, p_{i}(A)\right\rangle}{\left\|p_{i}(A)\right\|^{2}} p_{i}(A)=\frac{\left\langle A_{d}, p_{d}(A)\right\rangle}{\left\|p_{d}(A)\right\|^{2}} p_{d}(A)
$$

Projection

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions Polynomials

Projection

Spectral Excess
Desargues
Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof
$\langle X, Y\rangle=\frac{1}{n} \operatorname{tr}(X Y)$: inner product on symmetric matrices of size n

$$
\langle p(A), q(A)\rangle=\langle p, q\rangle
$$

Project A_{d} onto the space \mathcal{A} of polynomials in A :

$$
\begin{aligned}
& \qquad \begin{aligned}
\widetilde{A_{d}} & =\sum_{i=0}^{d} \frac{\left\langle A_{d}, p_{i}(A)\right\rangle}{\left\|p_{i}(A)\right\|^{2}} p_{i}(A)=\frac{\left\langle A_{d}, p_{d}(A)\right\rangle}{\left\|p_{d}(A)\right\|^{2}} p_{d}(A) \\
& =\frac{\left\langle A_{d}, H(A)\right\rangle}{\left\|p_{d}\right\|^{2}} p_{d}(A)=\frac{\left\langle A_{d}, J\right\rangle}{p_{d}(k)} p_{d}(A)=\frac{\bar{k}_{d}}{p_{d}(k)} p_{d}(A) \\
\text { where } \bar{k}_{d} & =\frac{1}{n} \sum_{u} k_{d}(u)
\end{aligned}
\end{aligned}
$$

Spectral Excess

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

$$
\bar{k}_{d}=\left\|A_{d}\right\|^{2} \geq\left\|\widetilde{A}_{d}\right\|^{2}=\frac{\bar{k}_{d}^{2}}{p_{d}(k)^{2}}\left\|p_{d}(A)\right\|^{2}=\frac{\bar{k}_{d}^{2}}{p_{d}(k)}
$$

hence $\bar{k}_{d} \leq p_{d}(k)$ with equality iff $A_{d}=p_{d}(A)$

Spectral Excess

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof

$$
\bar{k}_{d}=\left\|A_{d}\right\|^{2} \geq\left\|\widetilde{A_{d}}\right\|^{2}=\frac{\bar{k}_{d}^{2}}{p_{d}(k)^{2}}\left\|p_{d}(A)\right\|^{2}=\frac{\bar{k}_{d}^{2}}{p_{d}(k)}
$$

$$
\text { hence } \bar{k}_{d} \leq p_{d}(k) \text { with equality iff } A_{d}=p_{d}(A)
$$

Spectral Excess Theorem (Fiol \& Garriga 1997):
$\bar{k}_{d} \leq p_{d}(k)$ with equality iff the graph is distance-regular

Desargues

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof

Find graphs with spectrum $\left\{3^{1}, 2^{4}, 1^{5},-1^{5},-2^{4},-3^{1}\right\}$.

Desargues

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof

Find graphs with spectrum $\left\{3^{1}, 2^{4}, 1^{5},-1^{5},-2^{4},-3^{1}\right\}$.
Connected, 3 -regular, bipartite on $10+10$ vertices, girth 6 .
So this is the incidence graph of a partial linear space.
Diameter at most 5 , with $\bar{k}_{5} \leq 1$.
Distance distribution diagram: $20=1_{3}+{ }_{1} 3_{2}+{ }_{1} 6_{2}+?+3+$?
$k_{4}(x)=3$ so $k_{5}(x) \leq 1$.

Partial linear space

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

The halved graphs (the point graph and line graph of the partial linear space) have spectrum $\left\{6^{1}, 1^{4},-2^{5}\right\}$. The only graph possible is $J(5,2)$, the complement of Petersen.

Partial linear space

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof

The halved graphs (the point graph and line graph of the partial linear space) have spectrum $\left\{6^{1}, 1^{4},-2^{5}\right\}$. The only graph possible is $J(5,2)$, the complement of Petersen.

Start from point graph, and try to construct a partial linear space: this can be done in more than one way:
Desargues and twisted Desargues

Partial linear space

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof

The halved graphs (the point graph and line graph of the partial linear space) have spectrum $\left\{6^{1}, 1^{4},-2^{5}\right\}$. The only graph possible is $J(5,2)$, the complement of Petersen.

Start from point graph, and try to construct a partial linear space: this can be done in more than one way:
Desargues and twisted Desargues
Neighbors of 12: $\quad 13,14,15,23,24,25$
Make lines of size 3: $\{12,13,23\},\{12,14,24\},\{12,15,25\}$ lines '123', '124', '125'

Partial linear space

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

The halved graphs (the point graph and line graph of the partial linear space) have spectrum $\left\{6^{1}, 1^{4},-2^{5}\right\}$. The only graph possible is $J(5,2)$, the complement of Petersen.

Start from point graph, and try to construct a partial linear space: this can be done in more than one way:
Desargues and twisted Desargues
Neighbors of 12: $\quad 13,14,15,23,24,25$
Make lines of size 3: $\{12,13,23\},\{12,14,24\},\{12,15,25\}$ lines '123', '124', '125'

Or (the twisted way): $\{12,13,14\},\{12,23,24\},\{12,15,25\}$ lines '1', '2', '125'

q-ary Desargues

EvDRG
Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof
$(2 d-1)$-dimensional vector space over $G F(q)$
points: $(d-1)$-dimensional subspaces lines: d-dimensional subspaces

Incidence graph is doubled Grassmann Point and line graph are Grassmann $J_{q}(2 d-1, \bar{d}-1)$

q-ary Desargues

EvDRG
Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof
$(2 d-1)$-dimensional vector space over $G F(q)$
points: $(d-1)$-dimensional subspaces
lines: d-dimensional subspaces
Incidence graph is doubled Grassmann Point and line graph are Grassmann $J_{q}(2 d-1, \bar{d}-1)$

Twist: Fix a hyperplane H
lines: d-dimensional subspaces not contained in H twisted lines: $(d-2)$-dimensional subspaces contained in H

q-ary Desargues

EvDRG
Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd Proof
$(2 d-1)$-dimensional vector space over $G F(q)$
points: $(d-1)$-dimensional subspaces
lines: d-dimensional subspaces
Incidence graph is doubled Grassmann Point and line graph are Grassmann $J_{q}(2 d-1, \bar{d}-1)$

Twist: Fix a hyperplane H
lines: d-dimensional subspaces not contained in H twisted lines: $(d-2)$-dimensional subspaces contained in H

Point graph is again $J_{q}(2 d-1, d-1)$
Incidence graph is cospectral to doubled Grassmann, but not drg

q-ary Desargues

EvDRG
Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof
$(2 d-1)$-dimensional vector space over $G F(q)$
points: $(d-1)$-dimensional subspaces lines: d-dimensional subspaces

> Incidence graph is doubled Grassmann Point and line graph are Grassmann $J_{q}(2 d-1, d-1)$

Twist: Fix a hyperplane H lines: d-dimensional subspaces not contained in H twisted lines: $(d-2)$-dimensional subspaces contained in H

Point graph is again $J_{q}(2 d-1, d-1)$
Incidence graph is cospectral to doubled Grassmann, but not drg
Line graph is cospectral to $J_{q}(2 d-1, d-1)$ Spectral excess theorem: line graph is distance-regular!
....but it is UGLY!!!

Ugly DRGs

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof

Families of 'ugly' distance-regular graphs with unbounded diameter:
Doob, Hemmeter, Ustimenko: not distance-transitive.

twisted Grassmann (aka vD-Koolen 2005): not even vertex-transitive.

Perturbations

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Dalfó \& EvD \& Fiol (2011): Ugly (almost) distance-regular graphs can be used to construct cospectral graphs through perturbations:

Adding and removing vertices, edges, amalgamating vertices, etc.

The devil's advocate (Durham, 2013): It is easy to construct cospectral graphs

Remove vertices

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof

Removing vertices from the twisted Desargues graph

Remove edges

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof

Removing edges from the twisted Desargues graph

Adding edges

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof

Adding edges to the twisted Desargues graph

Amalgamate

EvDRG

Dedication
Spectrum
Two many
Distance-regular
Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof

Amalgamate vertices in the twisted Desargues graph

Generalized Odd

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof

Generalized odd graph (drg with $a_{1}=\ldots=a_{d-1}=0, a_{d} \neq 0$)
No odd cycles of length less than $2 d+1$ (almost bipartite)

Generalized Odd

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate Generalized Odd Proof

Generalized odd graph (drg with $a_{1}=\ldots=a_{d-1}=0, a_{d} \neq 0$)
No odd cycles of length less than $2 d+1$ (almost bipartite)
EvD \& Haemers (2011): A regular graph with $d+1$ distinct eigenvalues and odd-girth $2 d+1$ is a generalized odd graph

Lee \& Weng (2012) extended this for non-regular graphs

Generalized Odd

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Generalized odd graph (drg with $a_{1}=\ldots=a_{d-1}=0, a_{d} \neq 0$)
No odd cycles of length less than $2 d+1$ (almost bipartite)
EvD \& Haemers (2011): A regular graph with $d+1$ distinct eigenvalues and odd-girth $2 d+1$ is a generalized odd graph

Lee \& Weng (2012) extended this for non-regular graphs
Sketch of short proof (EvD \& Fiol 2012):
Recall $x p_{i}=\beta_{i-1} p_{i-1}+\alpha_{i} p_{i}+\gamma_{i+1} p_{i+1}, \quad i=0,1, \ldots, d$,
Here $\alpha_{i}=0, i<d ; p_{i}$ is an even/odd polynomial if i is even/odd

Generalized Odd

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges
Amalgamate Generalized Odd Proof

Generalized odd graph (drg with $a_{1}=\ldots=a_{d-1}=0, a_{d} \neq 0$)
No odd cycles of length less than $2 d+1$ (almost bipartite)
EvD \& Haemers (2011): A regular graph with $d+1$ distinct eigenvalues and odd-girth $2 d+1$ is a generalized odd graph

Lee \& Weng (2012) extended this for non-regular graphs
Sketch of short proof (EvD \& Fiol 2012):
Recall $x p_{i}=\beta_{i-1} p_{i-1}+\alpha_{i} p_{i}+\gamma_{i+1} p_{i+1}, \quad i=0,1, \ldots, d$,
Here $\alpha_{i}=0, i<d ; p_{i}$ is an even/odd polynomial if i is even/odd If θ is an eigenvalue, then $-\theta$ is not

Proof

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd Good conditions Polynomials Projection Spectral Excess
Desargues
Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof
$A^{\ell}=\sum_{i} \theta_{i}^{\ell} E_{i}$ (spectral decomposition)
Odd powers $(\ell=1,3, \ldots, 2 d-1)$ have zero diagonal
$E_{i} \mathrm{~s}$ and hence A^{2} have constant diagonal, so the graph is regular

Proof

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate
Generalized Odd
Proof
$A^{\ell}=\sum_{i} \theta_{i}^{\ell} E_{i}$ (spectral decomposition)
Odd powers ($\ell=1,3, \ldots, 2 d-1$) have zero diagonal
E_{i} s and hence A^{2} have constant diagonal, so the graph is regular

Hoffman polynomial: $H(A)=\sum_{i} p_{i}(A)=J$
u, v at distance $d: p_{d}(A)_{u v}=1$

Proof

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation
Structure
Twisted and odd
Good conditions
Polynomials
Projection
Spectral Excess
Desargues
Partial linear space
q-ary Desargues
Ugly DRGs
Perturbations
Remove vertices
Remove edges
Adding edges
Amalgamate Generalized Odd Proof
$A^{\ell}=\sum_{i} \theta_{i}^{\ell} E_{i}($ spectral decomposition $)$
Odd powers ($\ell=1,3, \ldots, 2 d-1$) have zero diagonal
$E_{i} \mathrm{~s}$ and hence A^{2} have constant diagonal, so the graph is regular

Hoffman polynomial: $H(A)=\sum_{i} p_{i}(A)=J$
u, v at distance $d: p_{d}(A)_{u v}=1$
If $\operatorname{dist}(u, v)$ and d have different parity: $p_{d}(A)_{u v}=0$
If $\operatorname{dist}(u, v)<d$ and d have same parity: $\alpha_{d} p_{d}(A)_{u v}=$ $\beta_{d-1} p_{d-1}(A)_{u v}+\alpha_{d} p_{d}(A)_{u v}=\left(A p_{d}(A)\right)_{u v}=\sum_{w \sim u} p_{d}(A)_{w v}=0$

Proof

EvDRG

Dedication
Spectrum
Two many
Distance-regular Walks
Central equation Structure
Twisted and odd
Good conditions Polynomials
Projection
Spectral Excess
Desargues
Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof
$A^{\ell}=\sum_{i} \theta_{i}^{\ell} E_{i}$ (spectral decomposition)
Odd powers ($\ell=1,3, \ldots, 2 d-1$) have zero diagonal
E_{i} s and hence A^{2} have constant diagonal, so the graph is regular

Hoffman polynomial: $H(A)=\sum_{i} p_{i}(A)=J$
u, v at distance $d: p_{d}(A)_{u v}=1$
If $\operatorname{dist}(u, v)$ and d have different parity: $p_{d}(A)_{u v}=0$
If $\operatorname{dist}(u, v)<d$ and d have same parity: $\alpha_{d} p_{d}(A)_{u v}=$ $\beta_{d-1} p_{d-1}(A)_{u v}+\alpha_{d} p_{d}(A)_{w v}=\left(A p_{d}(A)\right)_{u v}=\sum_{w \sim u} p_{d}(A)_{w v}=0$
$A_{d}=p_{d}(A)$ so by the spectral excess theorem the graph is distance-regular

THE END

