EvDRG

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Eigenvalues and distance-regularity of graphs

Edwin van Dam

Dept. Econometrics and Operations Research Tilburg University

Graph Theory and Interactions, Durham, July 20, 2013

Durham, July 20, 2013

Edwin van Dam -1/24

Dedication

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

David Gregory

Spectrum

EvDRG

Dedication

Spectrum

Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd

Proof

A (finite simple) graph Γ on n vertices \Downarrow \uparrow ?

The spectrum (of eigenvalues) $\lambda_1 \ge \ldots \ge \lambda_n$ of the (a) 01-adjacency matrix A of Γ

Two many

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd

Proof

There are 2 graphs on 30 vertices with spectrum $12, 2 (9 \times), 0 (15 \times), -6 (5 \times).$

There are more than 60,000 graphs on 30 vertices with spectrum

12, 3 (10×), 0 (5×), -3 (14×).

Distance-regular

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd

Proof

Distance-regularity: there are c_i, a_i, b_i , i = 0, 1, ..., d such that for every pair of vertices u and w at distance i:

neighbors z of w at distance i - 1 from u equals c_i # neighbors z of w at distance i from u equals a_i # neighbors z of w at distance i + 1 from u equals b_i

Distance-regular

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Distance-regularity: there are c_i, a_i, b_i , i = 0, 1, ..., d such that for every pair of vertices u and w at distance i:

neighbors z of w at distance i - 1 from u equals c_i # neighbors z of w at distance i from u equals a_i # neighbors z of w at distance i + 1 from u equals b_i

Complete graphs, Strongly regular graphs (among which are regular complete multipartite graphs), Cycles,

Hamming graphs, Johnson graphs, Grassmann graphs, Odd graphs

Distance-regular

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Distance-regularity: there are c_i, a_i, b_i , i = 0, 1, ..., d such that for every pair of vertices u and w at distance i:

neighbors z of w at distance i - 1 from u equals c_i # neighbors z of w at distance i from u equals a_i # neighbors z of w at distance i + 1 from u equals b_i

Complete graphs, Strongly regular graphs (among which are regular complete multipartite graphs), Cycles,

Hamming graphs, Johnson graphs, Grassmann graphs, Odd graphs Fon-Der-Flaass (2002) \Rightarrow Almost all distance-regular graphs are not determined by the spectrum.

cf. EvD & Haemers (2003) 'would bet' that almost all graphs are determined by the spectrum.

Walks

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

 A_i is the distance-*i* adjacency matrix, $A = A_1$:

$$AA_{i} = b_{i-1}A_{i-1} + a_{i}A_{i} + c_{i+1}A_{i+1} \neq i = 0, 1, \dots, d,$$

 $A_i = p_i(A)$ for a polynomial p_i of degree i

Rowlinson (1997): A graph is a DRG iff the number of walks of length ℓ from x to y depends only on ℓ and the distance between x and y

Walks

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

A_i is the distance-*i* adjacency matrix, $A = A_1$:

$$AA_{i} = b_{i-1}A_{i-1} + a_{i}A_{i} + c_{i+1}A_{i+1}, \quad i = 0, 1, \dots, d,$$

 $A_i = p_i(A)$ for a polynomial p_i of degree i

Rowlinson (1997): A graph is a DRG iff the number of walks of length ℓ from x to y depends only on ℓ and the distance between x and y

Distance-regular graphs: intersection numbers \leftrightarrow eigenvalues Intersection numbers do not determine the graph (in general)

Do the eigenvalues determine distance-regularity ?

Central equation

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

$$\sum_{u} (A^{\ell})_{uu} = \operatorname{tr} A^{\ell} = \sum_{i} \lambda_{i}^{\ell}$$
$$\sum_{u} p(A)_{uu} = \operatorname{tr} p(A) = \sum_{i} p(\lambda_{i})$$

for every polynomial p

All spectral information is in these equations

Structure

EvDRG

- Dedication
- Spectrum
- Two many
- Distance-regular
- Walks
- Central equation

Structure

- Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues
- Partial linear
- space
- q-ary Desargues
- Ugly DRGs
- Perturbations Remove vertices
- Remove edges
- Adding edges
- Amalgamate
- Generalized Odd
- Proof

The following can be derived from the spectrum:

- number of vertices
- number of edges
- number of triangles
- \blacksquare number of closed walks of length ℓ
 - bipartiteness
- regularity

- regularity + connectedness
- regularity + girth
- odd-girth

Twisted and odd

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess

Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd

Proof

Distance-regularity is not determined by the spectrum

The ('almost' dr) twisted Desargues graph (Bussemaker & Cvetković 1976, Schwenk 1978)

Note: Desargues is Doubled Petersen

Durham, July 20, 2013

Edwin van Dam - 9 / 24

Good conditions

Durham, July 20, 2013

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Theorem. If Γ is distance-regular, diameter d, valency k, girth g, distinct eigenvalues $k = \theta_0, \theta_1, \ldots, \theta_d$, satisfying one of the following properties, then every graph cospectral with Γ is also distance-regular:

Edwin van Dam – 10 / 24

Good conditions

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Theorem. If Γ is distance-regular, diameter d, valency k, girth g, distinct eigenvalues $k = \theta_0, \theta_1, \ldots, \theta_d$, satisfying one of the following properties, then every graph cospectral with Γ is also distance-regular:

- 1. $g \geq 2d-1$ (Brouwer&Haemers),
- 2. $g \geq 2d-2$ and Γ is bipartite (EvD&Haemers),
- 3. $g \geq 2d 2$ and $c_{d-1}c_d < -(c_{d-1} + 1)(\theta_1 + \ldots + \theta_d)$ (EvD&Haemers),

$${\sf 4.}\quad c_1=\ldots=c_{d-1}=1$$
 (EvD&Haemers),

- 5. $\Gamma = \text{dodecahedron or icosahedron (Haemers \& Spence)},$
- 6. $\Gamma = \text{coset graph extended ternary Golay code}$ (EvD&Haemers),
- 7. $\Gamma = Ivanov-Ivanov-Faradjev graph$ (EvD&Haemers&Koolen&Spence),
- 8. $\Gamma = \text{line graph Petersen graph or line graph Hoffman-Singleton graph (EvD&Haemers),}$
- 9. $\Gamma=\mathsf{Hamming\ graph}\ H(3,q)$, $q\geq 36$ (Bang&EvD&Koolen),

10. $\Gamma = \text{generalized odd graph} (a_1 = \ldots = a_{d-1} = 0, a_d \neq 0)$ (Huang&Liu).

Polynomials

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd

Proof

Consider the spectrum of a k-regular graph Inner product $\langle p,q \rangle = \frac{1}{n} \operatorname{tr}(p(A)q(A)) = \frac{1}{n} \sum_{i} p(\lambda_i)q(\lambda_i)$ on the space of polynomials mod minimal polynomial

j

Polynomials

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Consider the spectrum of a k-regular graph Inner product $\langle p,q\rangle = \frac{1}{n}\operatorname{tr}(p(A)q(A)) = \frac{1}{n}\sum_{i}p(\lambda_{i})q(\lambda_{i})$ on the space of polynomials mod minimal polynomial Orthogonal system of predistance polynomials p_i of degree i normalized such that $\langle p_i, p_i \rangle = p_i(k) \neq 0$ $xp_i = \beta_{i-1}p_{i-1} + \alpha_i p_i + \gamma_{i+1}p_{i+1}, \quad i = 0, 1, \dots, d,$ compare to

$$AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1}, \quad i = 0, 1, \dots, d,$$

 $H = \sum_i p_i$ is the Hoffman polynomial: $H(A) = J^{-1}$

Projection

EvDRG

Dedication Spectrum Two many

Distance-regular

Walks

Central equation

Structure

Twisted and odd

Good conditions

Polynomials

Projection

Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate

Generalized Odd Proof $\langle X,Y\rangle = \frac{1}{n}\operatorname{tr}(XY)$: inner product on symmetric matrices of size n

 $\langle p(A), q(A) \rangle = \langle p, q \rangle$

Durham, July 20, 2013

Edwin van Dam – 12 / 24

Projection

EvDRG

Dedication Spectrum Two many

Distance-regular

Walks

Central equation

Structure

Twisted and odd

Good conditions

Polynomials

Projection

Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd

Proof

 $\langle X, Y \rangle = \frac{1}{n} \operatorname{tr}(XY)$: inner product on symmetric matrices of size n $\langle p(A), q(A) \rangle = \langle p, q \rangle$ Project A_d onto the space \mathcal{A} of polynomials in A:

$$\widetilde{A}_{d} = \sum_{i=0}^{d} \frac{\langle A_{d}, p_{i}(A) \rangle}{\|p_{i}(A)\|^{2}} p_{i}(A) = \frac{\langle A_{d}, p_{d}(A) \rangle}{\|p_{d}(A)\|^{2}} p_{d}(A)$$

Projection

EvDRG

Dedication Spectrum Two many Distance-regular Walks

Central equation

Structure

Twisted and odd

Good conditions

Polynomials

Projection

Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof $\langle X, Y \rangle = \frac{1}{n} \operatorname{tr}(XY)$: inner product on symmetric matrices of size n $\langle p(A), q(A) \rangle = \langle p, q \rangle$ Project A_d onto the space \mathcal{A} of polynomials in A:

$$\widetilde{A}_{d} = \sum_{i=0}^{d} \frac{\langle A_{d}, p_{i}(A) \rangle}{\|p_{i}(A)\|^{2}} p_{i}(A) = \frac{\langle A_{d}, p_{d}(A) \rangle}{\|p_{d}(A)\|^{2}} p_{d}(A)$$

$$= \frac{\langle A_{d}, H(A) \rangle}{\|p_{d}\|^{2}} p_{d}(A) = \frac{\langle A_{d}, J \rangle}{p_{d}(k)} p_{d}(A) = \frac{\overline{k}_{d}}{p_{d}(k)} p_{d}(A)$$

$$\overline{k}_{d} = \frac{1}{n} \sum_{u} k_{d}(u)$$

where

Spectral Excess

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

$$\overline{k}_{d} = \|A_{d}\|^{2} \ge \|\widetilde{A}_{d}\|^{2} = \frac{\overline{k}_{d}^{2}}{p_{d}(k)^{2}} \|p_{d}(A)\|^{2} = \frac{\overline{k}_{d}^{2}}{p_{d}(k)}$$

hence $\overline{k}_d \leq p_d(k)$ with equality iff $A_d = p_d(A)$

Spectral Excess

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

$$\overline{k}_{d} = \|A_{d}\|^{2} \ge \|\widetilde{A}_{d}\|^{2} = \frac{\overline{k}_{d}^{2}}{p_{d}(k)^{2}} \|p_{d}(A)\|^{2} = \frac{\overline{k}_{d}^{2}}{p_{d}(k)}$$

hence $\overline{k}_d \leq p_d(k)$ with equality iff $A_d = p_d(A)$

Spectral Excess Theorem (Fiol & Garriga 1997): $\overline{k}_d \leq p_d(k)$ with equality iff the graph is distance-regular

Desargues

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Durham, July 20, 2013

Find graphs with spectrum $\{3^1, 2^4, 1^5, -1^5, -2^4, -3^1\}$.

Desargues

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Find graphs with spectrum $\{3^1, 2^4, 1^5, -1^5, -2^4, -3^1\}$. Connected, 3-regular, bipartite on 10 + 10 vertices, girth 6. So this is the incidence graph of a partial linear space. Diameter at most 5, with $\overline{k}_5 \leq 1$. Distance distribution diagram: $20 = 1_3 + 1_{32} + 1_{62} + 2_{7} + 3_{7} + 2_{7} +$

EvDRG Dedication Spectrum Two many

Distance-regular

Walks

Central equation

Structure

 $\mathsf{Twisted} \text{ and } \mathsf{odd}$

Good conditions

Polynomials

Projection

Spectral Excess

Desargues

Partial linear space

q-ary DesarguesUgly DRGsPerturbationsRemove verticesRemove edgesAdding edges

Amalgamate

Generalized Odd

Proof

The halved graphs (the point graph and line graph of the partial linear space) have spectrum $\{6^1, 1^4, -2^5\}$. The only graph possible is J(5, 2), the complement of Petersen.

 π

P

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

The halved graphs (the point graph and line graph of the partial linear space) have spectrum $\{6^1, 1^4, -2^5\}$. The only graph possible is J(5, 2), the complement of Petersen.

Start from point graph, and try to construct a partial linear space: this can be done in more than one way: Desargues and twisted Desargues

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

The halved graphs (the point graph and line graph of the partial linear space) have spectrum $\{6^1, 1^4, -2^5\}$. The only graph possible is J(5, 2), the complement of Petersen.

Start from point graph, and try to construct a partial linear space: this can be done in more than one way: Desargues and twisted Desargues

Neighbors of 12: 13, 14, 15, 23, 24, 25

Make lines of size 3: $\{12, 13, 23\}, \{12, 14, 24\}, \{12, 15, 25\}$ lines '123', '124', '125'

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

The halved graphs (the point graph and line graph of the partial linear space) have spectrum $\{6^1, 1^4, -2^5\}$. The only graph possible is J(5, 2), the complement of Petersen.

Start from point graph, and try to construct a partial linear space: this can be done in more than one way: Desargues and twisted Desargues

Neighbors of 12: 13, 14, 15, 23, 24, 25

Make lines of size 3: $\{12, 13, 23\}, \{12, 14, 24\}, \{12, 15, 25\}$ lines '123', '124', '125'

Or (the twisted way): $\{12, 13, 14\}, \{12, 23, 24\}, \{12, 15, 25\}$ lines '1', '2', '125'

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

(2d-1)-dimensional vector space over GF(q)

points: (d-1)-dimensional subspaces lines: d-dimensional subspaces

Incidence graph is doubled Grassmann Point and line graph are Grassmann $J_q(2d-1, d-1)$

]

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations **Remove vertices** Remove edges Adding edges Amalgamate Generalized Odd

Proof

(2d-1)-dimensional vector space over GF(q)

points: (d-1)-dimensional subspaces lines: d-dimensional subspaces

Incidence graph is doubled Grassmann Point and line graph are Grassmann $J_q(2d-1, d-1)$

Twist: Fix a hyperplane H lines: d-dimensional subspaces not contained in H twisted lines: (d-2)-dimensional subspaces contained in H

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

(2d-1)-dimensional vector space over GF(q)

points: (d-1)-dimensional subspaces lines: d-dimensional subspaces

Incidence graph is doubled Grassmann Point and line graph are Grassmann $J_q(2d-1, d-1)$

Twist: Fix a hyperplane Hlines: d-dimensional subspaces not contained in Htwisted lines: (d-2)-dimensional subspaces contained in H

Point graph is again $J_q(2d-1, d-1)$ Incidence graph is cospectral to doubled Grassmann, but not drg

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

(2d-1)-dimensional vector space over GF(q)

points: (d-1)-dimensional subspaces lines: d-dimensional subspaces

Incidence graph is doubled Grassmann Point and line graph are Grassmann $J_q(2d-1, d-1)$

Twist: Fix a hyperplane Hlines: d-dimensional subspaces not contained in Htwisted lines: (d-2)-dimensional subspaces contained in H

Point graph is again $J_q(2d-1, d-1)$ Incidence graph is cospectral to doubled Grassmann, but not drg Line graph is cospectral to $J_q(2d-1, d-1)$ Spectral excess theorem: line graph is distance-regular!but it is UGLY!!!

Ugly DRGs

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Families of 'ugly' distance-regular graphs with unbounded diameter:

Doob, Hemmeter, Ustimenko: not distance-transitive.

twisted Grassmann (aka vD-Koolen 2005): not even vertex-transitive.

Perturbations

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd

Proof

Dalfó & EvD & Fiol (2011): Ugly (almost) distance-regular graphs can be used to construct cospectral graphs through perturbations:

Adding and removing vertices, edges, amalgamating vertices, etc.

The devil's advocate (Durham, 2013): It is easy to construct cospectral graphs

Remove vertices

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure

Twisted and odd

Good conditions

Polynomials

Projection

Spectral Excess

Desargues

Partial linear

space

q-ary Desargues

Ugly DRGs

Perturbations Remove vertices

Remove edges

Adding edges Amalgamate

Generalized Odd Proof

Removing vertices from the twisted Desargues graph

e

.

Remove edges

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions

Polynomials

Projection

Spectral Excess

Desargues

Partial linear

space

q-ary Desargues Ugly DRGs

Perturbations

Remove vertices

Remove edges

Adding edges

Amalgamate

Generalized Odd

Proof

Removing edges from the twisted Desargues graph

e

j

Adding edges

EvDRG

Spectrum Two many

Dedication

Distance-regular

Walks

Central equation

Structure

Twisted and odd

 ${\sf Good}\ {\sf conditions}$

Polynomials

Projection

Spectral Excess

Desargues

Partial linear

space

q-ary Desargues

Ugly DRGs

Perturbations

Remove vertices

Remove edges

Adding edges

Amalgamate Generalized Odd Proof

Adding edges to the twisted Desargues graph

Amalgamate

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues

Ugly DRGs

Perturbations

Remove vertices Remove edges

· · ···

Adding edges

Amalgamate

Generalized Odd Proof

Amalgamate vertices in the twisted Desargues graph

8

j

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Generalized odd graph (drg with $a_1 = \ldots = a_{d-1} = 0, \ a_d \neq 0$)

No odd cycles of length less than 2d + 1 (almost bipartite)

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd

Proof

Generalized odd graph (drg with $a_1 = \ldots = a_{d-1} = 0, \ a_d \neq 0$)

No odd cycles of length less than 2d + 1 (almost bipartite)

EvD & Haemers (2011): A regular graph with d + 1 distinct eigenvalues and odd-girth 2d + 1 is a generalized odd graph

Lee & Weng (2012) extended this for non-regular graphs

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Generalized odd graph (drg with $a_1 = \ldots = a_{d-1} = 0, \ a_d \neq 0$) No odd cycles of length less than 2d + 1 (almost bipartite) EvD & Haemers (2011): A regular graph with d + 1 distinct eigenvalues and odd-girth 2d + 1 is a generalized odd graph Lee & Weng (2012) extended this for non-regular graphs Sketch of short proof (EvD & Fiol 2012): Recall $xp_i = \beta_{i-1}p_{i-1} + \alpha_i p_i + \gamma_{i+1}p_{i+1}, \quad i = 0, 1, \dots, d,$ Here $\alpha_i = 0, i < d$; p_i is an even/odd polynomial if i is even/odd

EvDRG

Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

Generalized odd graph (drg with $a_1 = \ldots = a_{d-1} = 0, \ a_d \neq 0$) No odd cycles of length less than 2d + 1 (almost bipartite) EvD & Haemers (2011): A regular graph with d + 1 distinct eigenvalues and odd-girth 2d + 1 is a generalized odd graph Lee & Weng (2012) extended this for non-regular graphs Sketch of short proof (EvD & Fiol 2012): Recall $xp_i = \beta_{i-1}p_{i-1} + \alpha_i p_i + \gamma_{i+1}p_{i+1}, \quad i = 0, 1, \dots, d,$ Here $\alpha_i = 0, i < d$; p_i is an even/odd polynomial if i is even/odd If θ is an eigenvalue, then $-\theta$ is not

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd

Proof

$A^{\ell} = \sum_{i} \theta_{i}^{\ell} E_{i}$ (spectral decomposition)

Odd powers $(\ell = 1, 3, \dots, 2d - 1)$ have zero diagonal

 E_i s and hence A^2 have constant diagonal, so the graph is regular

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space *q*-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd

Proof

$A^{\ell} = \sum_{i} \theta_{i}^{\ell} E_{i}$ (spectral decomposition)

Odd powers ($\ell = 1, 3, \ldots, 2d - 1$) have zero diagonal

 E_i s and hence A^2 have constant diagonal, so the graph is regular

Hoffman polynomial: $H(A) = \sum_i p_i(A) = J$

u, v at distance d: $p_d(A)_{uv} = 1$

]

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

 $A^{\ell} = \sum_{i} \theta_{i}^{\ell} E_{i}$ (spectral decomposition) Odd powers ($\ell = 1, 3, \ldots, 2d - 1$) have zero diagonal E_i s and hence A^2 have constant diagonal, so the graph is regular Hoffman polynomial: $H(A) = \sum_i p_i(A) = J$ u, v at distance d: $p_d(A)_{uv} = 1$ If dist(u, v) and d have different parity: $p_d(A)_{uv} = 0$ If dist(u,v) < d and d have same parity: $\alpha_d p_d(A)_{uv} =$ $\beta_{d-1}p_{d-1}(A)_{uv} + \alpha_d p_d(A)_{uv} = (Ap_d(A))_{uv} = \sum_{w \sim u} p_d(A)_{wv} = 0$

EvDRG Dedication Spectrum Two many Distance-regular Walks Central equation Structure Twisted and odd Good conditions Polynomials Projection Spectral Excess Desargues Partial linear space q-ary Desargues Ugly DRGs Perturbations Remove vertices Remove edges Adding edges Amalgamate Generalized Odd Proof

 $A^{\ell} = \sum_{i} \theta_{i}^{\ell} E_{i}$ (spectral decomposition) Odd powers $(\ell = 1, 3, \dots, 2d - 1)$ have zero diagonal E_i s and hence A^2 have constant diagonal, so the graph is regular Hoffman polynomial: $H(A) = \sum_i p_i(A) = J$ u, v at distance d: $p_d(A)_{uv} = 1$ If dist(u, v) and d have different parity: $p_d(A)_{uv} = 0$ If dist(u,v) < d and d have same parity: $\alpha_d p_d(A)_{uv} =$ $\beta_{d-1}p_{d-1}(A)_{uv} + \alpha_d p_d(A)_{uv} = (Ap_d(A))_{uv} = \sum_{w \sim u} p_d(A)_{wv} = 0$ $A_d = p_d(A)$ so by the spectral excess theorem the graph is distance-regular

THE END