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G = (V ,E ) finite graph.
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Metric Graphs

We can make G into a metric graph by assigning a positive length
`(e) to each edge e ∈ E .

More formally, the lengths are defined by a function ` : E → R>0.

The pair (G , `) may be thought of as a toy analogue of a compact
hyperbolic surface, i.e. a compact smooth surface S of genus ≥ 2,
equipped with a Riemannian metric of constant Gaussian curvature
−1.
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A Moduli Space

Just as the Teichmüller space of a smooth surface Teich(S)
parametrizes hyperbolic metrics on S , we can consider a space of
lengths (or, equivalently, a space of metrics) on a fixed graph G .

Define
MG = {` : E → R>0}

and a space of normalised lengths

M1
G = {` ∈MG : h(G , `) = 1},

where

h(G , `) = lim
t→∞

1

t
log #{cycles γ : `(γ) ≤ t}.
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We call the number
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the entropy of the metric graph (G , `).

From a dynamical point of view, it is the topological entropy of a
certain flow (R-action) but we shall not use that description here.
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Teichmüller Space

Let S be a smooth orientable compact surface of genus k ≥ 2

The Teichmüller space Teich(S) parametrizes Riemannian metrics
of constant curvature −1 on S (as a marked surface).

Teich(S) is a smooth manifold diffeomorphic to R6k−6.
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The Weil-Petersson metric on Teich(S)

Teich(S) supports a natural Riemannian metric called the
Weil-Petersson metric, ‖ · ‖WP.

The original definition is via Beltrami differentials but more
intuitive definitions have been given by Thurston-Wolpert and
McMullen.

The Weil-Petersson metric has the desirable property of making
Teich(S) negatively curved.

Theorem (Ahlfors, 1961)

Teich(S) is negatively curved with respect to ‖ · ‖WP .
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Consider an analytic path

(−ε, ε)→ Teich(S) : λ 7→ gλ.

Then we can expand

gλ = g0 + λġ0 +
λ2

2
g̈0 + · · · ,

where ġ0 ∈ Tg0(Teich(S)).
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Let {γn}∞n=1 be a sequence of closed geodesics on (S , g0) which
are equidistributed with respect to the g0-area measure: for all
f ∈ C (S ,R),

lim
n→∞

1

lengthg0
(γn)

∫
γn

f =

∫
S
f dareag0 .

Then
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Wolpert’s Theorem

Theorem (Wolpert, 1980s)

I Thurston’s metric ‖ · ‖Thurston is equal to the Weil-Petersson
metric ‖ · ‖WP.

I Teich(S) is incomplete with respect to ‖ · ‖WP.



McMullen’s definition

Let φt : T 1(S , g0)→ T 1(S , g0) be the geodesic flow on the
unit-tangent bundle over (S , g0).

Define f : T 1(S , g0)→ R by f (v) = ġ0(v , v) and

σ2(ġ0) := lim
t→∞

1

t

∫
T 1(S ,g0)

(∫ t

0
f (φuv) du

)2

dµg0(v),

where µg0 is the Liouville measure on T 1(S , g0) (the product of
the area measure on (S , g0) and Lebesgue measure on the fibres).

Theorem (McMullen, 2007)

σ2(ġ0) =
4

3

‖ġ0‖2
WP

area(S , g0)
=
‖ġ0‖2

WP

3π(k − 1)
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Outer Space

The natural analogue of Teichmüller space in the Culler-Vogtmann
outer space Xk . This parametrizes lengths on all (marked) graphs
with rank k fundamental group.

Xk is a singular space made up of infinitely many cells (simplices)
corresponding to lengths on a given marked graph.

Our space M1
G corresponds to a single cell in Xk .

We will give a definition of a Riemannian metric on M1
G which is

analogous to McMullen’s definition.
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Oriented edges

Consider again the graph G = (V ,E ). Let E o denote the oriented
edges of G . (So |E o | = 2|E |.)

If e ∈ E o then e ∈ E o will denote the edge with the reversed
orientation.

The length ` defines a function ` : E o → R>0 satisfying
`(e) = `(e).
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The incidence matrix for oriented edges

Define a matrix A indexed by E o × E o by

A(e, e ′) =

{
1 if e ′ follows e,

0 otherwise.

Our assumptions on G imply that A is irreducible, i.e. that for
each (e, e ′) there exists n such that An(e, e ′) > 0.

In face, A is aperiodic (An has positive entries for some n) unless
G is bipartite.
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A subshift of finite type

Define a space

Σ = {e = (en)∞n=0 : A(en, en+1) = 1 ∀n ≥ 0},

i.e. Σ is the space of infinite paths in G .

Σ can be made into a compact metric space by setting

d(e, e ′) = 2−n,

where
n = max{m : ei = e ′i for i = 0, . . . ,m − 1}.

It supports the shift map T : Σ→ Σ defined by (Te)n = en+1.
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Pressure

Given a function f : E o → R, define a new matrix Af by

Af (e, e ′) = ef (e)A(e, e ′).

By the Perron-Frobenius Theorem, Af has a simple positive
eigenvalue equal to its spectral radius. We denote this eigenvalue
by eP(f ) and call P(f ) the pressure of f .
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The Parry measure

Consider the matrix A−h`, where h = h(G , `). Then eP(−h`) = 1.

By the Perron-Frobenius Theorem, there exists a positive right
eigenvector A−h`q = q.

The matrix

P(e, e ′) =
A−h`(e, e

′)qe′

qe

is row stochastic.
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The Parry measure

P has a left eigenvector pP = p, which we can normalise to be a
probability vector.

We can define a measure µP on Σ in the following way. Let
[e0, . . . , en] denote the set of infinite paths in G starting with a
fixed finite path (e0, . . . , en). Then

µP([e0, . . . , en]) = pe0P(e0, e1) · · ·P(en−1, en).

This extends to a probability measure on Σ called the Parry
measure, which is invariant under the shift map T : for integrable
f : Σ→ R, ∫

Σ
f ◦ T dµP =

∫
Σ
f dµP .



The Parry measure

P has a left eigenvector pP = p, which we can normalise to be a
probability vector.

We can define a measure µP on Σ in the following way. Let
[e0, . . . , en] denote the set of infinite paths in G starting with a
fixed finite path (e0, . . . , en). Then

µP([e0, . . . , en]) = pe0P(e0, e1) · · ·P(en−1, en).

This extends to a probability measure on Σ called the Parry
measure, which is invariant under the shift map T : for integrable
f : Σ→ R, ∫

Σ
f ◦ T dµP =

∫
Σ
f dµP .



The Parry measure

For f : E o → R (identified with a function on Σ),∫
Σ
f dµP =

∑
e∈Eo

pe f (e).



Differentiating pressure

Lemma
Suppose that (−ε, ε)→ REo

: λ 7→ φλ is analytic with φ0 = −h`.
Then the function λ 7→ P(φλ) is analytic and

d

dt
P(φλ)

∣∣∣∣
λ=0

=

∫
Σ
φ̇0 dµP =

∑
e∈Eo

pe φ̇0(e).



Proof of Lemma

We have an eigenvalue equation

Aφλwλ = eP(φλ)wλ

with wλ positive and w0 = q.

Define
ψλ(e, e ′) = φλ(e) + logwλ(e ′)− logwλ(e).

Then P(ψλ) = P(φλ) and

Aψλ
1 = eP(φλ)1,

where 1 = (1, . . . , 1)T .
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Proof of Lemma

Differentiating and evaluating at λ = 0 (using P(φ0) = 0 and
Aψ0 = P) we obtain

dP(φλ)

dλ
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λ=0

=
∑
e′∈Eo

(
φ̇0(e) + ẇ0(e ′)− ẇ0(e)

)
P(e, e ′).



Proof of Lemma

Multiplying by pe and summing over e ∈ E o we get (using∑
e∈Eo pe = 1)

dP(φλ)

dλ

∣∣∣∣
λ=0

=
∑

e,e′∈Eo

pe φ̇0(e)P(e, e ′) +
∑

e,e′∈Eo

(
ẇ0(e ′)− ẇ0(e)

)
peP(e, e ′)

=
∑
e∈Eo

pe φ̇0(e),

as required, using the fact that P is row stochastic and that
pP = p.



The tangent space to M1
G

To define a Weil-Petersson type metric in this setting, we need to
characterise the tangent space to M1

G at a point ` ∈M1
G .

Suppose that
(−ε, ε)→M1

G : λ 7→ `λ.

is an analytic path in M1
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Then we can expand

`λ = `0 + λ ˙̀
0 +

λ2

2
῭
0 + · · · ,

where ˙̀
0 ∈ T`0(M1
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The tangent space to M1
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Since `λ ∈M1
G , we have

P(−`λ) = 0.

By the lemma above, we have

0 =
dP(−`λ)

dλ

∣∣∣∣
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= −
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Σ
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0 dµP .

Remark
This parallels the fact that in the surface case∫

T 1(S ,g0)
ġ0(v , v) dµg0(v) = 0.
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The tangent space to M1
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Since
˙̀
0(e) = ˙̀

0(e)

we thus have

T`M1
G ⊂

{
f : E o → R : f (e) = f (e) and

∑
e∈Eo

pe f (e) = 0

}
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and
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G

By analogy with McMullen’s definition, for f ∈ T`M1
G we set

σ2(f ) = lim
n→∞

1

n

∫
Σ
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f (e) + f (T (e)) + · · · f (T n−1(e))
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In fact, one can calculate that
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Finally, we use this to define a metric
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Properties of the metric

How does the metric compare with the Weil-Petersson metric on
Teichmüller space?
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Theorem
There exist graphs G for which ‖ · ‖WP is incomplete.

In fact, the metric is incomplete for the graph with one vertex and
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