A Weil-Petersson metric for graphs

Richard Sharp
(Joint work with Mark Pollicott)

Graph Theory and Interactions
Durham University

July 2013

Finite graphs
$G=(V, E)$ finite graph.

Finite graphs

$G=(V, E)$ finite graph.
Assume all vertices have degree ≥ 3.

Finite graphs

$G=(V, E)$ finite graph.
Assume all vertices have degree ≥ 3.
Then $\pi_{1} G$ is a free group of rank ≥ 2.

Metric Graphs

We can make G into a metric graph by assigning a positive length $\ell(e)$ to each edge $e \in E$.

Metric Graphs

We can make G into a metric graph by assigning a positive length $\ell(e)$ to each edge $e \in E$.

More formally, the lengths are defined by a function $\ell: E \rightarrow \mathbb{R}^{>0}$.

Metric Graphs

We can make G into a metric graph by assigning a positive length $\ell(e)$ to each edge $e \in E$.

More formally, the lengths are defined by a function $\ell: E \rightarrow \mathbb{R}^{>0}$.
The pair (G, ℓ) may be thought of as a toy analogue of a compact hyperbolic surface, i.e. a compact smooth surface S of genus ≥ 2, equipped with a Riemannian metric of constant Gaussian curvature -1 .

A Moduli Space

Just as the Teichmüller space of a smooth surface Teich(S) parametrizes hyperbolic metrics on S, we can consider a space of lengths (or, equivalently, a space of metrics) on a fixed graph G.

A Moduli Space

Just as the Teichmüller space of a smooth surface Teich(S) parametrizes hyperbolic metrics on S, we can consider a space of lengths (or, equivalently, a space of metrics) on a fixed graph G.

Define

$$
\mathcal{M}_{G}=\left\{\ell: E \rightarrow \mathbb{R}^{>0}\right\}
$$

A Moduli Space

Just as the Teichmüller space of a smooth surface Teich (S) parametrizes hyperbolic metrics on S, we can consider a space of lengths (or, equivalently, a space of metrics) on a fixed graph G.

Define

$$
\mathcal{M}_{G}=\left\{\ell: E \rightarrow \mathbb{R}^{>0}\right\}
$$

and a space of normalised lengths

$$
\mathcal{M}_{G}^{1}=\left\{\ell \in \mathcal{M}_{G}: h(G, \ell)=1\right\}
$$

where

$$
h(G, \ell)=\lim _{t \rightarrow \infty} \frac{1}{t} \log \#\{\text { cycles } \gamma: \ell(\gamma) \leq t\}
$$

Entropy

We call the number

$$
h(G, \ell)=\lim _{t \rightarrow \infty} \frac{1}{t} \log \#\{\text { cycles } \gamma: \ell(\gamma) \leq t\}
$$

the entropy of the metric graph (G, ℓ).

Entropy

We call the number

$$
h(G, \ell)=\lim _{t \rightarrow \infty} \frac{1}{t} \log \#\{\text { cycles } \gamma: \ell(\gamma) \leq t\}
$$

the entropy of the metric graph (G, ℓ).
From a dynamical point of view, it is the topological entropy of a certain flow (\mathbb{R}-action) but we shall not use that description here.

Teichmüller Space

Let S be a smooth orientable compact surface of genus $k \geq 2$

Teichmüller Space

Let S be a smooth orientable compact surface of genus $k \geq 2$
The Teichmüller space Teich (S) parametrizes Riemannian metrics of constant curvature -1 on S (as a marked surface).

Teichmüller Space

Let S be a smooth orientable compact surface of genus $k \geq 2$
The Teichmüller space Teich (S) parametrizes Riemannian metrics of constant curvature -1 on S (as a marked surface).

Teich (S) is a smooth manifold diffeomorphic to $\mathbb{R}^{6 k-6}$.

The Weil-Petersson metric on Teich (S)

Teich (S) supports a natural Riemannian metric called the Weil-Petersson metric, $\|\cdot\|_{\text {WP }}$.

The Weil-Petersson metric on Teich (S)

Teich (S) supports a natural Riemannian metric called the Weil-Petersson metric, $\|\cdot\|_{\text {Wp }}$.

The original definition is via Beltrami differentials but more intuitive definitions have been given by Thurston-Wolpert and McMullen.

The Weil-Petersson metric on Teich (S)

Teich (S) supports a natural Riemannian metric called the Weil-Petersson metric, $\|\cdot\|_{\text {WP }}$.

The original definition is via Beltrami differentials but more intuitive definitions have been given by Thurston-Wolpert and McMullen.

The Weil-Petersson metric has the desirable property of making Teich (S) negatively curved.
Theorem (Ahlfors, 1961)
Teich (S) is negatively curved with respect to $\|\cdot\|$ wP .

Thurston's definition

Consider an analytic path

$$
(-\epsilon, \epsilon) \rightarrow \operatorname{Teich}(S): \lambda \mapsto g_{\lambda}
$$

Thurston's definition

Consider an analytic path

$$
(-\epsilon, \epsilon) \rightarrow \operatorname{Teich}(S): \lambda \mapsto g_{\lambda}
$$

Then we can expand

$$
g_{\lambda}=g_{0}+\lambda \dot{g}_{0}+\frac{\lambda^{2}}{2} \ddot{g}_{0}+\cdots,
$$

where $\dot{g}_{0} \in T_{g_{0}}(\operatorname{Teich}(S))$.

Thurston's definition

Let $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ be a sequence of closed geodesics on (S, g_{0}) which are equidistributed with respect to the g_{0}-area measure: for all $f \in C(S, \mathbb{R})$,

$$
\lim _{n \rightarrow \infty} \frac{1}{\text { length }_{g_{0}}\left(\gamma_{n}\right)} \int_{\gamma_{n}} f=\int_{S} f \text { darea }_{g_{0}}
$$

Thurston's definition

Let $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ be a sequence of closed geodesics on (S, g_{0}) which are equidistributed with respect to the g_{0}-area measure: for all $f \in C(S, \mathbb{R})$,

$$
\lim _{n \rightarrow \infty} \frac{1}{\text { length }_{g_{0}}\left(\gamma_{n}\right)} \int_{\gamma_{n}} f=\int_{S} f \text { darea }_{g_{0}}
$$

Then

$$
\left\|\dot{g}_{0}\right\|_{\text {Thurston }}^{2}:=\left.\lim _{n \rightarrow \infty} \frac{\partial^{2}}{\partial \lambda^{2}} \frac{\text { length }_{g_{\lambda}}\left(\gamma_{n}\right)}{\text { length }_{g_{0}}\left(\gamma_{n}\right)}\right|_{\lambda=0}
$$

Wolpert's Theorem

Theorem (Wolpert, 1980s)

- Thurston's metric $\|\cdot\|_{\text {Thurston }}$ is equal to the Weil-Petersson metric $\|\cdot\|$ wp.
- Teich (S) is incomplete with respect to $\|\cdot\|$ wp.

McMullen's definition

Let $\phi_{t}: T^{1}\left(S, g_{0}\right) \rightarrow T^{1}\left(S, g_{0}\right)$ be the geodesic flow on the unit-tangent bundle over $\left(S, g_{0}\right)$.

McMullen's definition

Let $\phi_{t}: T^{1}\left(S, g_{0}\right) \rightarrow T^{1}\left(S, g_{0}\right)$ be the geodesic flow on the unit-tangent bundle over $\left(S, g_{0}\right)$.

Define $f: T^{1}\left(S, g_{0}\right) \rightarrow \mathbb{R}$ by $f(v)=\dot{g}_{0}(v, v)$ and

$$
\sigma^{2}\left(\dot{g}_{0}\right):=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{T^{1}\left(S, g_{0}\right)}\left(\int_{0}^{t} f\left(\phi_{u} v\right) d u\right)^{2} d \mu_{g_{0}}(v)
$$

where $\mu_{g_{0}}$ is the Liouville measure on $T^{1}\left(S, g_{0}\right)$ (the product of the area measure on (S, g_{0}) and Lebesgue measure on the fibres).

McMullen's definition

Let $\phi_{t}: T^{1}\left(S, g_{0}\right) \rightarrow T^{1}\left(S, g_{0}\right)$ be the geodesic flow on the unit-tangent bundle over $\left(S, g_{0}\right)$.

Define $f: T^{1}\left(S, g_{0}\right) \rightarrow \mathbb{R}$ by $f(v)=\dot{g}_{0}(v, v)$ and

$$
\sigma^{2}\left(\dot{g}_{0}\right):=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{T^{1}\left(S, g_{0}\right)}\left(\int_{0}^{t} f\left(\phi_{u} v\right) d u\right)^{2} d \mu_{g_{0}}(v)
$$

where $\mu_{g_{0}}$ is the Liouville measure on $T^{1}\left(S, g_{0}\right)$ (the product of the area measure on (S, g_{0}) and Lebesgue measure on the fibres).
Theorem (McMullen, 2007)

$$
\sigma^{2}\left(\dot{g}_{0}\right)=\frac{4}{3} \frac{\left\|\dot{g}_{0}\right\|_{\mathrm{WP}}^{2}}{\operatorname{area}\left(S, g_{0}\right)}=\frac{\left\|\dot{g}_{0}\right\|_{\mathrm{WP}}^{2}}{3 \pi(k-1)}
$$

Outer Space

The natural analogue of Teichmüller space in the Culler-Vogtmann outer space X_{k}. This parametrizes lengths on all (marked) graphs with rank k fundamental group.

Outer Space

The natural analogue of Teichmüller space in the Culler-Vogtmann outer space X_{k}. This parametrizes lengths on all (marked) graphs with rank k fundamental group.
X_{k} is a singular space made up of infinitely many cells (simplices) corresponding to lengths on a given marked graph.

Outer Space

The natural analogue of Teichmüller space in the Culler-Vogtmann outer space X_{k}. This parametrizes lengths on all (marked) graphs with rank k fundamental group.
X_{k} is a singular space made up of infinitely many cells (simplices) corresponding to lengths on a given marked graph.

Our space \mathcal{M}_{G}^{1} corresponds to a single cell in X_{k}.

Outer Space

The natural analogue of Teichmüller space in the Culler-Vogtmann outer space X_{k}. This parametrizes lengths on all (marked) graphs with rank k fundamental group.
X_{k} is a singular space made up of infinitely many cells (simplices) corresponding to lengths on a given marked graph.

Our space \mathcal{M}_{G}^{1} corresponds to a single cell in X_{k}.
We will give a definition of a Riemannian metric on \mathcal{M}_{G}^{1} which is analogous to McMullen's definition.

Oriented edges

Consider again the graph $G=(V, E)$. Let E° denote the oriented edges of G. (So $\left|E^{o}\right|=2|E|$.)

Oriented edges

Consider again the graph $G=(V, E)$. Let E° denote the oriented edges of G. (So $\left|E^{o}\right|=2|E|$.)

If $e \in E^{o}$ then $\bar{e} \in E^{o}$ will denote the edge with the reversed orientation.

Oriented edges

Consider again the graph $G=(V, E)$. Let E° denote the oriented edges of G. (So $\left|E^{o}\right|=2|E|$.)

If $e \in E^{\circ}$ then $\bar{e} \in E^{o}$ will denote the edge with the reversed orientation.

The length ℓ defines a function $\ell: E^{\circ} \rightarrow \mathbb{R}^{>0}$ satisfying $\ell(e)=\ell(\bar{e})$.

The incidence matrix for oriented edges

Define a matrix A indexed by $E^{0} \times E^{0}$ by

$$
A\left(e, e^{\prime}\right)= \begin{cases}1 & \text { if } e^{\prime} \text { follows } e \\ 0 & \text { otherwise }\end{cases}
$$

The incidence matrix for oriented edges

Define a matrix A indexed by $E^{0} \times E^{0}$ by

$$
A\left(e, e^{\prime}\right)= \begin{cases}1 & \text { if } e^{\prime} \text { follows } e \\ 0 & \text { otherwise }\end{cases}
$$

Our assumptions on G imply that A is irreducible, i.e. that for each $\left(e, e^{\prime}\right)$ there exists n such that $A^{n}\left(e, e^{\prime}\right)>0$.

The incidence matrix for oriented edges

Define a matrix A indexed by $E^{o} \times E^{0}$ by

$$
A\left(e, e^{\prime}\right)= \begin{cases}1 & \text { if } e^{\prime} \text { follows } e \\ 0 & \text { otherwise }\end{cases}
$$

Our assumptions on G imply that A is irreducible, i.e. that for each $\left(e, e^{\prime}\right)$ there exists n such that $A^{n}\left(e, e^{\prime}\right)>0$.

In face, A is aperiodic (A^{n} has positive entries for some n) unless
G is bipartite.

A subshift of finite type

Define a space

$$
\Sigma=\left\{\underline{e}=\left(e_{n}\right)_{n=0}^{\infty}: A\left(e_{n}, e_{n+1}\right)=1 \forall n \geq 0\right\}
$$

i.e. Σ is the space of infinite paths in G.

A subshift of finite type

Define a space

$$
\Sigma=\left\{\underline{e}=\left(e_{n}\right)_{n=0}^{\infty}: A\left(e_{n}, e_{n+1}\right)=1 \forall n \geq 0\right\}
$$

i.e. Σ is the space of infinite paths in G.
Σ can be made into a compact metric space by setting

$$
d\left(\underline{e}, \underline{e}^{\prime}\right)=2^{-n},
$$

where

$$
n=\max \left\{m: e_{i}=e_{i}^{\prime} \text { for } i=0, \ldots, m-1\right\} .
$$

A subshift of finite type

Define a space

$$
\Sigma=\left\{\underline{e}=\left(e_{n}\right)_{n=0}^{\infty}: A\left(e_{n}, e_{n+1}\right)=1 \forall n \geq 0\right\}
$$

i.e. Σ is the space of infinite paths in G.
Σ can be made into a compact metric space by setting

$$
d\left(\underline{e}, \underline{e}^{\prime}\right)=2^{-n},
$$

where

$$
n=\max \left\{m: e_{i}=e_{i}^{\prime} \text { for } i=0, \ldots, m-1\right\} .
$$

It supports the shift map $T: \Sigma \rightarrow \Sigma$ defined by $(T \underline{e})_{n}=e_{n+1}$.

Pressure

Given a function $f: E^{\circ} \rightarrow \mathbb{R}$, define a new matrix A_{f} by

$$
A_{f}\left(e, e^{\prime}\right)=e^{f(e)} A\left(e, e^{\prime}\right)
$$

Pressure

Given a function $f: E^{o} \rightarrow \mathbb{R}$, define a new matrix A_{f} by

$$
A_{f}\left(e, e^{\prime}\right)=e^{f(e)} A\left(e, e^{\prime}\right)
$$

By the Perron-Frobenius Theorem, A_{f} has a simple positive eigenvalue equal to its spectral radius. We denote this eigenvalue by $e^{P(f)}$ and call $P(f)$ the pressure of f.

The Parry measure

Consider the matrix $A_{-h \ell}$, where $h=h(G, \ell)$. Then $e^{P(-h \ell)}=1$.

The Parry measure

Consider the matrix $A_{-h \ell}$, where $h=h(G, \ell)$. Then $e^{P(-h \ell)}=1$.
By the Perron-Frobenius Theorem, there exists a positive right eigenvector $A_{-h \ell} q=q$.

The Parry measure

Consider the matrix $A_{-h \ell}$, where $h=h(G, \ell)$. Then $e^{P(-h \ell)}=1$.
By the Perron-Frobenius Theorem, there exists a positive right eigenvector $A_{-h \ell} q=q$.

The matrix

$$
P\left(e, e^{\prime}\right)=\frac{A_{-h \ell}\left(e, e^{\prime}\right) q_{e^{\prime}}}{q_{e}}
$$

is row stochastic.

The Parry measure

P has a left eigenvector $p P=p$, which we can normalise to be a probability vector.

The Parry measure

P has a left eigenvector $p P=p$, which we can normalise to be a probability vector.

We can define a measure μ_{P} on Σ in the following way. Let $\left[e_{0}, \ldots, e_{n}\right]$ denote the set of infinite paths in G starting with a fixed finite path $\left(e_{0}, \ldots, e_{n}\right)$. Then

$$
\mu_{P}\left(\left[e_{0}, \ldots, e_{n}\right]\right)=p_{e_{0}} P\left(e_{0}, e_{1}\right) \cdots P\left(e_{n-1}, e_{n}\right)
$$

This extends to a probability measure on Σ called the Parry measure, which is invariant under the shift map T : for integrable $f: \Sigma \rightarrow \mathbb{R}$,

$$
\int_{\Sigma} f \circ T d \mu_{P}=\int_{\Sigma} f d \mu_{P}
$$

The Parry measure

For $f: E^{\circ} \rightarrow \mathbb{R}$ (identified with a function on Σ),

$$
\int_{\Sigma} f d \mu_{P}=\sum_{e \in E^{o}} p_{e} f(e) .
$$

Differentiating pressure

Lemma

Suppose that $(-\epsilon, \epsilon) \rightarrow \mathbb{R}^{E^{\circ}}: \lambda \mapsto \phi_{\lambda}$ is analytic with $\phi_{0}=-h \ell$. Then the function $\lambda \mapsto P\left(\phi_{\lambda}\right)$ is analytic and

$$
\left.\frac{d}{d t} P\left(\phi_{\lambda}\right)\right|_{\lambda=0}=\int_{\Sigma} \dot{\phi}_{0} d \mu_{P}=\sum_{e \in E^{0}} p_{e} \dot{\phi}_{0}(e)
$$

Proof of Lemma

We have an eigenvalue equation

$$
A_{\phi_{\lambda}} w_{\lambda}=e^{P\left(\phi_{\lambda}\right)} w_{\lambda}
$$

with w_{λ} positive and $w_{0}=q$.

Proof of Lemma

We have an eigenvalue equation

$$
A_{\phi_{\lambda}} w_{\lambda}=e^{P\left(\phi_{\lambda}\right)} w_{\lambda}
$$

with w_{λ} positive and $w_{0}=q$.
Define

$$
\psi_{\lambda}\left(e, e^{\prime}\right)=\phi_{\lambda}(e)+\log w_{\lambda}\left(e^{\prime}\right)-\log w_{\lambda}(e) .
$$

Proof of Lemma

We have an eigenvalue equation

$$
A_{\phi_{\lambda}} w_{\lambda}=e^{P\left(\phi_{\lambda}\right)} w_{\lambda}
$$

with w_{λ} positive and $w_{0}=q$.
Define

$$
\psi_{\lambda}\left(e, e^{\prime}\right)=\phi_{\lambda}(e)+\log w_{\lambda}\left(e^{\prime}\right)-\log w_{\lambda}(e) .
$$

Then $P\left(\psi_{\lambda}\right)=P\left(\phi_{\lambda}\right)$ and

$$
A_{\psi_{\lambda}} 1=e^{P\left(\phi_{\lambda}\right)} 1
$$

where $1=(1, \ldots, 1)^{T}$.

Proof of Lemma

Differentiating and evaluating at $\lambda=0$ (using $P\left(\phi_{0}\right)=0$ and $A_{\psi_{0}}=P$) we obtain

$$
\left.\frac{d P\left(\phi_{\lambda}\right)}{d \lambda}\right|_{\lambda=0}=\sum_{e^{\prime} \in E^{o}}\left(\dot{\phi}_{0}(e)+\dot{w}_{0}\left(e^{\prime}\right)-\dot{w}_{0}(e)\right) P\left(e, e^{\prime}\right)
$$

Proof of Lemma

Multiplying by p_{e} and summing over $e \in E^{\circ}$ we get (using

$$
\left.\sum_{e \in E^{\circ}} p_{e}=1\right)
$$

$$
\begin{aligned}
& \left.\frac{d P\left(\phi_{\lambda}\right)}{d \lambda}\right|_{\lambda=0} \\
& =\sum_{e, e^{\prime} \in E^{o}} p_{e} \dot{\phi}_{0}(e) P\left(e, e^{\prime}\right)+\sum_{e, e^{\prime} \in E^{o}}\left(\dot{w}_{0}\left(e^{\prime}\right)-\dot{w}_{0}(e)\right) p_{e} P\left(e, e^{\prime}\right) \\
& =\sum_{e \in E^{o}} p_{e} \dot{\phi}_{0}(e)
\end{aligned}
$$

as required, using the fact that P is row stochastic and that $p P=p$.

The tangent space to \mathcal{M}_{G}^{1}

To define a Weil-Petersson type metric in this setting, we need to characterise the tangent space to \mathcal{M}_{G}^{1} at a point $\ell \in \mathcal{M}_{G}^{1}$.

The tangent space to \mathcal{M}_{G}^{1}

To define a Weil-Petersson type metric in this setting, we need to characterise the tangent space to \mathcal{M}_{G}^{1} at a point $\ell \in \mathcal{M}_{G}^{1}$.

Suppose that

$$
(-\epsilon, \epsilon) \rightarrow \mathcal{M}_{G}^{1}: \lambda \mapsto \ell_{\lambda} .
$$

is an analytic path in \mathcal{M}_{G}^{1}.

The tangent space to \mathcal{M}_{G}^{1}

To define a Weil-Petersson type metric in this setting, we need to characterise the tangent space to \mathcal{M}_{G}^{1} at a point $\ell \in \mathcal{M}_{G}^{1}$.

Suppose that

$$
(-\epsilon, \epsilon) \rightarrow \mathcal{M}_{G}^{1}: \lambda \mapsto \ell_{\lambda} .
$$

is an analytic path in \mathcal{M}_{G}^{1}.
Then we can expand

$$
\ell_{\lambda}=\ell_{0}+\lambda \dot{\ell}_{0}+\frac{\lambda^{2}}{2} \ddot{\ell}_{0}+\cdots
$$

where $\dot{\ell}_{0} \in T_{\ell_{0}}\left(\mathcal{M}_{G}^{1}\right)$.

The tangent space to \mathcal{M}_{G}^{1}

Since $\ell_{\lambda} \in \mathcal{M}_{G}^{1}$, we have

$$
P\left(-\ell_{\lambda}\right)=0 .
$$

By the lemma above, we have

$$
0=\left.\frac{d P\left(-\ell_{\lambda}\right)}{d \lambda}\right|_{\lambda=0}=-\int_{\Sigma} \dot{\ell}_{0} d \mu_{P}
$$

The tangent space to \mathcal{M}_{G}^{1}

Since $\ell_{\lambda} \in \mathcal{M}_{G}^{1}$, we have

$$
P\left(-\ell_{\lambda}\right)=0 .
$$

By the lemma above, we have

$$
0=\left.\frac{d P\left(-\ell_{\lambda}\right)}{d \lambda}\right|_{\lambda=0}=-\int_{\Sigma} \dot{\ell}_{0} d \mu_{P}
$$

Remark
This parallels the fact that in the surface case

$$
\int_{T^{1}\left(S, g_{0}\right)} \dot{g}_{0}(v, v) d \mu_{g_{0}}(v)=0
$$

The tangent space to \mathcal{M}_{G}^{1}

Since

$$
\dot{\ell}_{0}(\bar{e})=\dot{\ell}_{0}(e)
$$

The tangent space to \mathcal{M}_{G}^{1}

Since

$$
\dot{\ell}_{0}(\bar{e})=\dot{\ell}_{0}(e)
$$

we thus have

$$
T_{\ell} \mathcal{M}_{G}^{1} \subset\left\{f: E^{o} \rightarrow \mathbb{R}: f(e)=f(\bar{e}) \text { and } \sum_{e \in E^{\circ}} p_{e} f(e)=0\right\}
$$

The tangent space to \mathcal{M}_{G}^{1}

However, we have

$$
\operatorname{dim} T_{\ell} \mathcal{M}_{G}^{1}=|E|-1
$$

The tangent space to \mathcal{M}_{G}^{1}

However, we have

$$
\operatorname{dim} T_{\ell} \mathcal{M}_{G}^{1}=|E|-1
$$

and

$$
\begin{aligned}
& \operatorname{dim}\left\{f: E^{o} \rightarrow \mathbb{R}: f(e)=f(\bar{e}) \text { and } \sum_{e \in E^{\circ}} p_{e} f(e)=0\right\} \\
& =\left(\left|E^{o}\right| / 2\right)-1=|E|-1
\end{aligned}
$$

The tangent space to \mathcal{M}_{G}^{1}

However, we have

$$
\operatorname{dim} T_{\ell} \mathcal{M}_{G}^{1}=|E|-1
$$

and

$$
\begin{aligned}
& \operatorname{dim}\left\{f: E^{\circ} \rightarrow \mathbb{R}: f(e)=f(\bar{e}) \text { and } \sum_{e \in E^{\circ}} p_{e} f(e)=0\right\} \\
& =\left(\left|E^{o}\right| / 2\right)-1=|E|-1 .
\end{aligned}
$$

Therefore

$$
T_{\ell} \mathcal{M}_{G}^{1}=\left\{f: E^{o} \rightarrow \mathbb{R}: f(e)=f(\bar{e}) \text { and } \sum_{e \in E^{\circ}} p_{e} f(e)=0\right\}
$$

A Weil-Petersson metric on \mathcal{M}_{G}^{1}

By analogy with McMullen's definition, for $f \in T_{\ell} \mathcal{M}_{G}^{1}$ we set

$$
\sigma^{2}(f)=\lim _{n \rightarrow \infty} \frac{1}{n} \int_{\Sigma}\left(f(\underline{e})+f(T(\underline{e}))+\cdots f\left(T^{n-1}(\underline{e})\right)\right)^{2} d \mu_{P}
$$

A Weil-Petersson metric on \mathcal{M}_{G}^{1}

By analogy with McMullen's definition, for $f \in T_{\ell} \mathcal{M}_{G}^{1}$ we set

$$
\sigma^{2}(f)=\lim _{n \rightarrow \infty} \frac{1}{n} \int_{\Sigma}\left(f(\underline{e})+f(T(\underline{e}))+\cdots f\left(T^{n-1}(\underline{e})\right)\right)^{2} d \mu_{P}
$$

In fact, one can calculate that

$$
\sigma^{2}(f)=\sum_{e \in E^{\circ}} p_{e}(f(e))^{2}
$$

A Weil-Petersson metric on \mathcal{M}_{G}^{1}

By analogy with McMullen's definition, for $f \in T_{\ell} \mathcal{M}_{G}^{1}$ we set

$$
\sigma^{2}(f)=\lim _{n \rightarrow \infty} \frac{1}{n} \int_{\Sigma}\left(f(\underline{e})+f(T(\underline{e}))+\cdots f\left(T^{n-1}(\underline{e})\right)\right)^{2} d \mu_{P}
$$

In fact, one can calculate that

$$
\sigma^{2}(f)=\sum_{e \in E^{\circ}} p_{e}(f(e))^{2}
$$

Finally, we use this to define a metric

$$
\|f\|_{\mathrm{WP}}^{2}=\sigma^{2}(f) .
$$

Properties of the metric

How does the metric compare with the Weil-Petersson metric on Teichmüller space?

Properties of the metric: completeness

Theorem
There exist graphs G for which $\|\cdot\|_{\mathrm{WP}}$ is incomplete.

Properties of the metric: completeness

Theorem
There exist graphs G for which $\|\cdot\|_{\text {WP }}$ is incomplete.
In fact, the metric is incomplete for the graph with one vertex and two edges.

Properties of the metric: curvature

Theorem
There exist graphs G for which the curvature of $\left(\mathcal{M}_{G}^{1},\|\cdot\| \mathrm{WP}\right)$ takes both positive and negative values.

Properties of the metric: curvature

Theorem
There exist graphs G for which the curvature of $\left(\mathcal{M}_{G}^{1},\|\cdot\| \mathrm{WP}\right)$ takes both positive and negative values.

In fact, this occurs for the "dumbbell" graph.

Properties of the metric: curvature

Theorem
There exist graphs G for which the curvature of $\left(\mathcal{M}_{G}^{1},\|\cdot\|\right.$ wp $)$ takes both positive and negative values.

In fact, this occurs for the "dumbbell" graph.
However, for the "belt buckle" graph, the curvature is negative.

