Poisson approximation of subgraphs in random intersection graphs

Dudley Stark

Queen Mary, University of London
Durham, 24 July 2013

- Joint work with Katarzyna Rybarczyk, Adam Mickiewicz University Thanks for the slides for the first part of the talk, Katarzyna!
- Joint work with Katarzyna Rybarczyk, Adam Mickiewicz University
- Thanks for the slides for the first part of the talk, Katarzyna!

Outline of this talk

(1) Erdős-Rényi random graphs

2 Random intersection graphs
(3) Equivalence and differences between Erdős-Rényi and random intersection graphs

4 Distribution of subgraph counts in Erdős-Rényi graphs
(5) Clique covers

6 Subgraph counts in random intersection graphs

First articles

RANDOM GRAPHS

By E. N. Glubert

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

1. Introduction. Let N points, numbered $1,2, \cdots, N$, be given. There are $N(N-1) / 2$ lines which can be drawn joining pairs of these points. Choosing a subset of these lines to draw, one obtains a graph; there are $2^{x(N-1) / 2}$ possible graphs in total. Pick one of these graphs by the following random process. For all pairs of points make random choices, independent of each other, whether or not to join the points of the pair by a line. Let the common probability of joining be p. Equivalently, one may erase lines, with common probability $q=1-p$ from the complete graph

In the random graph so constructed one says that point i is connected to point j if some of the lines of the graph form a path from i to j. If i is connected to j for every pair i, j, then the graph is said to be connected. The probability P_{N} that the graph is connected, and also the probability R_{N} that two specific points, say 1 and 2 , are connected, will both be found.
As an application, imagine the N points to be N telephone central offices and suppose that each pair of offices has the same probability p that there is an idle direct line between them. Suppose further that a new call between two offices can be routed via other offices if necessary. Then R_{T} is the probability that there is some way of routing a new call from office 1 to office 2 and P_{x} is the probability that each office can call every other office.
Exact expressions for P_{s} and R_{N} are given in Section 2. These results are unwieldy for large N. Bounds on P_{s} and R_{x} derived in Seetion 3 show that
(1)

$$
P_{N} \sim 1-N q^{N-1}
$$

and
(2) $\quad R_{N} \sim 1-2 q^{N-1}$
symptotically as $N \rightarrow \infty$.
Other related results appear in a paper by Austin, Fagen, Penney, and Riordan [1]. These authors use a different random process to pick a graph and they find a generating function for the distribution of the number of connected pieces in the random graph.
2. Exact results. P_{N} may be expressed in terms of the number $C_{N, L}$ of connected graphs having N labeled points and L lines. Since each such graph has probability $p^{L} q^{-L+\bar{v}(s-1) / 2}$ of being the chosen graph, it follows that

$$
P_{N}=\sum_{L} C_{N, L} p^{L} q^{-L+N(N-1) / 2}
$$

Received January 20, 1959; revised July 29, 1959.

Erdős-Rényi random graph $G(n, p)$

Erdős-Rényi random graph $G(n, \hat{p})$

- Ω_{n} - a set of all graphs on n vertices $\left(\left|\Omega_{n}\right|=2\binom{n}{2}\right.$;
- $\sigma=\mathcal{P}\left(\Omega_{n}\right)$;
- each edge appears independently with probability \hat{p};
- A given graph $G \in \Omega_{n}$ on m vertices is picked with probability

Erdős-Rényi random graph $G(n, \hat{p})$

- Ω_{n} - a set of all graphs on n vertices $\left(\left|\Omega_{n}\right|=2\binom{n}{2}\right.$;
- $\sigma=\mathcal{P}\left(\Omega_{n}\right)$;
- each edge appears independently with probability \hat{p};
- A given graph $G \in \Omega_{n}$ on m vertices is picked with probability

$$
\hat{p}^{m}(1-\hat{p})^{\binom{n}{2}-m} .
$$

Evolution of a random graph

ON THE EVOLUTION OF RANDOM GRAPHS

by
P. ERDÖS and A. RÉNYI

Dedicated to Professor P. Turán at his 50th birthday.

Evarage number of edges $M=\binom{n}{2} p$

As p is growing (M is growing) we expect a graph $G(n, p)$ to change. With probability $1-o(1)$:

- is an empty graph;
- has no cycles (all components are trees);
- has all components: either trees or unicyclic;
- hac evactly ane nomnonent containing a ennctent fraction of vertices;

Evarage number of edges $M=\binom{n}{2} p$

As p is growing (M is growing) we expect a graph $G(n, p)$ to change. With probability $1-o(1)$:

- is an empty graph;
- has no cycles (all components are trees);
 vertices;

Evarage number of edges $M=\binom{n}{2} p$

As p is growing (M is growing) we expect a graph $G(n, p)$ to change. With probability $1-o(1)$:

- is an empty graph;
- has no cycles (all components are trees);
- has all components: either trees or unicyclic;
- has exactly one component containing a constant fraction of vertices;

Evarage number of edges $M=\binom{n}{2} p$

As p is growing (M is growing) we expect a graph $G(n, p)$ to change. With probability $1-o(1)$:

- is an empty graph;
- has no cycles (all components are trees);
- has all components: either trees or unicyclic;
- has exactly one component containing a constant fraction of vertices;
- is disconnected;
- is connected.

Threshold function

The study of the evolution of graphs leads to rather surprising results. For a number of fundamental structural properties A there exists a function $A(n)$ tending monotonically to $+\infty$ for $n \rightarrow+\infty$ such that
(1)

$$
\lim _{n \rightarrow+\infty} \mathbf{P}_{n, N(n)}(A)=\left\{\begin{array}{lll}
0 & \text { if } & \lim _{n \rightarrow-\infty} \frac{N(n)}{A(n)}=0 \\
1 & \text { if } & \lim _{n \rightarrow-\infty} \frac{N(n)}{A(n)}==+\infty
\end{array}\right.
$$

Threshold function in $G(n, \hat{p})$

$\mathbf{A}=\left\{G(n, \hat{p})\right.$ contains a $\left.K_{3}\right\}$

Let $p_{0}=\frac{1}{n}$, then
$\lim _{n \rightarrow \infty} \operatorname{Pr}\{A\}= \begin{cases}0 & \text { as } \frac{p}{p_{0}} \rightarrow 0 ; \\ 1 & \text { as } \frac{p}{p_{0}} \rightarrow \infty .\end{cases}$

$$
\begin{aligned}
& \mathbf{A}=\{G(n, \hat{p}) \text { is connected }\} \\
& \text { Let } \hat{p}_{0}=\frac{\ln n+\omega}{n} \text {, then } \\
& \lim _{n \rightarrow \infty} \operatorname{Pr}\{A\}= \begin{cases}0 & \text { as } \omega \rightarrow-\infty ; \\
1 & \text { as } \omega \rightarrow \infty .\end{cases}
\end{aligned}
$$

Threshold function in $G(n, \hat{p})$

$\mathbf{A}=\left\{G(n, \hat{p})\right.$ contains $\left.\mathbf{a} K_{3}\right\}$
 Let $p_{0}=\frac{1}{n}$, then

$\lim _{n \rightarrow \infty} \operatorname{Pr}\{A\}= \begin{cases}0 & \text { as } \frac{p}{p_{0}} \rightarrow 0 ; \\ 1 & \text { as } \frac{p}{p_{0}} \rightarrow \infty .\end{cases}$
Every monotone property has a threshold function in $G(n, \hat{p})$.

w.h.p.

with high probability, i.e. with probability tending to 1 as $n \rightarrow \infty$.

Motivation for further research

Why Erdős-Rényi model do not fit into many real life settings?

Example - complex network

- Relations between objects are not independent.

Motivation for further research

Why Erdős-Rényi model do not fit into many real life settings?

Example - complex network

- Relations between objects are not independent.
- Degree distribution is not Poisson.

- There is some hidden relations which determine the structure of

 sennentions - it sonmo that none of the olacoinal modolo eanture
Motivation for further research

Why Erdős-Rényi model do not fit into many real life settings?

Example - complex network

- Relations between objects are not independent.
- Degree distribution is not Poisson.
- There are more cliques (hubs).
connections - it seems that none of the classical models capture

Motivation for further research

Why Erdős-Rényi model do not fit into many real life settings?

Example - complex network

- Relations between objects are not independent.
- Degree distribution is not Poisson.
- There are more cliques (hubs).
- There is some hidden relations which determine the structure of connections - it seems that none of the classical models capture them.

Random intersection graph - definition

Karoński, Scheinerman, Singer-Cohen (1999)

Random intersection graph - definition

Karoński, Scheinerman, Singer-Cohen (1999)

Random intersection graph - definition

Karoński, Scheinerman, Singer-Cohen (1999)

Random intersection graph - definition

Karoński, Scheinerman, Singer-Cohen (1999)

Random intersection graph - definition

$\mathcal{G}(n, m, p)$

- Set of vertices $-\mathcal{V},|\mathcal{V}|=n$;
- Set of features - $\mathcal{W},|\mathcal{W}|=m=n^{\alpha}, \alpha$ - constant;
- Random bipartite graph with bipartition $(\mathcal{V}, \mathcal{W})$

$$
\begin{gathered}
v_{i} v_{j} \in E(\mathcal{G}(n, m, p)) \\
\hat{\mathbb{}} \\
W\left(v_{i}\right) \cap W\left(v_{j}\right) \neq \emptyset
\end{gathered}
$$

Comparison with $G(n, \hat{p})$

edge probability in $\mathcal{G}(n, m, p)$

$$
\begin{aligned}
1-\left(1-p^{2}\right)^{m} & \sim 1-\exp \left(-m p^{2}\right) \\
& \sim m p^{2}
\end{aligned}
$$

(as $m p^{2} \rightarrow 0$)

Comparison with $G(n, \hat{p})$

edge probability in $\mathcal{G}(n, m, p)$

$$
\begin{aligned}
1-\left(1-p^{2}\right)^{m} & \sim 1-\exp \left(-m p^{2}\right) \\
& \sim m p^{2}
\end{aligned}
$$

(as $m p^{2} \rightarrow 0$)

$$
\hat{p}=1-\exp \left(-m p^{2}\right) \sim m p^{2} ?
$$

J. Fill, E. Scheinerman, K. Singer-Cohen, 2000 comparison

$m=n^{\alpha}$, where $\alpha>0$ is a constant

Fig. 2. A comparison of (asymptotic) edge probability at various thresholds for $G\left(n, n^{1 / 2}, p\right)$ and $G(n, p)$.

Threshold functions for K_{3} appearance

$\mathcal{G}(n, m, p)$ (Karoński, Scheinerman, Singer-Cohen)

$$
\tau= \begin{cases}\frac{1}{n \sqrt[3]{m}} & \text { for } \alpha \leq 3 \\ \frac{1}{\sqrt{n m}} & \text { for } \alpha \geq 3\end{cases}
$$

$m p^{2}$

$$
m \tau^{2}= \begin{cases}\sqrt[3]{m} & \text { for } \alpha \leq 3 \\ \frac{1}{n} & \text { for } \alpha \geq 3\end{cases}
$$

$G(n, \hat{p})$

$$
\hat{\tau}=\frac{1}{n}
$$

Question

Equivalence?

If $\mathcal{G}(n, m, p)$ and $G(n, \hat{p})$ for

$$
\hat{p} \sim \operatorname{Pr}\left\{\left(v_{1}, v_{2}\right) \text { is an edge in } \mathcal{G}(n, m, p)\right\}
$$

are asymptoticly equivalent.
i.e. for any graph property \mathcal{A} and any $a \in[0 ; 1]$

$$
\operatorname{Pr}\{G(n, \hat{p}) \in \mathcal{A}\} \rightarrow a \quad \text { iff } \quad \operatorname{Pr}\{\mathcal{G}(n, m, p) \in \mathcal{A}\} \rightarrow a
$$

Equivalence

Theorem (J. Fill, E. Scheinerman, K. Singer-Cohen, 2000)

Let $m=n^{\alpha}$ and $\alpha>6$. Let $p=p(n)$ be such that

$$
\frac{\omega}{n \sqrt{m}} \leq p \leq \sqrt{\frac{2 \ln n-\omega}{m}}
$$

for some $\omega \rightarrow \infty$ (i.e. w.h.p $\mathcal{G}(n, m, p)$ is not edgeless and not complete). Let

$$
\hat{p}=1-\left(1-p_{e}\right)^{m}
$$

$\left(p_{e} \sim p^{2}\right)$ and \mathcal{A} be any graph property. Then for any $a \in[0 ; 1]$

$$
\operatorname{Pr}\{\mathcal{G}(n, m, p) \in \mathcal{A}\} \rightarrow a \Leftrightarrow \operatorname{Pr}\{G(n, \hat{p}) \in \mathcal{A}\} \rightarrow a
$$

Equivalence

Theorem (J. Fill, E. Scheinerman, K. Singer-Cohen, 2000)

Let $m=n^{\alpha}$ and $\alpha>6$. Let $p=p(n)$ be such that

$$
\frac{\omega}{n \sqrt{m}} \leq p \leq \sqrt{\frac{2 \ln n-\omega}{m}}
$$

for some $\omega \rightarrow \infty$ (i.e. w.h.p $\mathcal{G}(n, m, p)$ is not edgeless and not complete). Let

$$
\hat{p}=1-\left(1-p_{e}\right)^{m}
$$

$\left(p_{e} \sim p^{2}\right)$ and \mathcal{A} be any graph property. Then for any $a \in[0 ; 1]$

$$
\operatorname{Pr}\{\mathcal{G}(n, m, p) \in \mathcal{A}\} \rightarrow a \Leftrightarrow \operatorname{Pr}\{G(n, \hat{p}) \in \mathcal{A}\} \rightarrow a
$$

Equivalence

Theorem (J. Fill, E. Scheinerman, K. Singer-Cohen, 2000)

Let $m=n^{\alpha}$ and $\alpha>6$. Let $p=p(n)$ be such that

$$
\frac{\omega}{n \sqrt{m}} \leq p \leq \sqrt{\frac{2 \ln n-\omega}{m}}
$$

for some $\omega \rightarrow \infty$ (i.e. w.h.p $\mathcal{G}(n, m, p)$ is not edgeless and not complete). Let

$$
\hat{p}=1-\left(1-p_{e}\right)^{m}
$$

$\left(p_{e} \sim p^{2}\right)$ and \mathcal{A} be any graph property. Then for any $a \in[0 ; 1]$

$$
\operatorname{Pr}\{\mathcal{G}(n, m, p) \in \mathcal{A}\} \rightarrow a \Leftrightarrow \operatorname{Pr}\{G(n, \hat{p}) \in \mathcal{A}\} \rightarrow a
$$

Equivalence

Theorem (J. Fill, E. Scheinerman, K. Singer-Cohen, 2000)

Let $m=n^{\alpha}$ and $\alpha>6$. Let $p=p(n)$ be such that

$$
\frac{\omega}{n \sqrt{m}} \leq p \leq \sqrt{\frac{2 \ln n-\omega}{m}}
$$

for some $\omega \rightarrow \infty$ (i.e. w.h.p $\mathcal{G}(n, m, p)$ is not edgeless and not complete). Let

$$
\hat{p}=1-\left(1-p_{e}\right)^{m}
$$

$\left(p_{e} \sim p^{2}\right)$ and \mathcal{A} be any graph property. Then for any $a \in[0 ; 1]$

$$
\operatorname{Pr}\{\mathcal{G}(n, m, p) \in \mathcal{A}\} \rightarrow a \Leftrightarrow \operatorname{Pr}\{G(n, \hat{p}) \in \mathcal{A}\} \rightarrow a
$$

Triangle counts

Given sequences $a_{n}, b_{n}, a_{n} \sim b_{n}$ means that $a_{n} / b_{n} \rightarrow 1$ as $n \rightarrow \infty$.
\square

- Let X be the number of K_{3} 's.

Triangle counts

Given sequences $a_{n}, b_{n}, a_{n} \sim b_{n}$ means that $a_{n} / b_{n} \rightarrow 1$ as $n \rightarrow \infty$. In $G(n, \hat{p})$, what are the expected number of K_{3} 's?

Triangle counts

Given sequences $a_{n}, b_{n}, a_{n} \sim b_{n}$ means that $a_{n} / b_{n} \rightarrow 1$ as $n \rightarrow \infty$. In $G(n, \hat{p})$, what are the expected number of K_{3} 's?

- Let X be the number of K_{3} 's.

Triangle counts

Given sequences $a_{n}, b_{n}, a_{n} \sim b_{n}$ means that $a_{n} / b_{n} \rightarrow 1$ as $n \rightarrow \infty$.
In $G(n, \hat{p})$, what are the expected number of K_{3} 's?

- Let X be the number of K_{3} 's.
- $\mathbb{E}(X)=\binom{n}{3} \hat{p}^{3} \sim \frac{1}{6} n^{3} \hat{p}^{3}$ and so \ldots

Triangle counts

Given sequences $a_{n}, b_{n}, a_{n} \sim b_{n}$ means that $a_{n} / b_{n} \rightarrow 1$ as $n \rightarrow \infty$.
In $G(n, \hat{p})$, what are the expected number of K_{3} 's?

- Let X be the number of K_{3} 's.
- $\mathbb{E}(X)=\binom{n}{3} \hat{p}^{3} \sim \frac{1}{6} n^{3} \hat{p}^{3}$ and so \ldots
- When $\hat{p} \sim c / n$ for a constant $c>0, \mathbb{E}(X) \sim c^{3} / 6$.

Triangle counts

If $\hat{p} \sim c / n$, then what is the limiting distribution of X ?

- Let 「 index all possible triangles.

Triangle counts

If $\hat{p} \sim c / n$, then what is the limiting distribution of X ?

- Let Γ index all possible triangles.

Triangle counts

If $\hat{p} \sim c / n$, then what is the limiting distribution of X ?

- Let Γ index all possible triangles.
- Let $X=\sum_{\alpha \in \Gamma} I_{\alpha}$, where I_{α} is the indicator random variable that α is present in $G(n, \hat{p})$.

Triangle counts

If $\hat{p} \sim c / n$, then what is the limiting distribution of X ?

- Let Γ index all possible triangles.
- Let $X=\sum_{\alpha \in \Gamma} I_{\alpha}$, where I_{α} is the indicator random variable that α is present in $G(n, \hat{p})$.
- If $\alpha, \beta \in \Gamma$ share no vertices, then I_{α} and I_{β} are independent.

Triangle counts

If $\hat{p} \sim c / n$, then what is the limiting distribution of X ?

- Let Γ index all possible triangles.
- Let $X=\sum_{\alpha \in \Gamma} I_{\alpha}$, where I_{α} is the indicator random variable that α is present in $G(n, \hat{p})$.
- If $\alpha, \beta \in \Gamma$ share no vertices, then I_{α} and I_{β} are independent.
- The expected number of pairs of triangles sharing vertices goes to 0.

Triangle counts

If $\hat{p} \sim c / n$, then what is the limiting distribution of X ?

- Let 「 index all possible triangles.
- Let $X=\sum_{\alpha \in \Gamma} I_{\alpha}$, where I_{α} is the indicator random variable that α is present in $G(n, \hat{p})$.
- If $\alpha, \beta \in \Gamma$ share no vertices, then I_{α} and I_{β} are independent.
- The expected number of pairs of triangles sharing vertices goes to 0.
- Therefore, $X \Rightarrow \operatorname{Po}\left(c^{3} / 6\right)$.

Subgraph counts in $G(n, \hat{p})$

- let H_{0} be a subgraph of K_{n} with e edges and v vertices.

Subgraph counts in $G(n, \hat{p})$

- let H_{0} be a subgraph of K_{n} with e edges and v vertices.
- Let X be the number of H_{0} 's.

Subgraph counts in $G(n, \hat{p})$

- let H_{0} be a subgraph of K_{n} with e edges and v vertices.
- Let X be the number of H_{0} 's.
- $\mathbb{E}(X)=\frac{(n)_{v}}{\left|\operatorname{Aut}\left(H_{0}\right)\right|} \hat{p}^{e} \sim \frac{1}{\left|\operatorname{Aut}\left(H_{0}\right)\right|} n^{v} \hat{p}^{e}$ and so \ldots

Subgraph counts in $G(n, \hat{p})$

- let H_{0} be a subgraph of K_{n} with e edges and v vertices.
- Let X be the number of H_{0} 's.
- $\mathbb{E}(X)=\frac{(n)_{v}}{\left|\operatorname{Aut}\left(H_{0}\right)\right|} \hat{p}^{e} \sim \frac{1}{\left|\operatorname{Aut}\left(H_{0}\right)\right|} n^{v} \hat{p}^{e}$ and so \ldots
- When $\hat{p} \sim c n^{-v / e}$ for a constant $c>0, \mathbb{E}(X) \sim \frac{c^{e}}{\left|\operatorname{Aut}\left(H_{0}\right)\right|}$.

Subgraph counts in $G(n, \hat{p})$

Bollobas, Rucinski,...

Definition of strictly balanced

A subgraph H_{0} of K_{n} is strictly balanced if

$$
\max _{\emptyset \subseteq S \subseteq V\left(H_{0}\right)} \frac{|E(S)|}{|S|}<\frac{e}{h},
$$

where $E(S)$ is the number of edges of H_{0} contained in S.

Subgraph counts in $G(n, \hat{p})$

Bollobas, Rucinski,...

Definition of strictly balanced

A subgraph H_{0} of K_{n} is strictly balanced if

$$
\max _{\emptyset \subseteq S \subseteq V\left(H_{0}\right)} \frac{|E(S)|}{|S|}<\frac{e}{h},
$$

where $E(S)$ is the number of edges of H_{0} contained in S.

Theorem

If $\hat{p} \sim c n^{-v / e}$ for a constant $c>0$ then, X has a limiting Poisson distribution if H_{0} is strictly balanced.

Subgraph counts in $G(n, \hat{p})$

Definition of balanced

A subgraph H_{0} of K_{n} is balanced if

$$
\max _{\emptyset \subseteq S \subseteq V\left(H_{0}\right)} \frac{|E(S)|}{|S|} \leq \frac{e}{h},
$$

where $E(S)$ is the number of edges of H_{0} contained in S.

Subgraph counts in $G(n, \hat{p})$

Definition of balanced

A subgraph H_{0} of K_{n} is balanced if

$$
\max _{\emptyset \subseteq S \subseteq V\left(H_{0}\right)} \frac{|E(S)|}{|S|} \leq \frac{e}{h},
$$

where $E(S)$ is the number of edges of H_{0} contained in S.

Theorem

$\hat{p} \sim c n^{-v / e}$ for a constant $c>0$ and H_{0} is strictly balanced, but not strictly balanced, then $\lim _{n \rightarrow \infty} \operatorname{Var}(X)>\mathbb{E}(X)$ and X does not have limiting Poisson distribution.

Subgraph counts in $G(n, \hat{p})$

Definition of balanced

A subgraph H_{0} of K_{n} is unbalanced if

$$
\frac{|E(S)|}{|S|}>\frac{e}{h}
$$

for some $\emptyset \subsetneq S \subsetneq V\left(H_{0}\right)$, where $E(S)$ is the number of edges of H_{0} contained in S.

Subgraph counts in $G(n, \hat{p})$

Definition of balanced

A subgraph H_{0} of K_{n} is unbalanced if

$$
\frac{|E(S)|}{|S|}>\frac{e}{h}
$$

for some $\emptyset \subsetneq S \subsetneq V\left(H_{0}\right)$, where $E(S)$ is the number of edges of H_{0} contained in S.

Theorem

If $\hat{p} \sim c n^{-v / e}$ for a constant $c>0$ and H_{0} is unbalanced, then $X \rightarrow 0$ in probability.

Subgraph problem

Rybarzyk, S.(2010)

- $m=n^{\alpha}, \alpha$ - constant;

Subgraph problem

Rybarzyk, S.(2010)

- $m=n^{\alpha}, \alpha$ - constant;
- X_{n} - number of $K_{h}, h \geq 3$, in $\mathcal{G}(n, m, p)$

Subgraph problem

Rybarzyk, S.(2010)

- $m=n^{\alpha}, \alpha$ - constant;
- X_{n} - number of $K_{h}, h \geq 3$, in $\mathcal{G}(n, m, p)$

$$
p \sim \begin{cases}c n^{-1} m^{-\frac{1}{h}} & \text { for } 0<\alpha<2 h /(h-1) \\ c n^{-\frac{h+1}{h-1}} & \text { for } \alpha=2 h /(h-1) \\ c n^{-\frac{1}{h-1}} m^{-\frac{1}{2}} & \text { for } \alpha>2 h /(h-1)\end{cases}
$$

Subgraph problem

Rybarzyk, S.(2010)

(i) If $0<\alpha<2 h /(h-1)$, then $\mathbb{E} X_{n} \sim c^{h} / h$! and

$$
d_{T V}\left(X_{n}, \operatorname{Po}\left(\mathbb{E} X_{n}\right)\right)=O\left(n^{-\frac{\alpha}{h}}\right)
$$

(ii) If $\alpha=2 h /(h-1)$ then $\mathbb{E} X_{n} \sim\left(c^{h}+c^{h(h-1)}\right) / h$! and $d_{T V}\left(X_{n}, \operatorname{Po}\left(\mathbb{E} X_{n}\right)\right)=O\left(n^{-\frac{2}{h-1}}\right) ;$
(iii) If $\alpha>2 h /(h-1)$ then $\mathbb{E} X_{n} \sim c^{h(h-1)} / h$! and

$$
d_{T V}\left(X_{n}, \operatorname{Po}\left(\mathbb{E} X_{n}\right)\right)=O\left(n^{\left(n-\frac{\alpha(h-1)}{2}-\frac{2}{h-1}\right)}+n^{-1}\right)
$$

Clique covers

Definition of the clique covers of H_{0}

Given a fixed subgraph H_{0} of K_{n}, define $V\left(H_{0}\right)$ and $E\left(H_{0}\right)$ to be the vertex and edge sets of H_{0}, respectively. A clique cover $\mathbf{C}=\left\{C_{1}, \ldots, C_{t}\right\}$ of H_{0} is a set of subsets of $V\left(H_{0}\right)$ such that

- $\left|C_{i}\right| \geq 2$ for all $C_{i} \in \mathbf{C}$
- Each $C_{i} \in \mathbf{C}$ induces a clique in H_{0}
- For any $\left\{v_{1}, v_{2}\right\} \in E\left(H_{0}\right)$ there exists $C_{i} \in \mathbf{C}$ such that $v_{1}, v_{2} \in C$.

Clique covers of K_{3}

Clique covers of K_{3}

A CLIQUE COVER			
MANDATORY CLIQUES			
FORBIDDEN CLIQUES			

Clique cover induction

Definition of induction by a clique cover

We say that H_{0} is induced by clique cover $\mathbf{C}=\left\{C_{1}, \ldots, C_{t}\right\}$ if there is a family of disjoint non-empty subsets $\left\{W_{1}, \ldots, W_{t}\right\}$ of \mathcal{W}, such that,

- For all $1 \leq i \leq t$, each element of W_{i} is an object assigned to all the vertices of C_{i} and no other vertices from $V\left(H_{0}\right)$.
- Each $w \in \mathcal{W} \backslash \bigcup_{i=1}^{t} W_{i}$ is chosen by at most one vertex from $V\left(H_{0}\right)$.
Clearly, if H_{0} is an induced subgraph of $\mathcal{G}(n, m, p)$, then it is induced by exactly one clique cover in $\mathcal{G}(n, m, p)$.

Clique covers of K_{3}

A clique cover can be induced in many different ways.

Restricted clique covers

Given $\emptyset \varsubsetneqq S \varsubsetneqq V(H)$, we define two different types of restricted clique covers, which are multisets defined by

$$
\mathbf{C}[S]:=\left\{C_{i} \cap S:\left|C_{i} \cap S\right| \geq 1, i \in[t]\right\}
$$

and

$$
\mathbf{C}^{\prime}[S]:=\left\{C_{i} \cap S:\left|C_{i} \cap S\right| \geq 2, i \in[t]\right\}
$$

We define

$$
\sum \mathbf{c}[S]=\sum_{\substack{i \in[t] \\\left|C_{i} \cap S\right| \geq 1}}\left|C_{i} \cap S\right|
$$

and

$$
\sum \mathbf{C}^{\prime}[S]=\sum_{\substack{i \in[t] \\\left|C_{i} \cap S\right| \geq 2}}\left|C_{i} \cap S\right|
$$

Let $H_{0}[S]$ the induced subgraph of H_{0} on vertices S. Clearly, it is impossible for \mathbf{C} to induce H_{0} unless $\mathbf{C}[S]$ and $\mathbf{C}^{\prime}[S]$ induce $H_{0}[S]$.

The expected number of copies of $H_{0}[S]$ in $\mathcal{G}(n, m, p)$ induced by $\mathbf{C}[S]$ and $\mathbf{C}^{\prime}[S]$ are asymptotically of order

$$
\psi\left(H_{0}, \mathbf{C}, S\right):=\min \left\{n^{|S|+\alpha|\mathbf{C}[S]|} p^{\sum \mathbf{C}[S]}, n^{|S|+\alpha\left|\mathbf{C}^{\prime}[S]\right|} p^{\sum \mathbf{C}^{\prime}[S]}\right\}
$$

Thresholds for induction by a clique cover

Consider clique cover C

Define

$$
\eta_{2}\left(H_{0}, \mathbf{C}, S\right):= \begin{cases}\frac{|S|+\alpha \mid \mathbf{C}[S \mid]}{\Sigma \mathbf{C}[S]} & \text { if either } \alpha<\frac{|S|}{\left.\sum \mathbf{C} \mid S\right]|\mathbf{C}(S]|} \\ \frac{\text { or } \sum \mathbf{S} \mid+\alpha\left[\mathbf{C}^{\prime}[S] \mid\right.}{\sum \mathbf{C}^{\prime}[S]} & \text { otherwise }=\mathbf{C}[S] \mid ;\end{cases}
$$

and define

$$
\eta_{1}\left(H_{0}, \mathbf{C}\right):=\min _{\emptyset \nsubseteq S \subseteq V\left(H_{0}\right)} \eta_{2}\left(H_{0}, \mathbf{C}, S\right) .
$$

Then $p=n^{-\eta_{1}\left(H_{0}, \mathbf{C}\right)}$ should be a threshold for \mathbf{C} inducing copies of H_{0}.

Thresholds for induction by a clique cover

Thus, if we define

$$
\eta_{0}=\eta_{0}\left(H_{0}\right):=\max _{\mathbf{C} \in \mathcal{C}} \eta_{1}\left(H_{0}, \mathbf{C}\right)
$$

then it is natural to expect that under suitable conditions $p=n^{-\eta_{0}\left(H_{0}\right)}$ should be the threshold for the appearance of H_{0} in $\mathcal{G}(n, m, p)$.

Thresholds for induction by a clique cover

Thus, if we define

$$
\eta_{0}=\eta_{0}\left(H_{0}\right):=\max _{\mathbf{C} \in \mathcal{C}} \eta_{1}\left(H_{0}, \mathbf{C}\right)
$$

then it is natural to expect that under suitable conditions $p=n^{-\eta_{0}\left(H_{0}\right)}$ should be the threshold for the appearance of H_{0} in $\mathcal{G}(n, m, p)$.

The clique covers which will induce copies of H_{0} at threshold $p=n^{-\eta_{0}\left(H_{0}\right)}$ are those for which $\eta_{1}\left(H_{0}, \mathbf{C}\right)=\eta_{0}$. We call them critical.

Thresholds for induction by a clique cover

Thus, if we define

$$
\eta_{0}=\eta_{0}\left(H_{0}\right):=\max _{\mathbf{C} \in \mathcal{C}} \eta_{1}\left(H_{0}, \mathbf{C}\right)
$$

then it is natural to expect that under suitable conditions $p=n^{-\eta_{0}\left(H_{0}\right)}$ should be the threshold for the appearance of H_{0} in $\mathcal{G}(n, m, p)$.

The clique covers which will induce copies of H_{0} at threshold $p=n^{-\eta_{0}\left(H_{0}\right)}$ are those for which $\eta_{1}\left(H_{0}, \mathbf{C}\right)=\eta_{0}$. We call them critical.

We call a clique cover $\mathbf{C} \in \mathcal{C}\left(H_{0}\right)$ strictly α-balanced if $\eta_{2}\left(H_{0}, \mathbf{C}, S\right)>\eta_{2}\left(H_{0}, \mathbf{C}, V\left(H_{0}\right)\right)$ for all $\emptyset \varsubsetneqq S \varsubsetneqq V\left(H_{0}\right)$. The idea of strictly α-balanced was introduced by Jaworski and Karonski for random bipartite graphs.

Balanced and unbalanced clique covers

We call a clique cover $\mathbf{C} \in \mathcal{C}\left(H_{0}\right) \alpha$-balanced if $\eta_{2}\left(H_{0}, \mathbf{C}, S\right)=\eta_{2}\left(H_{0}, \mathbf{C}, V\left(H_{0}\right)\right)$ for all $\emptyset \varsubsetneqq S \varsubsetneqq V\left(H_{0}\right)$.

We call a clique cover $\mathbf{C} \in \mathcal{C}\left(H_{0}\right)$ strictly α-unbalanced if $\eta_{2}\left(H_{0}, \mathbf{C}, S\right)<\eta_{2}\left(H_{0}, \mathbf{C}, V\left(H_{0}\right)\right)$ for some $\emptyset \varsubsetneqq S \varsubsetneqq V\left(H_{0}\right)$.

Work in progress

\approx Theorem

Suppose at least one of the critical clique covers of H_{0} is strictly α-balanced and all of them are either strictly α-balanced or α-unbalanced. If $p \sim c n^{-\eta_{0}\left(H_{0}\right)}$, then X converges to a Poisson distributed random variable with parameter λ. If at least one of the critical clique covers is α-unbalanced, then $\lambda<\lim _{n \rightarrow \infty} \mathbb{E}(X)$. If all of the critical clique covers are α-balanced, then $\lambda=\lim _{n \rightarrow \infty} \mathbb{E}(X)$
any of the critical clique covers are α-balanced, but not strictly -balanced, then we should not have Poisson convergence.

Work in progress

\approx Theorem

Suppose at least one of the critical clique covers of H_{0} is strictly α-balanced and all of them are either strictly α-balanced or α-unbalanced. If $p \sim c n^{-\eta_{0}}\left(H_{0}\right)$, then X converges to a Poisson distributed random variable with parameter λ. If at least one of the critical clique covers is α-unbalanced, then $\lambda<\lim _{n \rightarrow \infty} \mathbb{E}(X)$. If all of the critical clique covers are α-balanced, then $\lambda=\lim _{n \rightarrow \infty} \mathbb{E}(X)$

What we think is true, but might not be able to show yet

If any of the critical clique covers are α-balanced, but not strictly α-balanced, then we should not have Poisson convergence.

Stein's Method

We use the following well known theorem for approximating distributions by Poisson distributions.
Define the total variation distance between two integer-valued random variables by

$$
d_{\mathrm{TV}}(X, Y)=\frac{1}{2} \sum_{i=0}^{\infty}|\operatorname{Pr}\{X=i\}-\operatorname{Pr}\{Y=i\}| .
$$

Given a set of indices Γ and indicator variables $I_{\alpha}, \alpha \in \Gamma$, let $X=\sum_{\alpha \in \Gamma} I_{\alpha}$ and $Y \sim \operatorname{Poisson}(\lambda)$, where $\lambda=\mathbb{E}(X)$.
A dependency graph L with vertices Γ is such that if $\{\alpha, \beta\}$ is not an edge in L, then I_{α} and I_{β} are independent.

Stein's Method

Then,

Theorem (Janson, Rucinski, T. Łuczak)

$$
d_{T V}(X, Y) \leq \min \left(\lambda^{-1}, 1\right)\left(\sum_{\alpha \in V(L)} \pi_{\alpha}^{2}+\sum_{\{\alpha, \beta\} \in E(L)}\left(\pi_{\alpha} \pi_{\beta}+\mathbb{E}\left(I_{\alpha} I_{\beta}\right)\right)\right.
$$

Our index set is $\Gamma=\left\{\left(H_{i}, \mathbf{C}\right)\right\}$ where H_{i} is an isomorphic copy of H_{0} and \mathbf{C} is a clique cover of H_{i}. There is an edge in the dependency graph between $\left(H_{i}, \mathbf{C}\right)$ and $\left(H_{j}, \mathbf{C}^{*}\right)$ if and only if H_{i} and H_{j} have vertices in common. $I_{\left(H_{i}, \mathbf{C}\right)}$ is the indicator random variable that \mathbf{C} induces H_{i}.

Application of Stein's Method

For $\{\alpha, \beta\} \in E(L)$, it is enough to show that

$$
\mathbb{E}\left(I_{\left(H_{i}, \mathbf{C}\right)} I_{\left(H_{j}, \mathbf{C}^{*}\right)}\right)=O(1) \mathbb{E}\left(I_{\left(H_{i}, \mathbf{C}\right)}\right) \mathbb{E}\left(I_{\left(H_{j}, \mathbf{C}^{*}\right)}\right) \frac{n^{\left|V\left(H_{i}\right) \cap V\left(H_{j}\right)\right|}}{\omega\left(H_{i}, \mathbf{C}\right)}
$$

where

$$
\omega\left(H_{i}, \mathbf{C}\right)=\min _{\emptyset \subsetneq S \subseteq V\left(H_{i}\right)} \psi\left(H_{i}, \mathbf{C}\right)
$$

THANK YOU

