Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Truemper configurations

Nicolas Trotignon — CNRS — LIP ENS de Lyon

Graph Theory and Interactions — Durham Symposium July 2013

Outline

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Introduction

2 Excluding Truemper configurations

3

Graph searches and Truemper configurations

◆□ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Truemper configurations

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

The following graphs are called Truemper configurations

• Theta:

• Wheel:

For more about them: see the survey of Vušković.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Original motivation

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Theorem (Truemper, 1982)

Let β be a $\{0,1\}$ vector whose entries are in one-to-one correspondence with the chordless cycles of a graph G. Then there exists a subset F of the edge set of G such that $|F \cap C| \equiv \beta_C \pmod{2}$ for all chordless cycles C of G, if and only if every induced subgraph G' of G that is a Truemper configuration or K_4 there exists a subset F' of the edge set of G' such that $|F' \cap C| \equiv \beta_C \pmod{2}$, for all chordless cycles Cof G'.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Our motivation

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations We are interested in Truemper configurations as **induced subgraphs** of graphs that we study.

Something classical:

- consider a class of graphs where some Truemper configurations are excluded
- to study a generic graph G from the class, suppose that it contains a Truemper configuration H that is authorized
- prove that G \ H must attach to H in a very specifc way, so that if H is present, we "understand" the graph.
- continue the study for graphs where *H* is excluded.

Five classical classes

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

- Even-hole-free graphs (Conforti, Cornuéjols, Kapoor and Vušković 2002)
- Perfect graphs (Chudnovsky, Robertson, Seymour and Thomas 2002)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

- Claw-free graphs (Chudnovsky and Seymour 2005)
- ISK4-free graphs (Lévêque, Maffray and NT 2012)
- Bull-free graphs (Chudnovsky 2012)

Detecting Truemper configurations

Truemper configurations

Introduction

• Pyramid $\langle \cdots \rangle$ Polynomial, $O(n^9)$, Chudnovsky and Seymour, 2002

NP-complete, Maffray, NT, 2003 Follows from a construction

of Bienstock

Polynomial, $O(n^{11})$, Chudnovsky and Seymour, 2006

NP-complete. Diot, Tavenas and Trotignon, 2013

Outline

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations Introduction

2 Excluding Truemper configurations

Graph searches and Truemper configurations

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Our project

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations Studying the $2^4 = 16$ classes of graphs obtained by excluding Truemper configurations.

(日)

Example : graphs with no prism and no theta, ...

Our project

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations Studying the $2^4 = 16$ classes of graphs obtained by excluding Truemper configurations.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Example : graphs with no prism and no theta,

Good news: here 16=15.

Universally signable graphs (1)

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations A graph is **universally signable** if it contains no Truemper configuration ($\langle \cdot , \cdot \rangle$). Examples of such graphs:

- cliques
- chordless cycles
- any graph obtained by gluing two previoulsy built graphs along a clique

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Universally signable graphs (1)

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations A graph is **universally signable** if it contains no Truemper configuration ($\langle - \rangle \rangle$). Examples of such graphs:

- cliques
- chordless cycles
- any graph obtained by gluing two previoulsy built graphs along a clique

Theorem (Conforti, Cornuéjols, Kapoor and Vušković 1999)

If G is universally signable then G is a clique or G is a chordless cycle, or G has a clique cutset.

Universally signable graphs (2)

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations Universally signable graphs: no $\langle - \langle - \rangle \rangle$

Theorem (Conforti, Cornuéjols, Kapoor and Vušković 1999)

If G is universally signable then G is a clique or G is a chordless cycle, or G has a clique cutset.

Consequences and open questions:

- Many algorithms (recognition in time O(nm), colouring, max stable set, ...)
- A nice property: every universally signable graph has a simplicial extreme (= vertex of degree 2 or whose neighbourhood is a clique).
- Question: recognition in linear time ?

"Only-prism" graphs

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations A graph is **only prism** if it contains no pyramid , no theta and no wheel . So, the prism is the only allowed Truemper configuration.

Theorem (Diot, Radovanović, NT and Vušković 2013)

If a graph G is only-prism, then G is the line graph of a triangle-free chodless graph, or G has a clique cutset.

A **chodless** graph is a graph such that every cycle is chordless. The theorem is reversible: any graph obtained by repeatedly gluing line graphs of a triangle-free chodless graphs along cliques is in the class.

Theta-free graphs (1)

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations Theta:

No structural description of theta-free graphs is known so far. But:

Theorem (Chudnovsky and Seymour 2005)

There exits an $O(n^{11})$ -time algorithm that decides whether a graph is theta-free.

- Can one be faster?
- Is there a polytime algorithm for computing a max stable set in theta-free graphs?

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Theta-free graphs (2)

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Theorem (Kühn and Osthus 2004)

There exists a function f such that every theta-free graph G satisfies $\chi(G) \leq f(\omega(G))$.

• the existence of f in the theorem above is non-trivial, for many classes of graphs there is no such f.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

• could the function *f* in the theorem above be a polynomial? A quadratic function?

Theta-free graphs (2)

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Theorem (Kühn and Osthus 2004)

There exists a function f such that every theta-free graph G satisfies $\chi(G) \leq f(\omega(G))$.

- the existence of f in the theorem above is non-trivial, for many classes of graphs there is no such f.
- could the function *f* in the theorem above be a polynomial? A quadratic function?

Theorem (Radovanović and Vušković 2010)

If f^* be the smallest possible function in the theorem above, then $f^*(2) = 3$. Rephrased: every {theta, triangle}-free graph is 3-colourable.

Wheel-free graphs

Truemper configurations

Excluding Truemper configurations

Little is known about wheel-free graphs. Wheel: $\langle \rangle$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

- A structural description is unlikely, because deciding whether a graph contains a wheel is NP-complete.
- Does there exist a function f such that every wheel-free graph G satisfies $\chi(G) \leq f(\omega(G))$?

Wheel-free graphs

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations Little is known about wheel-free graphs.

▲日▼▲□▼▲田▼▲田▼ ヨークタマ

- A structural description is unlikely, because deciding whether a graph contains a wheel is NP-complete.
- Does there exist a function f such that every wheel-free graph G satisfies χ(G) ≤ f(ω(G))?

Theorem (Chudnovsky 2012)

If G is a wheel-free graph, then G contains a multisimplicial vertex (= a vertex whose neighborhood is a disjoint union of cliques).

Outline

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

- LexBFS is a variant on BFS introduced by Rose, Tarjan and Lueker in 1976.
- LexBFS is a linear time algorithm whose input is any graph and whose output is a linear ordering of the vertices.

Theorem (Brandstädt, Dragan and Nicolai 1997)

An ordering \prec of the vertices of a graph G is a LexBFS ordering if and only if it satisfies the following property: for all $a, b, c \in V$ such that $c \prec b \prec a$, $ca \in E$ and $cb \notin E$, there exists a vertex d in G such that $d \prec c$, $db \in E$ and $da \notin E$.

A property of LexBFS

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Notation: $N[x] = N(x) \cup \{x\}.$

Theorem (Berry and Bordat 2000)

If a graph G is not a clique and z is the last vertex of a LexBFS ordering of G, then there exists a connected component C of $G \setminus N[z]$ such that for every neighbor x of z, either N[x] = N[z], or $N(x) \cap C \neq \emptyset$.

Definition

Let \mathcal{F} be a set of graphs. A graph G is locally \mathcal{F} -decomposable if for every vertex v of G, every $F \in \mathcal{F}$ contained in N(v) and every connected component C of $G \setminus N[v]$, there exists $y \in V(F)$ such that y has non-neighbors in both F and C.

Our main result

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Theorem (Aboulker, Charbit, NT and Vušković 2012)

Suppose that \mathcal{F} is a set of non-clique graphs, G is a locally \mathcal{F} -decomposable graph, and v is the last vertex in a LexBFS ordering of G. Then N(v) is \mathcal{F} -free.

(日)

Our main result

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Theorem (Aboulker, Charbit, NT and Vušković 2012)

Suppose that \mathcal{F} is a set of non-clique graphs, G is a locally \mathcal{F} -decomposable graph, and v is the last vertex in a LexBFS ordering of G. Then N(v) is \mathcal{F} -free.

Example: if $\mathcal{F} = \{ c \}$, then **chordal** (=hole-free) graphs are precisely the locally \mathcal{F} -decomposable graphs. It follows:

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Our main result

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Theorem (Aboulker, Charbit, NT and Vušković 2012)

Suppose that \mathcal{F} is a set of non-clique graphs, G is a locally \mathcal{F} -decomposable graph, and v is the last vertex in a LexBFS ordering of G. Then N(v) is \mathcal{F} -free.

Example: if $\mathcal{F} = \{ c \}$, then **chordal** (=hole-free) graphs are precisely the locally \mathcal{F} -decomposable graphs. It follows:

Theorem (Rose, Tarjan and Lueker 1976)

If G is chordal graph, then the last vertex in a LexBFS-order of G is simplicial (=its neighborhood is a clique).

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Application 1: square-free perfect graphs

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Partenoff, Roussel, Rusu, 1999

• $\mathcal{F}: \phi'$

• Graph G : a perfect graph with no \triangleleft

An elimination ordering, vertices whose neighourhood is chordal

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

• Consequence: maximum clique in time O(nm)

Application 1: square-free perfect graphs

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Partenoff, Roussel, Rusu, 1999

• $\mathcal{F}: \phi'$

• Graph G : a perfect graph with no \triangleleft

• An elimination ordering, vertices whose neighourhood is chordal

Sac

• Consequence: maximum clique in time O(nm)

Question: what about perfect graphs in general ?

Application 1: square-free perfect graphs

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Partenoff, Roussel, Rusu, 1999

• $\mathcal{F}: \phi'$

• Graph G : a perfect graph with no \prec

• An elimination ordering, vertices whose neighourhood is chordal

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

• Consequence: maximum clique in time O(nm)

Question: what about perfect graphs in general ? Fails because of replication.

Application 2: a more general class of perfect graphs

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

- Maffray, NT, Vušković, 2008
 - Graph G : a perfect graph with no $\sqrt{-\infty}$
 - *F* :
 - An elimination ordering, vertices whose neighourhood is long-hole-free

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

• Consequence: maximum clique in time $O(n^7)$

Application 3: even-hole-free graphs

Truemper configurations

Introduction

- Excluding Truemper configurations
- Graph searches and Truemper configurations

da Silva, Vušković, 2007

- Graph G: even-hole-free
- F:
- An elimination ordering: a vertex whose neighborhood is chordal

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

• Consequence: maximum clique in time O(nm)

Application 3: even-hole-free graphs

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations da Silva, Vušković, 2007

- Graph G: even-hole-free
- F:
- An elimination ordering: a vertex whose neighborhood is chordal

• Consequence: maximum clique in time O(nm)

Question: Adario-Berry, Chudnovsky, Havet, Reed, Seymour's theorem: every even-hole-free graph admits a bisimplicial vertex Proof with some graph searching method?

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Application 4: wheel-free graphs

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations Aboulker, Charbit, NT, Vušković, 2012

- G: a graph with no
- *F*: •—••
- An elimination ordering: a vertex whose neighbouhood is multisimplicial

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

• Consequence: maximum clique in time O(nm)

Application 5: universally signable graphs

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations Aboulker, Charbit, Chudnovsky, NT, Vušković, 2012

• *F*: ° ^ °

• An elimination ordering: a vertex of degree 2 or simplicial

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Consequence: colouring in linear time.

Application 6: when \mathcal{F} is finite

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

- Provided that \mathcal{F} is finite, it seems that the description of locally \mathcal{F} -decomposable graphs is quite automatic.
- \bullet In the next slide, all possible sets ${\cal F}$ of non-clique graphs on three vertices are studied.
- Interestingly, for every set \mathcal{F} , the class of locally \mathcal{F} -decomposable graphs is defined by exluding some Truemper configurations.
- If \mathcal{F} contains graphs on at least 4 vertices, such a behavior disappears.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

(1-wheel, theta, pyramid)-free	$\left\{\begin{smallmatrix}\circ&\\\circ&\\\circ&\circ\end{smallmatrix}\right\}$	no stable set of size 3
3-wheel-free	{ \ }	disjoint union of cliques
(2-wheel, prism, pyramid)-free	{° }	complete multipartite
(1-wheel, 3-wheel, theta, pyramid)-free	{°°, ^^ }	disjoint union of at most two cliques
(1-wheel, 2-wheel, prism, theta, pyramid)-free	{°°°} °°°, ∞−−°	stable sets of size at most 2 with all possible edges between them
(2-wheel, 3-wheel, prism, pyramid)-free	{ ^, _ ~ }	clique or stable set
(wheel, prism, theta, pyramid)-free	$\left\{\begin{smallmatrix}\circ&&&\circ\\&&&c\\\bullet&&c\\\end{smallmatrix},\begin{smallmatrix}&&&&\\&&&c\\\end{smallmatrix},\begin{smallmatrix}&&&&\\&&&&\\&&&&\\\end{smallmatrix}\right\}$	clique or stable set of size 2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Thanks

Truemper configurations

Introduction

Excluding Truemper configurations

Graph searches and Truemper configurations

Thanks for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで