Truemper configurations

Nicolas Trotignon - CNRS — LIP ENS de Lyon

Graph Theory and Interactions - Durham Symposium
July 2013

Outline

Truemper configurations

(1) Introduction

2 Excluding Truemper configurations

(3) Graph searches and Truemper configurations

Truemper configurations

Truemper configurations

Introduction

Excluding
Truemper configurations

Graph searches and

The following graphs are called Truemper configurations

- Pyramid:
- Prism:

- Theta:

- Wheel:

For more about them: see the survey of Vušković.

Original motivation

Let β be a $\{0,1\}$ vector whose entries are in one-to-one correspondence with the chordless cycles of a graph G. Then there exists a subset F of the edge set of G such that $|F \cap C| \equiv \beta_{C}(\bmod 2)$ for all chordless cycles C of G, if and only if every induced subgraph G^{\prime} of G that is a Truemper configuration or K_{4} there exists a subset F^{\prime} of the edge set of G^{\prime} such that $\left|F^{\prime} \cap C\right| \equiv \beta_{C}(\bmod 2)$, for all chordless cycles C of G^{\prime}.

Our motivation

We are interested in Truemper configurations as induced subgraphs of graphs that we study.

Something classical:

- consider a class of graphs where some Truemper configurations are excluded
- to study a generic graph G from the class, suppose that it contains a Truemper configuration H that is authorized
- prove that $G \backslash H$ must attach to H in a very specifc way, so that if H is present, we "understand" the graph.
- continue the study for graphs where H is excluded.

Five classical classes

Truemper configurations

- Even-hole-free graphs (Conforti, Cornuéjols, Kapoor and Vušković 2002)
- Perfect graphs (Chudnovsky, Robertson, Seymour and Thomas 2002)
- Claw-free graphs (Chudnovsky and Seymour 2005)
- ISK4-free graphs (Lévêque, Maffray and NT 2012)
- Bull-free graphs (Chudnovsky 2012)

Detecting Truemper configurations

- Pyramid

Polynomial, $O\left(n^{9}\right)$,
Chudnovsky and Seymour, 2002

- Prism

- Theta

- Wheel $\stackrel{a}{\text { a }}$

NP-complete,
Maffray, NT, 2003
Follows from a construction of Bienstock

Polynomial, $O\left(n^{11}\right)$,
Chudnovsky and Seymour, 2006

NP-complete,
Diot, Tavenas and Trotignon, 2013

Outline

Truemper configurations

Excluding
Truemper configurations

Graph

 searches and Truemper configurations
(1) Introduction

(2) Excluding Truemper configurations

(3) Graph searches and Truemper configurations

Our project

Truemper configurations

Example: graphs with no prism and no theta, ...

Our project

Truemper configurations

Example: graphs with no prism and no theta, ...

Good news: here $16=15$.

Universally signable graphs (1)

Truemper configurations

A graph is universally signable if it contains no Truemper configuration (Examples of such graphs:

- cliques
- chordless cycles
- any graph obtained by gluing two previoulsy built graphs along a clique

Universally signable graphs (1)

Truemper

Truemper configurations

A graph is universally signable if it contains no Truemper configuration (
Examples of such graphs:

- cliques
- chordless cycles
- any graph obtained by gluing two previoulsy built graphs along a clique

Theorem (Conforti, Cornuéjols, Kapoor and Vušković 1999) If G is universally signable then G is a clique or G is a chordless cycle, or G has a clique cutset.

Universally signable graphs (2)

Consequences and open questions:

- Many algorithms (recognition in time $O(n m)$, colouring, max stable set, ...)
- A nice property: every universally signable graph has a simplicial extreme ($=$ vertex of degree 2 or whose neighbourhood is a clique).
- Question: recognition in linear time ?

"Only-prism" graphs

If a graph G is only-prism, then G is the line graph of a triangle-free chodless graph, or G has a clique cutset.

A chodless graph is a graph such that every cycle is chordless. The theorem is reversible: any graph obtained by repeatedly gluing line graphs of a triangle-free chodless graphs along cliques is in the class.

Theta-free graphs (1)

Theta:

No structural description of theta-free graphs is known so far. But:

Theorem (Chudnovsky and Seymour 2005)

There exits an $O\left(n^{11}\right)$-time algorithm that decides whether a graph is theta-free.

- Can one be faster?
- Is there a polytime algorithm for computing a max stable set in theta-free graphs?

Theta-free graphs (2)

Truemper configurations

Theta:

Theorem (Kühn and Osthus 2004)

There exists a function f such that every theta-free graph G satisfies $\chi(G) \leq f(\omega(G))$.

- the existence of f in the theorem above is non-trivial, for many classes of graphs there is no such f.
- could the function f in the theorem above be a polynomial? A quadratic function?

Theta-free graphs (2)

Truemper configurations

Theta:

Theorem (Kühn and Osthus 2004)

There exists a function f such that every theta-free graph G satisfies $\chi(G) \leq f(\omega(G))$.

- the existence of f in the theorem above is non-trivial, for many classes of graphs there is no such f.
- could the function f in the theorem above be a polynomial? A quadratic function?

Theorem (Radovanović and Vušković 2010)
If f^{*} be the smallest possible function in the theorem above, then $f^{*}(2)=3$. Rephrased: every $\{$ theta, triangle $\}$-free graph is 3-colourable.

Wheel-free graphs

Truemper configurations

Little is known about wheel-free graphs.

- A structural description is unlikely, because deciding whether a graph contains a wheel is NP-complete.
- Does there exist a function f such that every wheel-free graph G satisfies $\chi(G) \leq f(\omega(G))$?

Wheel-free graphs

Little is known about wheel-free graphs. Wheel:

- A structural description is unlikely, because deciding whether a graph contains a wheel is NP-complete.
- Does there exist a function f such that every wheel-free graph G satisfies $\chi(G) \leq f(\omega(G))$?

Theorem (Chudnovsky 2012)

If G is a wheel-free graph, then G contains a multisimplicial vertex ($=$ a vertex whose neighborhood is a disjoint union of cliques).

Outline

Truemper configurations

Introduction

Excluding
Truemper
configurations
Graph
searches and Truemper configurations

(1) Introduction

(2) Excluding Truemper configurations
(3) Graph searches and Truemper configurations

LexBFS

- LexBFS is a variant on BFS introduced by Rose, Tarjan and Lueker in 1976.
- LexBFS is a linear time algorithm whose input is any graph and whose output is a linear ordering of the vertices.

Theorem (Brandstädt, Dragan and Nicolai 1997)

An ordering \prec of the vertices of a graph G is a LexBFS ordering if and only if it satisfies the following property: for all $a, b, c \in V$ such that $c \prec b \prec a, c a \in E$ and $c b \notin E$, there exists a vertex d in G such that $d \prec c, d b \in E$ and da $\notin E$.

A property of LexBFS

Truemper configurations

Notation: $N[x]=N(x) \cup\{x\}$.

Theorem (Berry and Bordat 2000)

If a graph G is not a clique and z is the last vertex of a LexBFS ordering of G, then there exists a connected component C of $G \backslash N[z]$ such that for every neighbor x of z, either $N[x]=N[z]$, or $N(x) \cap C \neq \emptyset$.

Definition

Let \mathcal{F} be a set of graphs. A graph G is locally \mathcal{F}-decomposable if for every vertex v of G, every $F \in \mathcal{F}$ contained in $N(v)$ and every connected component C of $G \backslash N[v]$, there exists $y \in V(F)$ such that y has non-neighbors in both F and C.

Our main result

Truemper configurations

Theorem (Aboulker, Charbit, NT and Vušković 2012)
Suppose that \mathcal{F} is a set of non-clique graphs, G is a locally \mathcal{F}-decomposable graph, and v is the last vertex in a LexBFS ordering of G. Then $N(v)$ is \mathcal{F}-free.

Our main result

Truemper configurations

Theorem (Aboulker, Charbit, NT and Vušković 2012)
Suppose that \mathcal{F} is a set of non-clique graphs, G is a locally \mathcal{F}-decomposable graph, and v is the last vertex in a LexBFS ordering of G. Then $N(v)$ is \mathcal{F}-free.

Example: if $\mathcal{F}=\left\{\begin{array}{l}{ }^{\circ} \\ 0\end{array}\right\}$, then chordal ($=$ hole-free) graphs are precisely the locally \mathcal{F}-decomposable graphs. It follows:

Our main result

Theorem (Aboulker, Charbit, NT and Vušković 2012)
Suppose that \mathcal{F} is a set of non-clique graphs, G is a locally \mathcal{F}-decomposable graph, and v is the last vertex in a LexBFS ordering of G. Then $N(v)$ is \mathcal{F}-free.

Example: if $\mathcal{F}=\left\{{ }^{\circ}\right\}$, then chordal ($=$ hole-free) graphs are precisely the locally \mathcal{F}-decomposable graphs. It follows:

Theorem (Rose, Tarjan and Lueker 1976)
If G is chordal graph, then the last vertex in a LexBFS-order of G is simplicial (=its neighborhood is a clique).

Application 1: square-free perfect graphs

Truemper configurations

Partenoff, Roussel, Rusu, 1999

- Graph G : a perfect graph with no

- An elimination ordering, vertices whose neighourhood is chordal
- Consequence: maximum clique in time $O(n m)$

Application 1: square-free perfect graphs

Partenoff, Roussel, Rusu, 1999

- Graph G : a perfect graph with no

- An elimination ordering, vertices whose neighourhood is chordal
- Consequence: maximum clique in time $O(n m)$

Question: what about perfect graphs in general ?

Application 1: square-free perfect graphs

Partenoff, Roussel, Rusu, 1999

- Graph G : a perfect graph with no

- An elimination ordering, vertices whose neighourhood is chordal
- Consequence: maximum clique in time $O(n m)$

Question: what about perfect graphs in general ? Fails because of replication.

Application 2: a more general class of perfect graphs

Maffray, NT, Vušković, 2008

- Graph G : a perfect graph with no

- \mathcal{F} :

- An elimination ordering, vertices whose neighourhood is long-hole-free
- Consequence: maximum clique in time $O\left(n^{7}\right)$

Application 3: even-hole-free graphs

Truemper configurations
da Silva, Vušković, 2007

- Graph G: even-hole-free
- \mathcal{F} :

- An elimination ordering: a vertex whose neighborhood is chordal
- Consequence: maximum clique in time $O(n m)$

Application 3: even-hole-free graphs

da Silva, Vušković, 2007

- Graph G: even-hole-free
- \mathcal{F} :

- An elimination ordering: a vertex whose neighborhood is chordal
- Consequence: maximum clique in time $O(n m)$

Question: Adario-Berry, Chudnovsky, Havet, Reed, Seymour's theorem: every even-hole-free graph admits a bisimplicial vertex Proof with some graph searching method?

Application 4: wheel-free graphs

Truemper configurations

Aboulker, Charbit, NT, Vušković, 2012

- G: a graph with no

- $\mathcal{F}: ~ ○ —$
- An elimination ordering: a vertex whose neighbouhood is multisimplicial
- Consequence: maximum clique in time $O(n m)$

Application 5: universally signable graphs

Truemper configurations

Aboulker, Charbit, Chudnovsky, NT, Vušković, 2012

- Graphs with no

- \mathcal{F} :
 ${ }^{\circ}$
- An elimination ordering: a vertex of degree 2 or simplicial
- Consequence: colouring in linear time.

Application 6: when \mathcal{F} is finite

- Provided that \mathcal{F} is finite, it seems that the description of locally \mathcal{F}-decomposable graphs is quite automatic.
- In the next slide, all possible sets \mathcal{F} of non-clique graphs on three vertices are studied.
- Interestingly, for every set \mathcal{F}, the class of locally \mathcal{F}-decomposable graphs is defined by exluding some Truemper configurations.
- If \mathcal{F} contains graphs on at least 4 vertices, such a behavior disappears.
(1-wheel, theta, pyramid)-free

3-wheel-free
(2-wheel, prism, pyramid)-free
(1-wheel, 3-wheel, theta, pyramid)-free

disjoint union of at most two
cliques

complete multipartite
disjoint union of cliques
-
(1-wheel, 2-wheel, prism, theta, pyramid)-free

no stable set of size 3
stable sets of size at most 2 with all possible edges between them
clique or stable set
(wheel, prism, theta, pyramid)-free
$\left\{\begin{array}{c}0,0,0 \\ 0,0\end{array}\right\}$
clique or stable set of size 2

Thanks

Truemper configurations

Introduction

Excluding

Truemper
configurations
Graph
searches and
Truemper
configurations

Thanks for your attention.

