Median Eigenvalues of Subcubic Graphs

Bojan Mohar

Simon Fraser University & IMFM

July 2013

B. Mohar Median E

Graph eigenvalues

G graph vertex-set V = V(G), edge-set E = E(G), n = |V|

Adjacency matrix: $A = A(G) = (a_{uv})_{u,v \in V}$

where $a_{uv} = 1$ if $u \sim v$ and $a_{uv} = 0$ if $u \not\sim v$.

Graph eigenvalues

G graph vertex-set V = V(G), edge-set E = E(G), n = |V|

Adjacency matrix: $A = A(G) = (a_{uv})_{u,v \in V}$

where $a_{uv} = 1$ if $u \sim v$ and $a_{uv} = 0$ if $u \not\sim v$.

Eigenvalue of G: eigenvalue of A = A(G); $Ax = \lambda x$ ($x \neq 0$)

All eigenvalues are real

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$

and
$$\sum_{i=1}^{n} \lambda_i = 0$$
 (since $tr(A) = 0$).

Examples

Characteristic equation: $Ax = \lambda x$

For each vertex v:

$$\sum_{uv\in E} x_u = \lambda x_v$$

Overview of some applications

- Application 1: Google Page Rank
- Application 2: Expanders
- Application 3: Lovász θ-function
- Application 4: Hückel Theory
- Application 5: Wigner's Semi-Circle Law (random graphs)

Summary

Hückel theory (simplified Schrödinger equation for wave fn of π -electrons) $\mathcal{E}_1, \mathcal{E}_2, \dots \mathcal{E}_n$ energy levels of π -electrons $\mathcal{E}_i = a\lambda_i + b$ $\lambda_1 \ge \lambda_2 > \dots \ge \lambda_n$ eigenvalues of $\mathbf{1}$ Eigenvectors correspond to molecular orbitals (MO).

HOMO - LUMO

Pauli principle: 2 T-electrons per energy level

 λ_{N_2} Highest Occupied Mo (HOMO) λ_{N_2+1} Lowest Unoccupied Ho (LUMO)

Hückel theory

Hückel Theory: Eigenvalues of a molecular graph correspond to energy levels of electrons (two electrons per each energy level), and eigenvectors give descriptions of molecular orbitals.

Fowler & Pisanski (2010):

HL-index:
$$R(G) = \max\{|\lambda_H|, |\lambda_L|\}$$

where $H = \lfloor \frac{n+1}{2} \rfloor$ and $L = \lceil \frac{n+1}{2} \rceil$.

Question: What is the largest value of R(G) taken over all "chemically relevant graphs"?

Median eigenvalues of subcubic graphs

Subcubic graph: maximum degree ≤ 3

Theorem (M. 2012) *G* subcubic
$$\Rightarrow$$
 $R(G) \le \sqrt{2}$

Proof by combinatorial techniques and interlacing.

Median eigenvalues of subcubic graphs

Subcubic graph: maximum degree ≤ 3

Theorem (M. 2012) *G* subcubic
$$\Rightarrow$$
 $R(G) \le \sqrt{2}$

Proof by combinatorial techniques and interlacing.

Heawood graph attains the maximum value, $R(H) = \sqrt{2}$.

Median eigenvalues of subcubic graphs

Subcubic graph: maximum degree ≤ 3

Theorem (M. 2012) *G* subcubic
$$\Rightarrow$$
 $R(G) \le \sqrt{2}$

Proof by combinatorial techniques and interlacing.

Heawood graph attains the maximum value, $R(H) = \sqrt{2}$.

Question: Is Heawood graph chemically realizable as a pure carbon molecule (toroidal fullerene)?

B. Mohar

Planar graphs

Theorem (M. 2012) G subcubic planar bipartite $\Rightarrow |R(G) \leq 1|$

Conjecture. *G* subcubic planar \Rightarrow $R(G) \le 1$

Many graphs attain this value (3-cube, C_6 , K_2)

Eigenvalue Interlacing Theorem
Theorem:
$$A \leq V(G)$$
, $|A| = k$, $l \leq i \leq n - k$
 $\lambda_{ink}(G) \leq \lambda_i(G - A) \leq \lambda_i(G)$

If
$$|A| < \frac{n}{2}$$
, then $\lambda_{n/2}(G) \le \lambda_i(G-A)$
 $\lambda_i(G-A) = \lambda_i(SSS) \le i$

Bad news

Proof by interlacing with additional tweak

Theorem (M. 2012) G subcubic planar bipartite $\Rightarrow | R(G) \leq 1 |$

(c)

Why only planar graphs?

Why only planar graphs?

Theorem (M. 2013) G (connected) subcubic bipartite and not isomorphic to Heawood $\Rightarrow R(G) \le 1$

Theorem (M. 2013) $\exists c > 0: \forall G$ connected subcubic bipartite and not isomorphic to Heawood \Rightarrow

G has $\lceil cn
ceil$ median eigenvalues in [-1,1]

Main Lemma

G bipartite, (A, B) bipartition of V(G)

Increasing imbalance of (A, B): $C \subset A$ move to B, obtaining smaller set A' for which we can use $\lambda_{|A|}(G - A')$ in the interlacing theorem.

Theorem: $\forall G$ connected subcubic bipartite and not isomorphic to Heawood, then $\forall v \in V(G) \Rightarrow B_{17}(v)$ contains a subset C that either increases imbalance of (A, B)or of (B, A)

Some open questions

- ▶ Is $R(d) = \sqrt{d}$ or $R(d) = \sqrt{d-1}$ or some value strictly between these.
- ▶ Is $R(d) = \widehat{R}(d)$ for every integer $d \ge 0$?
- If G is a subcubic graph of odd order, what is the maximum value of $|I_{H-1}|$ and $|\lambda_{H+1}|$? Examples of C_3 and C_5 show that $|\lambda_{H-1}|$ can be as large as 2 and λ_{H+1} can be as small as $-2\cos\frac{4\pi}{5} \approx -1.618$. However, there are only finitely many examples for which either $|\lambda_{H-1}| > \sqrt{2}$ or $|\lambda_{H+1}| > \sqrt{2}$.
- The proof of our theorem suggests that extremal graphs (e.g. those having maximum HL-index among *d*-regular graphs) must be close to be strongly regular. A similar property holds for graphs with maximum energy (Koolen-Moulton, Haemers). However, the graphs that are energy-extremal are not extremal for the HL-index. It remains an open problem to determine extremal examples for the HL-index.

Can we go any further?

Examples: Graph Fractals

Fractal-like constructions of cubic graphs give rise to examples with eigenvalues:

median eigenvalue 0 but no eigenvalues in the intervals $(0, \varphi - \varepsilon)$ or $(1 - \varphi + \varepsilon, 0)$ where $\varphi \approx 1.618$ is the golden ratio.