Proof of the 1-factorization and Hamilton decomposition conjectures

Béla Csaba (Szeged), Daniela Kühn (Birmingham), Deryk Osthus (Birmingham) and Andrew Treglown (QMUL)

A 1-factorization of a graph G is a decomposition into edge-disjoint perfect matchings.

If G contains a 1 -factorization, then $|G|$ is even and G is D-regular.
$\Rightarrow \chi^{\prime}(G)=D$.

A 1-factorization of a graph G is a decomposition into edge-disjoint perfect matchings.

If G contains a 1 -factorization, then $|G|$ is even and G is D-regular. $\Rightarrow \chi^{\prime}(G)=D$.

Question

Does every D-regular graph G with $|G|=n$ even and $D \geq n / 2$ contain a 1-factorization?

1-factorization conjecture

1-factorization conjecture (Chetwynd and Hilton 1985, Dirac 1950s)
Every D-regular graph G with $|G|=n$ even and

$$
D \geq \begin{cases}n / 2-1 & \text { if } n=0(\bmod 4) \\ n / 2 & \text { if } n=2(\bmod 4)\end{cases}
$$

contains a 1-factorization. Equivalently, $\chi^{\prime}(G)=D$.

1-factorization conjecture

1-factorization conjecture (Chetwynd and Hilton 1985, Dirac 1950s)
Every D-regular graph G with $|G|=n$ even and

$$
D \geq \begin{cases}n / 2-1 & \text { if } n=0(\bmod 4) \\ n / 2 & \text { if } n=2(\bmod 4)\end{cases}
$$

contains a 1-factorization. Equivalently, $\chi^{\prime}(G)=D$.
The bound is best possible.
"An odd component contains no perfect matching."

1-factorization conjecture

1-factorization conjecture (Chetwynd and Hilton 1985, Dirac 1950s)

Every D-regular graph G with $|G|=n$ even and

$$
D \geq \begin{cases}n / 2-1 & \text { if } n=0(\bmod 4) \\ n / 2 & \text { if } n=2(\bmod 4)\end{cases}
$$

contains a 1-factorization. Equivalently, $\chi^{\prime}(G)=D$.
The bound is best possible.
"An odd component contains no perfect matching."

Same bound for the existence of a single perfect matching in D-regular graphs.

1-factorization conjecture

1-factorization conjecture (Chetwynd and Hilton 1985, Dirac 1950s)
Every D-regular graph G with $|G|=n$ even and

$$
D \geq \begin{cases}n / 2-1 & \text { if } n=0(\bmod 4) \\ n / 2 & \text { if } n=2(\bmod 4)\end{cases}
$$

contains a 1-factorization. Equivalently, $\chi^{\prime}(G)=D$.
Some partial results:

- True for $D=n-1$, i.e. complete graphs.
- Chetwynd and Hilton (1989), and independently Niessen and Volkmann (1990), for $D \geq(\sqrt{7}-1) n / 2 \approx 0.82 n$.
- Perkovic and Reed (1997) for $D \geq(1 / 2+\varepsilon) n$ with $\varepsilon>0$.

1-factorization conjecture

1-factorization conjecture (Chetwynd and Hilton 1985, Dirac 1950s)

Every D-regular graph G with $|G|=n$ even and

$$
D \geq \begin{cases}n / 2-1 & \text { if } n=0(\bmod 4) \\ n / 2 & \text { if } n=2(\bmod 4)\end{cases}
$$

contains a 1-factorization. Equivalently, $\chi^{\prime}(G)=D$.
Some partial results:

- True for $D=n-1$, i.e. complete graphs.
- Chetwynd and Hilton (1989), and independently Niessen and Volkmann (1990), for $D \geq(\sqrt{7}-1) n / 2 \approx 0.82 n$.
- Perkovic and Reed (1997) for $D \geq(1 / 2+\varepsilon) n$ with $\varepsilon>0$.

Theorem (Csaba, Kühn, L, Osthus, Treglown 2013+ ${ }^{+}$

The 1 -factorization conjecture holds for large n.

Hamilton decomposition

A Hamilton decomposition of a graph G is a decomposition into edge-disjoint Hamilton cycles.

If G contains a Hamilton decomposition, then G is D-regular and D is even.

Hamilton decomposition

A Hamilton decomposition of a graph G is a decomposition into edge-disjoint Hamilton cycles.

If G contains a Hamilton decomposition, then G is D-regular and D is even.

Question

Does every D-regular graph on n vertices with $D \geq n / 2$ even contain a Hamilton decomposition?

Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)
Every D-regular graph on n vertices with $D \geq\lfloor n / 2\rfloor$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)
Every D-regular graph on n vertices with $D \geq\lfloor n / 2\rfloor$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

The bound is best possible.
"No disconnected graph contains a Hamilton cycle."

Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \geq\lfloor n / 2\rfloor$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

The bound is best possible.
"No disconnected graph contains a Hamilton cycle."

Same bound for the existence of a single Hamilton cycle in D-regular graphs.

Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \geq\lfloor n / 2\rfloor$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

The bound is best possible.
"No disconnected graph contains a Hamilton cycle."

Same bound for the existence of a single Hamilton cycle in D-regular graphs.

Observation

If n is even, then 'a Hamilton cycle = two perfect matchings'. Hamilton decomposition $\Rightarrow 1$-factorization.

Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \geq\lfloor n / 2\rfloor$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

The bound is best possible.
"No disconnected graph contains a Hamilton cycle."

Same bound for the existence of a single Hamilton cycle in D-regular graphs.

Observation

If n is even, then 'a Hamilton cycle = two perfect matchings'.
Hamilton decomposition $\Rightarrow 1$-factorization.
But Hamilton decomposition conjecture $\nRightarrow 1$-factorization conjecture.

Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \geq\lfloor n / 2\rfloor$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

Some partial results:

- Walecki (1890) K_{n} has a Hamilton decomposition.
- Nash-Williams (1969), $D \geq\lfloor n / 2\rfloor$ implies a Hamilton cycle.
- Jackson (1979), $D / 2-n / 6$ edge-disjoint Hamilton cycles
- Christofides, Kühn and Osthus (2012) if $D \geq n / 2+\varepsilon n$, then G contains $\left(1-\varepsilon^{\prime}\right) D / 2$ edge-disjoint Hamilton cycles
- Kühn and Osthus (2013) $D \geq n / 2+\varepsilon n$ implies Hamilton decomposition.

Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \geq\lfloor n / 2\rfloor$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

Some partial results:

- Walecki (1890) K_{n} has a Hamilton decomposition.
- Nash-Williams (1969), $D \geq\lfloor n / 2\rfloor$ implies a Hamilton cycle.
- Jackson (1979), $D / 2-n / 6$ edge-disjoint Hamilton cycles
- Christofides, Kühn and Osthus (2012) if $D \geq n / 2+\varepsilon n$, then G contains $\left(1-\varepsilon^{\prime}\right) D / 2$ edge-disjoint Hamilton cycles
- Kühn and Osthus (2013) $D \geq n / 2+\varepsilon n$ implies Hamilton decomposition.

Theorem (Csaba, Kühn, L, Osthus, Treglown 2013+ ${ }^{+}$
The Hamilton decomposition conjecture holds for large n.

Robust expander

Definition

Given $0<v<\tau<1$, we say that a graph G on n vertices is a robust (v, τ)-expander, if for all $S \subseteq V(G)$ with $\tau n \leq|S| \leq(1-\tau) n$ the number of vertices that have at least $v n$ neighbours in S is at least $|S|+v n$.

" G is still an expander after removing a sparse subgraph."

Robust expander

Definition

Given $0<v<\tau<1$, we say that a graph G on n vertices is a robust (v, τ)-expander, if for all $S \subseteq V(G)$ with $\tau n \leq|S| \leq(1-\tau) n$ the number of vertices that have at least $v n$ neighbours in S is at least $|S|+v n$.

"G is still an expander after removing a sparse subgraph."

Theorem (Kühn and Osthus 2013)

For $1 / n \ll v \ll \tau \ll \alpha$, every αn-regular robust (v, τ)-expander G on n vertices can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

Extremal structure

Structural Lemma

Let G be a D-regular graph with $|G|=n$ and $D \geq n / 2-1$. Then either
(i) G is a robust expander;
(ii) G is ε-close to complete bipartite graph $K_{n / 2, n / 2}$;
(iii) G is ε-close to union of two complete graphs $K_{n / 2}$.

(ii)

(iii)

G is ε-close to H if G can be transformed to H by adding/removing at most εn^{2} edges.

Extremal structure

Structural Lemma

Let G be a D-regular graph with $|G|=n$ and $D \geq n / 2-1$. Then either
(i) G is a robust expander; \checkmark
(ii) G is ε-close to complete bipartite graph $K_{n / 2, n / 2}$;
(iii) G is ε-close to union of two complete graphs $K_{n / 2}$.

(ii)

(iii)

G is ε-close to H if G can be transformed to H by adding/removing at most εn^{2} edges.

Extremal structure

Structural Lemma

Let G be a D-regular graph with $|G|=n$ and $D \geq n / 2-1$. Then either
(i) G is a robust expander; \checkmark
(ii) G is ε-close to complete bipartite graph $K_{n / 2, n / 2}$;
(iii) G is ε-close to union of two complete graphs $K_{n / 2}$.

(ii)

(iii)

G is ε-close to H if G can be transformed to H by adding/removing at most εn^{2} edges.

First attempt : Finding many Hamilton cycles

(1) Find many Hamilton cycles in $G[A]$ and $G[B]$. 'Easy', because $G[A]$ and $G[B]$ are almost complete.

(1) Find many Hamilton cycles in $G[A]$ and $G[B]$. 'Easy', because $G[A]$ and $G[B]$ are almost complete.
(2) 'Connect' cycles on to get a Hamilton decomposition.

(1) Find many Hamilton cycles in $G[A]$ and $G[B]$. 'Easy', because $G[A]$ and $G[B]$ are almost complete.
(2) 'Connect' cycles on to get a Hamilton decomposition. Hard, because $G[A, B]$ is sparse.

First attempt : Finding many Hamilton cycles

(1) Find many Hamilton cycles in $G[A]$ and $G[B]$. 'Easy', because $G[A]$ and $G[B]$ are almost complete.
(2) 'Connect' cycles on to get a Hamilton decomposition. Hard, because $G[A, B]$ is sparse.

Actually, we need to first construct the connections, then extend each connection into a Hamilton cycle.

Vertex partition

- $G[A]$ and $G[B]$ are almost complete.
- $V_{0}=\{$ bad vertices $\}$ and $\left|V_{0}\right| \leq \varepsilon n$. e.g. If v has εn neighbours in A and in B, then v is bad.

Vertex partition

- $G[A]$ and $G[B]$ are almost complete.
- $V_{0}=\{$ bad vertices $\}$ and $\left|V_{0}\right| \leq \varepsilon n$. e.g. If v has εn neighbours in A and in B, then v is bad.

A connecting subgraph J will cover V_{0}, connect A and B, has endpoints in $A \cup B$.

A key property of connecting subgraphs

A key property of connecting subgraphs

- 'Contract' all paths incident with V_{0}.

A key property of connecting subgraphs

- 'Contract' all paths incident with V_{0}.
- Replace $A B$-edges with $A A$-edges and $B B$-edges.

A key property of connecting subgraphs

- 'Contract' all paths incident with V_{0}.
- Replace $A B$-edges with $A A$-edges and $B B$-edges.
- Call resulting green graph J^{*}.

A key property of connecting subgraphs

- 'Contract' all paths incident with V_{0}.
- Replace $A B$-edges with $A A$-edges and $B B$-edges.
- Call resulting green graph J^{*}.

Properties of J^{*}

Let C_{A} be a spanning cycle on A and C_{B} be a spanning cycle on B.
Suppose that $J^{*} \subseteq C_{A}+C_{B}$ (in a suitable order).
If we replace J^{*} with J, then we get a Hamilton cycle.

A key property of connecting subgraphs

- 'Contract' all paths incident with V_{0}.
- Replace $A B$-edges with $A A$-edges and $B B$-edges.
- Call resulting green graph J^{*}.

Properties of J^{*}

Let C_{A} be a spanning cycle on A and C_{B} be a spanning cycle on B.
Suppose that $J^{*} \subseteq C_{A}+C_{B}$ (in a suitable order).
If we replace J^{*} with J, then we get a Hamilton cycle.

A key property of connecting subgraphs

- 'Contract' all paths incident with V_{0}.
- Replace $A B$-edges with $A A$-edges and $B B$-edges.
- Call resulting green graph J^{*}.

Properties of J^{*}

Let C_{A} be a spanning cycle on A and C_{B} be a spanning cycle on B.
Suppose that $J^{*} \subseteq C_{A}+C_{B}$ (in a suitable order).
If we replace J^{*} with J, then we get a Hamilton cycle.

A key property of connecting subgraphs

- 'Contract' all paths incident with V_{0}.
- Replace $A B$-edges with $A A$-edges and $B B$-edges.
- Call resulting green graph J^{*}.

Properties of J^{*}

Let C_{A} be a spanning cycle on A and C_{B} be a spanning cycle on B.
Suppose that $J^{*} \subseteq C_{A}+C_{B}$ (in a suitable order).
If we replace J^{*} with J, then we get a Hamilton cycle.

Finding a Hamilton decomposition

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$.

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$.
(2) Replace each J_{i} with J_{i}^{*}.

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$.
(2) Replace each J_{i} with J_{i}^{*}.

Finding a Hamilton decomposition

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$.
(2) Replace each J_{i} with J_{i}^{*}.

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$.
(2) Replace each J_{i} with J_{i}^{*}.

Let $G^{*}=G[A]+G[B]+J_{1}^{*}+\cdots+J_{D / 2}^{*}$.
Note that $G^{*}[A]$ and $G^{*}[B]$ are D-regular multigraphs.

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$.
(2) Replace each J_{i} with J_{i}^{*}.

Let $G^{*}=G[A]+G[B]+J_{1}^{*}+\cdots+J_{D / 2}^{*}$.
Note that $G^{*}[A]$ and $G^{*}[B]$ are D-regular multigraphs.
(3) 'Hamilton decompose' $G^{*}[A]$

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$.
(2) Replace each J_{i} with J_{i}^{*}.

Let $G^{*}=G[A]+G[B]+J_{1}^{*}+\cdots+J_{D / 2}^{*}$.
Note that $G^{*}[A]$ and $G^{*}[B]$ are D-regular multigraphs.
(3) 'Hamilton decompose' $G^{*}[A]$ and $G^{*}[B]$.

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$.
(2) Replace each J_{i} with J_{i}^{*}.

Let $G^{*}=G[A]+G[B]+J_{1}^{*}+\cdots+J_{D / 2}^{*}$.
Note that $G^{*}[A]$ and $G^{*}[B]$ are D-regular multigraphs.
(3) 'Hamilton decompose' $G^{*}[A]$ and $G^{*}[B]$.
(9) Replace each J_{i}^{*} with J_{i}.

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$.
(2) Replace each J_{i} with J_{i}^{*}.

Let $G^{*}=G[A]+G[B]+J_{1}^{*}+\cdots+J_{D / 2}^{*}$.
Note that $G^{*}[A]$ and $G^{*}[B]$ are D-regular multigraphs.
(3) 'Hamilton decompose' $G^{*}[A]$ and $G^{*}[B]$.
(9) Replace each J_{i}^{*} with J_{i}.

Finding a Hamilton decomposition

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$.
(2) Replace each J_{i} with J_{i}^{*}.

Let $G^{*}=G[A]+G[B]+J_{1}^{*}+\cdots+J_{D / 2}^{*}$.
Note that $G^{*}[A]$ and $G^{*}[B]$ are D-regular multigraphs.
(3) 'Hamilton decompose' $G^{*}[A]$ and $G^{*}[B]$.
(c) Replace each J_{i}^{*} with J_{i}.

Finding a Hamilton decomposition

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$.
(2) Replace each J_{i} with J_{i}^{*}.

Let $G^{*}=G[A]+G[B]+J_{1}^{*}+\cdots+J_{D / 2}^{*}$.
Note that $G^{*}[A]$ and $G^{*}[B]$ are D-regular multigraphs.
(3) 'Hamilton decompose' $G^{*}[A]$ and $G^{*}[B]$.
(c) Replace each J_{i}^{*} with J_{i}.
(5) G contains a Hamilton decomposition.

Finding a Hamilton decomposition

(1) Decompose edges not in A and not in B into connecting subgraphs, $J_{1}, J_{2}, \ldots, J_{D / 2}$. Hard
(2) Replace each J_{i} with J_{i}^{*}.

Let $G^{*}=G[A]+G[B]+J_{1}^{*}+\cdots+J_{D / 2}^{*}$.
Note that $G^{*}[A]$ and $G^{*}[B]$ are D-regular multigraphs.
(3) 'Hamilton decompose' $G^{*}[A]$ and $G^{*}[B]$. Hard
(c) Replace each J_{i}^{*} with J_{i}.
(5) G contains a Hamilton decomposition.

Packing Hamilton cycles with large $\delta(G)$

Question

Suppose that G is a graph on n vertices with $\delta(G) \geq n / 2$ (not necessarily regular). How many edge-disjoint Hamilton cycles are contained in G ?

- Dirac (1957) one Hamilton cycle.

Packing Hamilton cycles with large $\delta(G)$

Question

Suppose that G is a graph on n vertices with $\delta(G) \geq n / 2$ (not necessarily regular). How many edge-disjoint Hamilton cycles are contained in G ?

- Dirac (1957) one Hamilton cycle.
- Nash-Williams (1971) $5 n / 224\rfloor$ edge-disjoint Hamilton cycles

Packing Hamilton cycles with large $\delta(G)$

Question

Suppose that G is a graph on n vertices with $\delta(G) \geq n / 2$ (not necessarily regular). How many edge-disjoint Hamilton cycles are contained in G ?

- Dirac (1957) one Hamilton cycle.
- Nash-Williams (1971) 【5n/224 edge-disjoint Hamilton cycles

Conjecture (Nash-Williams 1971)

Every graph G on n vertices with $\delta(G) \geq n / 2$ contains $(n-2) / 8$ edge-disjoint Hamilton cycles.

Packing Hamilton cycles with large $\delta(G)$

Babai's construction:

$|A|=4 k+2$ and $|B|=|A|-2$
$G[A]$ is a matching of size $2 k+1$

Packing Hamilton cycles with large $\delta(G)$

Babai's construction:

$|A|=4 k+2$ and $|B|=|A|-2$
$G[A]$ is a matching of size $2 k+1$

Observation

Every Hamilton cycles contains at least 2 edges from A
$\Rightarrow G$ has at most $e(A) / 2$ edge-disjoint Hamilton cycles
$\Rightarrow G$ has $\leq k$ edge-disjoint Hamilton cycles

Packing Hamilton cycles with large $\delta(G)$

Question

Suppose that G is a graph on n vertices with $\delta(G) \geq n / 2$ (not necessarily regular). How many edge-disjoint Hamilton cycles are contained in G ?

- Dirac (1957) one Hamilton cycle.
- Nash-Williams (1971) $5 n / 224\rfloor$ edge-disjoint Hamilton cycles

Conjecture (Nash-Williams 1971)

Every graph G on n vertices with $\delta(G) \geq n / 2$ contains $(n-2) / 8$ edge-disjoint Hamilton cycles.

Theorem (Csaba, Kühn, Lapinskas, L, Osthus, Treglown 2013+)
The Nash-Williams conjecture is true for large n.

Open problem

Let reg even (G) be the degree of the largest even-regular spanning subgraph in G.

Open problem

Let reg even (G) be the degree of the largest even-regular spanning subgraph in G.

Observation

Every graph G on n vertices contains $\leq \operatorname{reg}_{\text {even }}(G) / 2$ edge-disjoint Hamilton cycles.

Open problem

Let reg $\mathrm{g}_{\text {even }}(G)$ be the degree of the largest even-regular spanning subgraph in G.

Observation

Every graph G on n vertices contains $\leq \operatorname{reg}_{\text {even }}(G) / 2$ edge-disjoint Hamilton cycles.

Conjecture (Kühn, Lapinskas and Osthus 2013)

Every graph G on n vertices with $\delta(G) \geq n / 2$ contains $\operatorname{reg}_{\text {even }}(G) / 2$ edge-disjoint Hamilton cycles.

Open problem

Let reg $\mathrm{g}_{\text {even }}(G)$ be the degree of the largest even-regular spanning subgraph in G.

Observation

Every graph G on n vertices contains $\leq \operatorname{reg}_{\text {even }}(G) / 2$ edge-disjoint Hamilton cycles.

Conjecture (Kühn, Lapinskas and Osthus 2013)

Every graph G on n vertices with $\delta(G) \geq n / 2$ contains reg even $(G) / 2$ edge-disjoint Hamilton cycles.

Some partial results by

- Ferber, Krivelevich and Sudakov $\left(2013^{+}\right)$
- Kühn and Osthus (2013+)

