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1-factorization

A 1-factorization of a graph G is a decomposition into edge-disjoint
perfect matchings.

= + +

If G contains a 1-factorization, then |G| is even and G is D-regular.
⇒ χ ′(G) = D.

Question

Does every D-regular graph G with |G|= n even and D ≥ n/2 contain
a 1-factorization?
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1-factorization conjecture

1-factorization conjecture (Chetwynd and Hilton 1985, Dirac 1950s)

Every D-regular graph G with |G|= n even and

D ≥

{
n/2−1 if n = 0 (mod 4)

n/2 if n = 2 (mod 4),

contains a 1-factorization. Equivalently, χ ′(G) = D.

The bound is best possible.
“An odd component contains no perfect matching.”

Kn/2 Kn/2

n = 2 (mod 4)

Kn/2+1−Cn/2+1 Kn/2−1

n = 0 (mod 4)

Same bound for the existence of a single perfect matching in D-regular
graphs.
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1-factorization conjecture

1-factorization conjecture (Chetwynd and Hilton 1985, Dirac 1950s)

Every D-regular graph G with |G|= n even and

D ≥

{
n/2−1 if n = 0 (mod 4)

n/2 if n = 2 (mod 4),

contains a 1-factorization. Equivalently, χ ′(G) = D.

Some partial results:

True for D = n−1, i.e. complete graphs.

Chetwynd and Hilton (1989), and independently Niessen and
Volkmann (1990), for D ≥ (

√
7−1)n/2≈ 0.82n.

Perkovic and Reed (1997) for D ≥ (1/2+ ε)n with ε > 0.

Theorem (Csaba, Kühn, L, Osthus, Treglown 2013+)

The 1-factorization conjecture holds for large n.
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Hamilton decomposition

A Hamilton decomposition of a graph G is a decomposition into
edge-disjoint Hamilton cycles.

= +

If G contains a Hamilton decomposition, then G is D-regular and D is
even.

Question

Does every D-regular graph on n vertices with D ≥ n/2 even contain a
Hamilton decomposition?
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Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with D ≥ bn/2c can be
decomposed into edge-disjoint Hamilton cycles and at most one
perfect matching.

The bound is best possible.
“No disconnected graph contains a Hamilton cycle.”

dn/2ebn/2c

Same bound for the existence of a single Hamilton cycle in D-regular
graphs.

Observation
If n is even, then ‘a Hamilton cycle = two perfect matchings’.
Hamilton decomposition⇒ 1-factorization.
But Hamilton decomposition conjecture 6⇒ 1-factorization conjecture.
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Robust expander

Definition

Given 0 < ν < τ < 1, we say that a graph G on n vertices is a robust
(ν ,τ)-expander, if for all S ⊆ V (G) with τn ≤ |S| ≤ (1− τ)n the
number of vertices that have at least νn neighbours in S is at least
|S|+νn.

S RNν(S)
≥ νn

“G is still an expander after removing a sparse subgraph.”

Theorem (Kühn and Osthus 2013)

For 1/n� ν � τ � α , every αn-regular robust (ν ,τ)-expander G on
n vertices can be decomposed into edge-disjoint Hamilton cycles and
at most one perfect matching.
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Extremal structure

Structural Lemma

Let G be a D-regular graph with |G|= n and D ≥ n/2−1. Then either

(i) G is a robust expander;

X

(ii) G is ε-close to complete bipartite graph Kn/2,n/2;

(iii) G is ε-close to union of two complete graphs Kn/2.

(i)

robust expander

n/2 n/2

(ii)

≈ Kn/2 ≈ Kn/2

n/2 n/2

(iii)

G is ε-close to H if G can be transformed to H by adding/removing at
most εn2 edges.
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First attempt : Finding many Hamilton cycles

A B≈ Kn/2 ≈ Kn/2

1 Find many Hamilton cycles in G[A] and G[B].
‘Easy’, because G[A] and G[B] are almost complete.

2 ‘Connect’ cycles on to get a Hamilton decomposition.
Hard, because G[A,B] is sparse.

Actually, we need to first construct the connections, then extend each
connection into a Hamilton cycle.
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Vertex partition

A B

V0

G[A] and G[B] are almost complete.

V0 = {bad vertices} and |V0| ≤ εn.
e.g. If v has εn neighbours in A and in B, then v is bad.

A connecting subgraph J will cover V0, connect A and B, has
endpoints in A∪B.
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A key property of connecting subgraphs

A B

V0

J

‘Contract’ all paths incident with V0.
Replace AB-edges with AA-edges and BB-edges.
Call resulting green graph J∗.
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A key property of connecting subgraphs

A B

V0

J∗CA CB

‘Contract’ all paths incident with V0.
Replace AB-edges with AA-edges and BB-edges.
Call resulting green graph J∗.

Properties of J∗

Let CA be a spanning cycle on A and CB be a spanning cycle on B.
Suppose that J∗ ⊆ CA +CB (in a suitable order).
If we replace J∗ with J, then we get a Hamilton cycle.
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Finding a Hamilton decomposition

A B

V0

1 Decompose edges not in A and not in B into connecting
subgraphs, J1,J2, . . . ,JD/2.

2 Replace each Ji with J∗i .

Let G∗ = G[A]+G[B]+ J∗1 + · · ·+ J∗D/2.
Note that G∗[A] and G∗[B] are D-regular multigraphs.

3 ‘Hamilton decompose’ G∗[A]
4 Replace each J∗i with Ji .
5 G contains a Hamilton decomposition. �
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Finding a Hamilton decomposition

A B

V0

1 Decompose edges not in A and not in B into connecting
subgraphs, J1,J2, . . . ,JD/2. Hard

2 Replace each Ji with J∗i .
Let G∗ = G[A]+G[B]+ J∗1 + · · ·+ J∗D/2.
Note that G∗[A] and G∗[B] are D-regular multigraphs.

3 ‘Hamilton decompose’ G∗[A] and G∗[B]. Hard
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Packing Hamilton cycles with large δ (G)

Question

Suppose that G is a graph on n vertices with δ (G)≥ n/2 (not
necessarily regular). How many edge-disjoint Hamilton cycles are
contained in G?

Dirac (1957) one Hamilton cycle.

Nash-Williams (1971) b5n/224c edge-disjoint Hamilton cycles

Conjecture (Nash-Williams 1971)

Every graph G on n vertices with δ (G)≥ n/2 contains (n−2)/8
edge-disjoint Hamilton cycles.
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Packing Hamilton cycles with large δ (G)

Babai’s construction:

A B

|A|= 4k +2 and |B|= |A|−2
G[A] is a matching of size 2k +1

Observation
Every Hamilton cycles contains at least 2 edges from A
⇒ G has at most e(A)/2 edge-disjoint Hamilton cycles
⇒ G has ≤ k edge-disjoint Hamilton cycles
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Packing Hamilton cycles with large δ (G)

Question

Suppose that G is a graph on n vertices with δ (G)≥ n/2 (not
necessarily regular). How many edge-disjoint Hamilton cycles are
contained in G?

Dirac (1957) one Hamilton cycle.

Nash-Williams (1971) b5n/224c edge-disjoint Hamilton cycles

Conjecture (Nash-Williams 1971)

Every graph G on n vertices with δ (G)≥ n/2 contains (n−2)/8
edge-disjoint Hamilton cycles.

Theorem (Csaba, Kühn, Lapinskas, L, Osthus, Treglown 2013+)

The Nash-Williams conjecture is true for large n.
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Open problem

Let regeven(G) be the degree of the largest even-regular spanning
subgraph in G.

Observation

Every graph G on n vertices contains ≤ regeven(G)/2 edge-disjoint
Hamilton cycles.

Conjecture (Kühn, Lapinskas and Osthus 2013)

Every graph G on n vertices with δ (G)≥ n/2 contains regeven(G)/2
edge-disjoint Hamilton cycles.

Some partial results by

Ferber, Krivelevich and Sudakov (2013+)

Kühn and Osthus (2013+)
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