Proof of the 1-factorization and Hamilton decomposition conjectures

Allan Lo
University of Birmingham

LMS–EPSRC Durham Symposium
22 July 2013

Joint work with
Béla Csaba (Szeged), Daniela Kühn (Birmingham),
Deryk Osthus (Birmingham) and Andrew Treglown (QMUL)
A 1-factorization of a graph G is a decomposition into edge-disjoint perfect matchings.

If G contains a 1-factorization, then $|G|$ is even and G is D-regular.
$\Rightarrow \chi'(G) = D$.
A 1-factorization of a graph G is a decomposition into edge-disjoint perfect matchings.

If G contains a 1-factorization, then $|G|$ is even and G is D-regular.
$\Rightarrow \chi'(G) = D$.

Question
Does every D-regular graph G with $|G| = n$ even and $D \geq n/2$ contain a 1-factorization?
Every D-regular graph G with $|G| = n$ even and

$$D \geq \begin{cases}
 n/2 - 1 & \text{if } n = 0 \pmod{4} \\
 n/2 & \text{if } n = 2 \pmod{4},
\end{cases}$$

contains a 1-factorization. Equivalently, $\chi'(G) = D$.

"An odd component contains no perfect matching."
1-factorization conjecture (Chetwynd and Hilton 1985, Dirac 1950s)

Every D-regular graph G with $|G| = n$ even and

$$D \geq \begin{cases}
\frac{n}{2} - 1 & \text{if } n = 0 \pmod{4} \\
\frac{n}{2} & \text{if } n = 2 \pmod{4},
\end{cases}$$

contains a 1-factorization. Equivalently, $\chi'(G) = D$.

The bound is best possible.

“An odd component contains no perfect matching.”
1-factorization conjecture

Every D-regular graph G with $|G| = n$ even and

$$D \geq \begin{cases}
\frac{n}{2} - 1 & \text{if } n = 0 \pmod{4} \\
\frac{n}{2} & \text{if } n = 2 \pmod{4},
\end{cases}$$

contains a 1-factorization. Equivalently, $\chi'(G) = D$.

The bound is best possible.

“An odd component contains no perfect matching.”

Same bound for the existence of a single perfect matching in D-regular graphs.
1-factorization conjecture

1-factorization conjecture (Chetwynd and Hilton 1985, Dirac 1950s)

Every D-regular graph G with $|G| = n$ even and

$$D \geq \begin{cases}
 n/2 - 1 & \text{if } n = 0 \pmod{4} \\
 n/2 & \text{if } n = 2 \pmod{4},
\end{cases}$$

contains a 1-factorization. Equivalently, $\chi'(G) = D$.

Some partial results:

- True for $D = n - 1$, i.e. complete graphs.
- Chetwynd and Hilton (1989), and independently Niessen and Volkmann (1990), for $D \geq (\sqrt{7} - 1)n/2 \approx 0.82n$.
- Perkovic and Reed (1997) for $D \geq (1/2 + \varepsilon)n$ with $\varepsilon > 0$.

Allan Lo

Proof of the 1-factorization and Hamilton decomposition conjectures
1-factorization conjecture (Chetwynd and Hilton 1985, Dirac 1950s)

Every D-regular graph G with $|G| = n$ even and

$$D \geq \begin{cases}
\frac{n}{2} - 1 & \text{if } n = 0 \pmod{4} \\
\frac{n}{2} & \text{if } n = 2 \pmod{4},
\end{cases}$$

contains a 1-factorization. Equivalently, $\chi'(G) = D$.

Some partial results:

- True for $D = n - 1$, i.e. complete graphs.
- Chetwynd and Hilton (1989), and independently Niessen and Volkmann (1990), for $D \geq (\sqrt{7} - 1)\frac{n}{2} \approx 0.82n$.
- Perkovic and Reed (1997) for $D \geq (1/2 + \varepsilon)n$ with $\varepsilon > 0$.

Theorem (Csaba, Kühn, L, Osthus, Treglown 2013$^+$)

The 1-factorization conjecture holds for large n.
A **Hamilton decomposition** of a graph G is a decomposition into edge-disjoint Hamilton cycles.

If G contains a Hamilton decomposition, then G is D-regular and D is even.
A Hamilton decomposition of a graph G is a decomposition into edge-disjoint Hamilton cycles.

If G contains a Hamilton decomposition, then G is D-regular and D is even.

Question

Does every D-regular graph on n vertices with $D \geq n/2$ even contain a Hamilton decomposition?
Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \geq \lceil n/2 \rceil$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

The bound is best possible.

"No disconnected graph contains a Hamilton cycle."

The same bound for the existence of a single Hamilton cycle in D-regular graphs.

Observation: If n is even, then 'a Hamilton cycle = two perfect matchings'.

Hamilton decomposition \Rightarrow 1-factorization.

But Hamilton decomposition conjecture $\not\Rightarrow$ 1-factorization conjecture.
Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \geq \lceil n/2 \rceil$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

The bound is best possible.

“No disconnected graph contains a Hamilton cycle.”
Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \geq \lceil n/2 \rceil$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

The bound is best possible.

“No disconnected graph contains a Hamilton cycle.”

Same bound for the existence of a single Hamilton cycle in D-regular graphs.
Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \geq \left\lfloor \frac{n}{2} \right\rfloor$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

The bound is best possible.

“No disconnected graph contains a Hamilton cycle.”

Same bound for the existence of a single Hamilton cycle in D-regular graphs.

Observation

If n is even, then ‘a Hamilton cycle = two perfect matchings’.

Hamilton decomposition \Rightarrow 1-factorization.
Hamilton decomposition conjecture

Every D-regular graph on n vertices with $D \geq \lceil n/2 \rceil$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

The bound is best possible. “No disconnected graph contains a Hamilton cycle.”

Same bound for the existence of a single Hamilton cycle in D-regular graphs.

Observation

If n is even, then ‘a Hamilton cycle = two perfect matchings’.

Hamilton decomposition \Rightarrow 1-factorization.

But Hamilton decomposition conjecture $\not\Rightarrow$ 1-factorization conjecture.
Hamilton decomposition conjecture

Hamilton decomposition conjecture (Nash-Williams 1970)

Every D-regular graph on n vertices with $D \geq \lfloor n/2 \rfloor$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

Some partial results:

- Walecki (1890) K_n has a Hamilton decomposition.
- Nash-Williams (1969), $D \geq \lfloor n/2 \rfloor$ implies a Hamilton cycle.
- Jackson (1979), $D/2 - n/6$ edge-disjoint Hamilton cycles
- Christofides, Kühn and Osthus (2012) if $D \geq n/2 + \varepsilon n$, then G contains $(1 - \varepsilon')D/2$ edge-disjoint Hamilton cycles
- Kühn and Osthus (2013) $D \geq n/2 + \varepsilon n$ implies Hamilton decomposition.
Hamilton decomposition conjecture

Every D-regular graph on n vertices with $D \geq \lfloor n/2 \rfloor$ can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.

Some partial results:

- Walecki (1890) K_n has a Hamilton decomposition.
- Nash-Williams (1969), $D \geq \lfloor n/2 \rfloor$ implies a Hamilton cycle.
- Jackson (1979), $D/2 - n/6$ edge-disjoint Hamilton cycles
- Christofides, Kühn and Osthus (2012) if $D \geq n/2 + \varepsilon n$, then G contains $(1 - \varepsilon')D/2$ edge-disjoint Hamilton cycles
- Kühn and Osthus (2013) $D \geq n/2 + \varepsilon n$ implies Hamilton decomposition.

Theorem (Csaba, Kühn, L, Osthus, Treglown 2013)\(^{\dagger}\)

The Hamilton decomposition conjecture holds for large n.

\(^{\dagger}\) Proof of the 1-factorization and Hamilton decomposition conjectures
Robust expander

Definition

Given $0 < \nu < \tau < 1$, we say that a graph G on n vertices is a robust (ν, τ)-expander, if for all $S \subseteq V(G)$ with $\tau n \leq |S| \leq (1 - \tau)n$ the number of vertices that have at least νn neighbours in S is at least $|S| + \nu n$.

“G is still an expander after removing a sparse subgraph.”
Robust expander

Definition

Given $0 < \nu < \tau < 1$, we say that a graph G on n vertices is a robust (ν, τ)-expander, if for all $S \subseteq V(G)$ with $\tau n \leq |S| \leq (1 - \tau)n$ the number of vertices that have at least νn neighbours in S is at least $|S| + \nu n$.

```
\begin{align*}
S & \quad \geq \nu n \\
& \quad RN_\nu(S)
\end{align*}
```

“G is still an expander after removing a sparse subgraph.”

Theorem (Kühn and Osthus 2013)

For $1/n \ll \nu \ll \tau \ll \alpha$, every αn-regular robust (ν, τ)-expander G on n vertices can be decomposed into edge-disjoint Hamilton cycles and at most one perfect matching.
Let G be a D-regular graph with $|G| = n$ and $D \geq n/2 - 1$. Then either

(i) G is a robust expander;

(ii) G is ε-close to complete bipartite graph $K_{n/2,n/2}$;

(iii) G is ε-close to union of two complete graphs $K_{n/2}$.

G is ε-close to H if G can be transformed to H by adding/removing at most εn^2 edges.

Allan Lo

Proof of the 1-factorization and Hamilton decomposition conjectures
Extremal structure

Structural Lemma

Let G be a D-regular graph with $|G| = n$ and $D \geq n/2 - 1$. Then either

(i) G is a robust expander; ✓

(ii) G is ε-close to complete bipartite graph $K_{n/2,n/2}$;

(iii) G is ε-close to union of two complete graphs $K_{n/2}$.

G is ε-close to H if G can be transformed to H by adding/removing at most εn^2 edges.
Extremal structure

Structural Lemma

Let G be a D-regular graph with $|G| = n$ and $D \geq n/2 - 1$. Then either

(i) G is a robust expander; ✓

(ii) G is ε-close to complete bipartite graph $K_{n/2, n/2}$;

(iii) G is ε-close to union of two complete graphs $K_{n/2}$.

G is ε-close to H if G can be transformed to H by adding/removing at most εn^2 edges.
First attempt: Finding many Hamilton cycles

\[A \approx K_{n/2} \quad \text{and} \quad B \approx K_{n/2} \]

Find many Hamilton cycles in \(G[A] \) and \(G[B] \).

'Easy', because \(G[A] \) and \(G[B] \) are almost complete.

'Connect' cycles on to get a Hamilton decomposition.

'Hard', because \(G[A, B] \) is sparse.

Actually, we need to first construct the connections, then extend each connection into a Hamilton cycle.

Proof of the 1-factorization and Hamilton decomposition conjectures
First attempt: Finding many Hamilton cycles

\[A \approx K_{n/2} \quad \approx K_{n/2} \approx B \]

Find many Hamilton cycles in \(G[A] \) and \(G[B] \).

‘Easy’, because \(G[A] \) and \(G[B] \) are almost complete.
First attempt: Finding many Hamilton cycles

$A \approx K_n/2 \approx K_n/2$???

2. 'Connect' cycles on to get a Hamilton decomposition.

Allan Lo

Proof of the 1-factorization and Hamilton decomposition conjectures
First attempt: Finding many Hamilton cycles

2. ‘Connect’ cycles on to get a Hamilton decomposition. Hard, because $G[A, B]$ is sparse.
First attempt: Finding many Hamilton cycles

2. ‘Connect’ cycles on to get a Hamilton decomposition.
 Hard, because $G[A, B]$ is sparse.

Actually, we need to first construct the connections, then extend each connection into a Hamilton cycle.
$G[A]$ and $G[B]$ are almost complete.

- $V_0 = \{\text{bad vertices}\}$ and $|V_0| \leq \varepsilon n$.

 - e.g. If v has εn neighbours in A and in B, then v is bad.
Vertex partition

- $G[A]$ and $G[B]$ are almost complete.
- $V_0 = \{\text{bad vertices}\}$ and $|V_0| \leq \varepsilon n$.

 e.g. If v has εn neighbours in A and in B, then v is bad.

A connecting subgraph J will cover V_0, connect A and B, has endpoints in $A \cup B$.
A key property of connecting subgraphs

Contract all paths incident with \(V_0 \).
Replace \(AB \)-edges with \(AA \)-edges and \(BB \)-edges.
Call resulting green graph \(J^* \).

Proof of the 1-factorization and Hamilton decomposition conjectures
A key property of connecting subgraphs

- ‘Contract’ all paths incident with V_0.

Proof of the 1-factorization and Hamilton decomposition conjectures
A key property of connecting subgraphs

- ‘Contract’ all paths incident with V_0.
- Replace AB-edges with AA-edges and BB-edges.
A key property of connecting subgraphs

- ‘Contract’ all paths incident with V_0.
- Replace AB-edges with AA-edges and BB-edges.
- Call resulting green graph J^*.
A key property of connecting subgraphs

- ‘Contract’ all paths incident with V_0.
- Replace AB-edges with AA-edges and BB-edges.
- Call resulting green graph J^*.

Properties of J^*
Let C_A be a spanning cycle on A and C_B be a spanning cycle on B. Suppose that $J^* \subseteq C_A + C_B$ (in a suitable order). If we replace J^* with J, then we get a Hamilton cycle.
A key property of connecting subgraphs

- ‘Contract’ all paths incident with V_0.
- Replace AB-edges with AA-edges and BB-edges.
- Call resulting green graph J^*.

Properties of J^*

Let C_A be a spanning cycle on A and C_B be a spanning cycle on B. Suppose that $J^* \subseteq C_A + C_B$ (in a suitable order).
If we replace J^* with J, then we get a Hamilton cycle.
A key property of connecting subgraphs

- ‘Contract’ all paths incident with \(V_0 \).
- Replace \(AB \)-edges with \(AA \)-edges and \(BB \)-edges.
- Call resulting green graph \(J^* \).

Properties of \(J^* \)

Let \(C_A \) be a spanning cycle on \(A \) and \(C_B \) be a spanning cycle on \(B \). Suppose that \(J^* \subseteq C_A + C_B \) (in a suitable order). If we replace \(J^* \) with \(J \), then we get a Hamilton cycle.
A key property of connecting subgraphs

- ‘Contract’ all paths incident with V_0.
- Replace AB-edges with AA-edges and BB-edges.
- Call resulting green graph J^*.

Properties of J^*

Let C_A be a spanning cycle on A and C_B be a spanning cycle on B. Suppose that $J^* \subseteq C_A + C_B$ (in a suitable order).
If we replace J^* with J, then we get a Hamilton cycle.
Finding a Hamilton decomposition

Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$.

Replace each J_i with J^*_i.

Note that $G^*[A]$ and $G^*[B]$ are D-regular multigraphs.

'Hamilton decompose' $G^*[A]$.

Replace each J^*_i with J_i.

G contains a Hamilton decomposition. □
Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$.
Finding a Hamilton decomposition

1. Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$.
2. Replace each J_i with J_i^*.

3. 'Hamilton decompose' $G^*[A]$.
4. Replace each J_i^* with J_i.

G contains a Hamilton decomposition. □
Finding a Hamilton decomposition

1. Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$.
2. Replace each J_i with J_i^*.

Note that $G^*[A]$ and $G^*[B]$ are D-regular multigraphs.

G contains a Hamilton decomposition. □
Finding a Hamilton decomposition

1. Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$.
2. Replace each J_i with J_i^*.

Note that $G^*[A]$ and $G^*[B]$ are D-regular multigraphs.

'$Hamilton decompose' $G^*[A]$.

G contains a Hamilton decomposition. □
Finding a Hamilton decomposition

1. Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$.

2. Replace each J_i with J_i^*.

Note that $G^*[A]$ and $G^*[B]$ are D-regular multigraphs.
Finding a Hamilton decomposition

1. Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$.
3. ‘Hamilton decompose’ $G^*[A]$
Finding a Hamilton decomposition

1. Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$.
2. Replace each J_i with J_i^*.
 Note that $G^*[A]$ and $G^*[B]$ are D-regular multigraphs.

Proof of the 1-factorization and Hamilton decomposition conjectures
Decompose edges not in \(A \) and not in \(B \) into connecting subgraphs, \(J_1, J_2, \ldots, J_{D/2} \).

Replace each \(J_i \) with \(J_i^* \).

Let \(G^* = G[A] + G[B] + J_1^* + \cdots + J_{D/2}^* \).

Note that \(G^*[A] \) and \(G^*[B] \) are \(D \)-regular multigraphs.

‘Hamilton decompose’ \(G^*[A] \) and \(G^*[B] \).

Replace each \(J_i^* \) with \(J_i \).
Finding a Hamilton decomposition

1. Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$.
2. Replace each J_i with J_i^*.
 Note that $G^*[A]$ and $G^*[B]$ are D-regular multigraphs.
4. Replace each J_i^* with J_i.
Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$.

2. Replace each J_i with J_i^\ast.
Let $G^\ast = G[A] + G[B] + J_1^\ast + \cdots + J_{D/2}^\ast$.
Note that $G^\ast[A]$ and $G^\ast[B]$ are D-regular multigraphs.

3. ‘Hamilton decompose’ $G^\ast[A]$ and $G^\ast[B]$.

4. Replace each J_i^\ast with J_i.

□
Finding a Hamilton decomposition

1. Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$.
2. Replace each J_i with J^*_i.
 Note that $G^*[A]$ and $G^*[B]$ are D-regular multigraphs.
4. Replace each J^*_i with J_i.
5. G contains a Hamilton decomposition.
Finding a Hamilton decomposition

1. Decompose edges not in A and not in B into connecting subgraphs, $J_1, J_2, \ldots, J_{D/2}$. Hard

4. Replace each J_i^* with J_i.

5. G contains a Hamilton decomposition.
Question

Suppose that G is a graph on n vertices with $\delta(G) \geq n/2$ (not necessarily regular). How many edge-disjoint Hamilton cycles are contained in G?

- Dirac (1957) one Hamilton cycle.
Question

Suppose that G is a graph on n vertices with $\delta(G) \geq n/2$ (not necessarily regular). How many edge-disjoint Hamilton cycles are contained in G?

- Dirac (1957) one Hamilton cycle.
- Nash-Williams (1971) $\lfloor 5n/224 \rfloor$ edge-disjoint Hamilton cycles
Question

Suppose that G is a graph on n vertices with $\delta(G) \geq n/2$ (not necessarily regular). How many edge-disjoint Hamilton cycles are contained in G?

- Dirac (1957) one Hamilton cycle.
- Nash-Williams (1971) $\left\lfloor \frac{5n}{224} \right\rfloor$ edge-disjoint Hamilton cycles

Conjecture (Nash-Williams 1971)

Every graph G on n vertices with $\delta(G) \geq n/2$ contains $(n - 2)/8$ edge-disjoint Hamilton cycles.
Babai’s construction:

|A| = 4k + 2 and |B| = |A| − 2

G[A] is a matching of size 2k + 1
Babai’s construction:

|A| = 4k + 2 and |B| = |A| - 2

G[A] is a matching of size 2k + 1

Observation

Every Hamilton cycles contains at least 2 edges from A
⇒ G has at most e(A)/2 edge-disjoint Hamilton cycles
⇒ G has ≤ k edge-disjoint Hamilton cycles
Packing Hamilton cycles with large $\delta(G)$

Question

Suppose that G is a graph on n vertices with $\delta(G) \geq n/2$ (not necessarily regular). How many edge-disjoint Hamilton cycles are contained in G?

- Dirac (1957) one Hamilton cycle.
- Nash-Williams (1971) $\lfloor 5n/224 \rfloor$ edge-disjoint Hamilton cycles

Conjecture (Nash-Williams 1971)

Every graph G on n vertices with $\delta(G) \geq n/2$ contains $(n - 2)/8$ edge-disjoint Hamilton cycles.

Theorem (Csaba, Kühn, Lapinskas, L, Osthus, Treglown 2013+)

The Nash-Williams conjecture is true for large n.

Proof of the 1-factorization and Hamilton decomposition conjectures
Open problem

Let $\text{reg}_{\text{even}}(G)$ be the degree of the largest even-regular spanning subgraph in G.
Let $\text{reg}_{\text{even}}(G)$ be the degree of the largest even-regular spanning subgraph in G.

Observation

Every graph G on n vertices contains $\leq \frac{\text{reg}_{\text{even}}(G)}{2}$ edge-disjoint Hamilton cycles.

Conjecture (Kühn, Lapinskas and Osthus 2013)

Every graph G on n vertices with $\delta(G) \geq \frac{n}{2}$ contains $\frac{\text{reg}_{\text{even}}(G)}{2}$ edge-disjoint Hamilton cycles.

Some partial results by Ferber, Krivelevich and Sudakov (2013)

Kühn and Osthus (2013)
Let \(\text{reg}_{\text{even}}(G) \) be the degree of the largest even-regular spanning subgraph in \(G \).

Observation

Every graph \(G \) on \(n \) vertices contains \(\leq \text{reg}_{\text{even}}(G)/2 \) edge-disjoint Hamilton cycles.

Conjecture (Kühn, Lapinskas and Osthus 2013)

Every graph \(G \) on \(n \) vertices with \(\delta(G) \geq n/2 \) contains \(\text{reg}_{\text{even}}(G)/2 \) edge-disjoint Hamilton cycles.
Open problem

Let $\text{reg}_{\text{even}}(G)$ be the degree of the largest even-regular spanning subgraph in G.

Observation

Every graph G on n vertices contains $\leq \frac{\text{reg}_{\text{even}}(G)}{2}$ edge-disjoint Hamilton cycles.

Conjecture (Kühn, Lapinskas and Osthus 2013)

Every graph G on n vertices with $\delta(G) \geq n/2$ contains $\frac{\text{reg}_{\text{even}}(G)}{2}$ edge-disjoint Hamilton cycles.

Some partial results by

- Ferber, Krivelevich and Sudakov (2013$^+$)
- Kühn and Osthus (2013$^+$)