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Let M be an irreducible 2-dimensional algebraic variety embedded
in R3.

Think of M as either a plane or sphere, a cylinder, a cone or torus, or
an ellipsoid.

A framework (G , p) is the combination of a finite simple graph
G = (V ,E ) and a map p : V →M.

(G , p) is rigid if there is no edge-length preserving motion of the
vertices on M that does not arise as an isometry of M.
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(G , p) is minimally rigid if (G , p) is rigid but (G − e, p) is not for
any edge e.

Let Q(p) denote the field of extension of Q formed by adjoining the
coordinates of the vertices of (G , p). (G , p) is generic if
td[Q(p) : Q] = 2n.
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The rigidity matrix RM(G , p) is an (|E |+ |V |)× 3|V | matrix with
columns labelled x1, y1, z1, . . . , xn, yn, zn where the entries in the row
corresponding to the edge ij are 0 except in the triple for i where the
entries are xi − xj , yi − yj , zi − zj and the triple for j where the entries are
xj − xi , yj − yi , zj − zi . The entries in the row corresponding to the vertex
i are 0 except in the triple for i where the entry is N(pi ); the normal to
M at the point pi .

A framework on M is infinitesimally rigid if
1 M is the plane or sphere and rank RM(G , p) = 3|V | − 3;
2 M is the cylinder and rank RM(G , p) = 3|V | − 2;
3 M is the cone or torus and rank RM(G , p) = 3|V | − 1;
4 M is the ellipsoid and rank RM(G , p) = 3|V |.

The constants above correspond to the number of isometries of the
surface.

For generic p, (G , p) is rigid if and only if it is infinitesimally rigid.
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Characterising Generic Rigidity

Theorem: Laman 1970, Whiteley 1988, N. Owen and Power 2012, 2013

Let G = (V ,E ), let M have k isometries for k ∈ {1, 2, 3} and let (G , p)
be a generic framework on M. Then (G , p) is minimally rigid if and only
if |E | = 2|V | − k and for every subgraph (V ′,E ′), with at least one edge,
|E ′| ≤ 2|V ′| − k.

The basic proof strategy:

In the plane -
Maxwell direction: rigid implies counting.
Sufficiency falls into two steps:
Reduction - Henneberg-Laman recursive construction of graphs.
Extension - Recursive operations on frameworks.

On the sphere -
Equivalence of geometries for rigidity.

On other surfaces -
Elaboration of the scheme for the plane.
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Lemma

Let G = (V ,E ), let M have 0 isometries and let (G , p) be a generic
minimally rigid framework on M. Then G satisfies |E | = 2|V | and for
every subgraph (V ′,E ′), with at least one edge, |E ′| ≤ 2|V ′|.

The converse is false.

K5 has rank |E | − 1 in 3-dimensions.
Hence a 1-dimensional motion on the ellipsoid.

Why 2-dimensional varieties?

The theorems on the previous slide become trivial for 1-dimensional
frameworks:

On the line, a framework is minimally rigid if and only if it is a tree.

For 3-dimensional frameworks it is an open problem to characterise
generic minimal rigidity as a property of the graph.
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Symmetric Graphs

An automorphism of G is a permutation π of the vertex set V (G ) of
G such that {u, v} ∈ E (G ) if and only if {π(u), π(v)} ∈ E (G ).

The set of all automorphisms of G forms a group, called the
automorphism group Aut(G ) of G .

An action of a group S on G is a group homomorphism
θ : S → Aut(G ).

If θ(s)(v) 6= v for all v ∈ V (G ) and all non-trivial elements s of the
group S , then the action θ is called free.

If S acts on G by θ, then we say that the graph G is S-symmetric
(with respect to θ).

the quotient graph G/S is the multi-graph which has the set
V (G )/S of vertex orbits as its vertex set and the set E (G )/S of
edge orbits as its edge set.
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Gain Graphs

Given a group S and a graph H = (V ,E ), an S-gain graph is a pair
(H,Φ), where H is a directed multi-graph and Φ : E (H)→ S is a
map which assigns an element of S to each edge of H.

The covering graph Hφ is the graph with vertex set V × S and, for
v , u ∈ V and g , h ∈ S , an edge from (v , g) to (u, h) if and only if
there is an edge vu with gain m and g ∗m = h.

1
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1

The net-gain on a cycle of (H, φ) is the (group) product of the gains
on the edges in the cycle.

A graph is balanced if every cycle has net-gain 0 and is unbalanced
if some cycle has non-zero net-gain.
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Symmetric Frameworks

A symmetry operation of the framework (G , p) on M is an isometry
x of R3 which maps M onto itself such that for some αx ∈ Aut(G ),
we have x(pi ) = pαx (i) for all i ∈ V (G ).

The set of all symmetry operations of a framework (G , p) on M
forms a subgroup of the orthogonal group O(Rd).

If there exists an action θ : S → Aut(G ) so that
x(p(v)) = p(θ(x)(v)) for all v ∈ V (G ) and all x ∈ S then (G , p) is
S-symmetric.

(G , p) is S-generic (with n and hence p large enough) if
td[Q(p) : Q(S)] = 2n/|S |.
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Figure : Restrict to groups about the z-axis
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For simplicity reflection or rotational symmetry. More on symmetries
orthogonal to the z-axis and on dihedral groups later...

An infinitesimal motion is a non-trivial vector in the kernel of the
(surface) rigidity matrix.

An infinitesimal motion u of a framework (G , p) on S is S-symmetric
if x
(
u(v)

)
= u(θ(x)(v)) for all v ∈ V (G ) and all s ∈ S .

(G , p) is (forced) S-symmetrically infinitesimally rigid if every
S-symmetric infinitesimal motion is trivial.

(G , p) is (forced) S-symmetrically continuously rigid if every
continuous edge-length preserving motion of the vertices that
preserves the symmetry is an isometry of M.

For generic frameworks, symmetric infinitesimal rigidity and
symmetric continuous rigidity coincide.
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The Orbit Rigidity Matrix

For each edge orbit Se = {se| s ∈ S} of G , the orbit rigidity matrix
O(G , p,S) of (G , p) has the following corresponding (3v0-dimensional)
row vector:
If the two end-vertices of the edge e lie in distinct vertex orbits, then
there exists an edge in Se that is of the form {a, sb} for some s ∈ S ,
where a, b ∈ OV (G). The row we write in O(G , p,S) is:

( a b

0 . . . 0
(
pa − s(pb)

)
0 . . . 0

(
pb − s−1(pa)

)
0 . . . 0

)
.

If the two end-vertices of the edge e lie in the same vertex orbit, then
there exists an edge in Se that is of the form {a, sa} for some s ∈ S ,
where a ∈ OV (G). The row we write in O(G , p, S) is:

( a

0 . . . 0
(
2pa − s(pa)− s−1(pa)

)
0 . . . 0

)
.
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The Orbit Surface Matrix

Let (G , p) be a framework with quotient S-gain graph (G0,Φ). The
orbit-surface rigidity matrix OM(G , p,S) of (G , p) is the
(|E (G0)|+ |V (G0)|)× 3|V (G0)| block matrix[

O(G , p,S)
N0(p0)

]
where O(G , p, S) is the standard orbit rigidity matrix for the framework
and symmetry group considered in R3 and N0(p0) represents the surface
normals to the framework joints corresponding to the vertex
representatives.

Theorem: N. and Schulze 2013+

Let (G , p) be a S-symmetric framework on M. The solutions to
OM(G , p,S)u = 0 are isomorphic to the space of S-symmetric
infinitesimal motions of (G , p).
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Necessary Conditions

Theorem: Malestein and Theran 2012+, Jordan, Kaszanitsky and
Tanigawa 2012+, N. and Schulze 2013+

Let M be an irreducible algebraic variety admitting ` isometries. Let S
be a cyclic symmetry group of R3 acting on M such that under S , M
admits `S symmetric isometries. Let (G , p) be a framework on M with
quotient S-gain graph (G0,Φ). Let (G , p) be a generic
forced-S-symmetric isostatic framework. Then G0 satisfies:

1 |E (G0)| = 2|V (G0)| − `S
2 |E (G ′0)| ≤ 2|V (G ′0)| − `S for every unbalanced subgraph G ′0 and

3 |E (G ′0)| ≤ 2|V (G ′0)| − ` for every balanced subgraph G ′0.

A similar results holds for dihedral groups and products of cyclic groups.
However the subgraph conditions are more complicated.

Tony Nixon Symmetric frameworks on cylinders and cones



Necessary Conditions

Theorem: Malestein and Theran 2012+, Jordan, Kaszanitsky and
Tanigawa 2012+, N. and Schulze 2013+

Let M be an irreducible algebraic variety admitting ` isometries. Let S
be a cyclic symmetry group of R3 acting on M such that under S , M
admits `S symmetric isometries. Let (G , p) be a framework on M with
quotient S-gain graph (G0,Φ). Let (G , p) be a generic
forced-S-symmetric isostatic framework. Then G0 satisfies:

1 |E (G0)| = 2|V (G0)| − `S
2 |E (G ′0)| ≤ 2|V (G ′0)| − `S for every unbalanced subgraph G ′0 and

3 |E (G ′0)| ≤ 2|V (G ′0)| − ` for every balanced subgraph G ′0.

A similar results holds for dihedral groups and products of cyclic groups.
However the subgraph conditions are more complicated.

Tony Nixon Symmetric frameworks on cylinders and cones



Planes

Schulze 2010 proved characterisations of rigidity under incidental
C2,C3 or Cs symmetry for frameworks in the plane.

Malestein and Theran 2012+ proved forced symmetry rigidity results
for Cn,Cs symmetry in the plane using matroid representability
techniques.

Jordan, Kaszanitsky and Tanigawa 2012+ proved, again for
frameworks in the plane:

forced rigidity results for Cn,Cs using inductive constructions,
the Dh (odd order) case and
they found counterexamples (to the natural class of graphs) for even
order dihedral groups.
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Spheres

Schulze and Whiteley 2012 translated results from the plane to the
sphere.

So theorems for symmetry groups in the plane ’lift’ to theorems for
symmetries of the sphere.

There are symmetries of the sphere that do not occur as symmetry
groups in the plane. These groups can be covered using our method.
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symmetries of the sphere.

There are symmetries of the sphere that do not occur as symmetry
groups in the plane. These groups can be covered using our method.
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Cylinders

An S-gain graph G0 is (k , `, `S)-gain-tight if it satisfies

1 |E (G0)| = k|V (G0)| − `S ,

2 |E (G ′0)| ≤ k|V (G ′0)| − `S for every unbalanced subgraph and

3 |E (G ′0)| ≤ k|V (G ′0)| − ` for every balanced subgraph.

About the z-axis, we want

(2, 2, 2)-gain tight for Cn symmetry on the cylinder,
(2, 2, 1)-gain tight for Cs symmetry on the cylinder,

We want to recursively characterise all such graphs using simple
operations.
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Henneberg operations
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Figure : The vertex-to-K4 move, in this case expanding a degree 4 vertex.

Figure : The vertex-to-4-cycle operation.
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Figure : The vertex-to-4-cycle operation.
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Finally edge separation is the deletion of a bridge from a graph. The
edge joining move is the inverse: joining two disjoint graphs by a bridge.

Theorem: N. and Schulze 2013+

Let S be a cyclic group, G a simple graph and G0 the corresponding
S-gain graph. Then G0 is (2, 2, 2)-gain-tight if and only if G0 can be
constructed sequentially from K1 by H1a, H1b, H2a, H2b, vertex-to-K4

and vertex-to-4-cycle operations.

Theorem: N. and Schulze 2013+

Let S be a group of order 2, G a simple graph and G0 the corresponding
S-gain graph. Then G0 is (2, 2, 1)-gain-tight if and only if G0 can be
constructed sequentially from an unbalanced loop or an unbalanced 3K2

by H1a, H1b, H1c, H2a, H2b, vertex-to-K4, vertex-to-4-cycle and edge
joining operations.

I’ll now sketch the proof for the (2, 2, 1)-gain-tight case. The
(2, 2, 2)-gain-tight case is simpler.
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Idea of the Proofs 1

To switch v with s ∈ S means to change the gain function Φ on E (H) as
follows:

Φ′(e) =


s · Φ(e) · s−1 if e is a loop incident with v
s · Φ(e) if e is a non-loop incident from v
Φ(e) · s−1 if e is a non-loop incident to v
Φ(e) otherwise

We say that a gain function Φ′ is equivalent to another gain
function Φ on the same edge set if Φ′ can be obtained from Φ by a
sequence of switching operations.

1 1

0

0

1 1
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Idea of the Proofs 1

To switch v with s ∈ S means to change the gain function Φ on E (H) as
follows:

Φ′(e) =


s · Φ(e) · s−1 if e is a loop incident with v
s · Φ(e) if e is a non-loop incident from v
Φ(e) · s−1 if e is a non-loop incident to v
Φ(e) otherwise

We say that a gain function Φ′ is equivalent to another gain
function Φ on the same edge set if Φ′ can be obtained from Φ by a
sequence of switching operations.
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1 1
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1 0
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0
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Idea of the proofs 2

Jordan, Kaszanitsky and Tanigawa:

Switching a vertex of an S-gain graph (H,Φ) does not alter the
balance of (H,Φ).

An S-gain graph (H,Φ) is balanced if and only if the vertices in
V (H) can be switched so that every edge in the resulting S-gain
graph (H,Φ′) has the identity element of S as its gain.
If two subgraphs H,K have H ∩ K connected and H and K are
balanced, then H ∪ K is also balanced.

Let G be (2, 2, 1)-gain-tight.

In each case the minimum degree is 2 or 3.

H1a, H1b and H1c let us suppose it is 3.

H2a and H2b work unless all degree 3 vertices are contained in
copies of K4 with 0-gains on each edge.
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Idea of the proofs 3

Now we try to contract a copy of K4.

If this fails there are vertices a, b ∈ K and a vertex x /∈ K such that
(ax)m, (bx)m ∈ E (H0).

m m
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Idea of the proofs 4

m m

Let c be the final vertex in K . In the (2, 2, 2)-gain-tight we are
done. In the (2, 2, 1)-gain-tight it must be that cx ∈ E (H0).

Repeat for each degree 3 vertex to show that H0 contains a bridge.
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Conjectures

Conjecture

Let M be the unit cylinder defined by the polynomial x2 + y2 = 1. Let S
be the cyclic group Cn representing n-fold rotation around the z-axis. Let
(G , p) be a framework on M with quotient S-gain graph (G0,Φ). Then
(G , p) is minimally rigid if and only if G0 is (2, 2, 2)-gain-tight.

Conjecture

Let M be the unit cylinder defined by the polynomial x2 + y2 = 1. Let S
be order 2 reflection group with mirror a plane containing the z-axis. Let
(G , p) be a framework on M with quotient S-gain graph (G0,Φ). Then
(G , p) is minimally rigid if and only if G0 is (2, 2, 1)-gain-tight.
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Cones

An S-gain graph G0 is (k , `, `S)-gain-tight if it satisfies
|E (G0)| = k |V (G0)| − `S , every subgraph G ′0 is either balanced and
satisfies |E (G ′0)| ≤ k |V (G ′0)| − ` or is unbalanced and satisfies
|E (G ′0)| ≤ k |V (G ′0)| − `S .

about the z-axis, we want

(2, 1, 1)-gain tight for Cn symmetry on the cone,
(2, 1, 0)-gain tight for Cs symmetry on the cone.
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Theorem: N. and Schulze 2013+

Let S be a cyclic group, G a simple graph and G0 the corresponding
S-gain graph. Then G0 is (2, 1, 1)-gain-tight if and only if G0 can be
constructed sequentially from an unbalanced loop or an unbalanced 3K2

by H1a, H1b, H1c, H2a, H2b, vertex-to-K4, vertex-to-4-cycle and edge
joining operations.

Conjecture

Let M be the infinite cone defined by the polynomial x2 + y2 = z2. Let
S be the cyclic group Cn representing n-fold rotation around the z-axis.
Let (G , p) be a framework on M with quotient S-gain graph (G0,Φ).
Then (G , p) is minimally rigid if and only if G0 is (2, 1, 1)-gain-tight.

To prove the 3 conjectures it remains to show that we can apply the
inductive operations symmetrically and preserve rigidity.
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Extensions

Firstly the restriction to groups about the z-axis of the cylinder or
cone was just for convenience.

Groups with symmetry plane orthogonal to the z-axis are doable,
but can have different isometry counts.

Reflection about a plane orthogonal to the cone is easier than
reflection through the axis.
2-fold rotation orthogonal to the z-axis of the cylinder.

The necessary count is (2, 2, 0)-gain-tight.
These are 4-regular and hence require X -replacement and variants...
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Abelian groups for the cylinder or cone with no isometries.

These require (2, `, 0)-gain-tight graphs...

Dihedral groups. Are there generalisations of Jordan, Kaszanitsky
and Tanigawa’s counterexamples?

Extensions from the cone to other surfaces admitting exactly 1
isometry: the torus, the elliptical cylinder, parabaloids, helicoids,...

For example: any minimally rigid framework (G , p) on the cone with
mirror symmetry about a plane through the z-axis must have quotient
graph H being (2, 1, 0)-gain-tight. However for the elliptical cylinder,
the same group must have (2, 1, 1)-gain-tight quotient graphs.

The ellipsoid and other surfaces admitting no isometries.
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Thanks for listening!
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