Symmetric frameworks on cylinders and cones

Tony Nixon

University of Bristol

joint work with Bernd Schulze

July 2013

Tony Nixon Symmetric frameworks on cylinders and cones

Outline

- frameworks on surfaces
 - rigidity
 - Combinatorial characterisations
 - Laman
 - Cylinders and cones
 - Ellipsoid
- Symmetric frameworks
 - Forced symmetry
 - Orbit surface matrix
 - gain graphs
 - Necessary conditions
 - Planes and spheres
 - Cylinders and cones
 - Gain graph constructions
 - Sufficiency
 - Conjectures

- Let \mathcal{M} be an irreducible 2-dimensional algebraic variety embedded in \mathbb{R}^3 .
 - Think of ${\mathcal M}$ as either a plane or sphere, a cylinder, a cone or torus, or an ellipsoid.

- Let *M* be an irreducible 2-dimensional algebraic variety embedded in ℝ³.
 - Think of ${\cal M}$ as either a plane or sphere, a cylinder, a cone or torus, or an ellipsoid.
- A framework (G, p) is the combination of a finite simple graph G = (V, E) and a map $p : V \to M$.

- Let \mathcal{M} be an irreducible 2-dimensional algebraic variety embedded in \mathbb{R}^3 .
 - Think of ${\cal M}$ as either a plane or sphere, a cylinder, a cone or torus, or an ellipsoid.
- A framework (G, p) is the combination of a finite simple graph G = (V, E) and a map $p : V \to M$.
- (G, p) is *rigid* if there is no edge-length preserving motion of the vertices on \mathcal{M} that does not arise as an isometry of \mathcal{M} .

- Let *M* be an irreducible 2-dimensional algebraic variety embedded in ℝ³.
 - Think of ${\cal M}$ as either a plane or sphere, a cylinder, a cone or torus, or an ellipsoid.
- A framework (G, p) is the combination of a finite simple graph G = (V, E) and a map $p : V \to M$.
- (G, p) is *rigid* if there is no edge-length preserving motion of the vertices on \mathcal{M} that does not arise as an isometry of \mathcal{M} .

 (G, p) is minimally rigid if (G, p) is rigid but (G − e, p) is not for any edge e.

- (G, p) is minimally rigid if (G, p) is rigid but (G − e, p) is not for any edge e.
- Let Q(p) denote the field of extension of Q formed by adjoining the coordinates of the vertices of (G, p). (G, p) is generic if td[Q(p) : Q] = 2n.

The rigidity matrix $R_{\mathcal{M}}(G, p)$ is an $(|E| + |V|) \times 3|V|$ matrix with columns labelled $x_1, y_1, z_1, \ldots, x_n, y_n, z_n$ where the entries in the row corresponding to the edge ij are 0 except in the triple for i where the entries are $x_i - x_j, y_i - y_j, z_i - z_j$ and the triple for j where the entries are $x_j - x_i, y_j - y_i, z_j - z_i$. The entries in the row corresponding to the vertex i are 0 except in the triple for i where the entries are $\mathcal{N}(p_i)$; the normal to \mathcal{M} at the point p_i .

The rigidity matrix $R_{\mathcal{M}}(G, p)$ is an $(|E| + |V|) \times 3|V|$ matrix with columns labelled $x_1, y_1, z_1, \ldots, x_n, y_n, z_n$ where the entries in the row corresponding to the edge ij are 0 except in the triple for i where the entries are $x_i - x_j, y_i - y_j, z_i - z_j$ and the triple for j where the entries are $x_j - x_i, y_j - y_i, z_j - z_i$. The entries in the row corresponding to the vertex i are 0 except in the triple for i where the entries are $\mathcal{N}(p_i)$; the normal to \mathcal{M} at the point p_i .

- A framework on ${\mathcal M}$ is infinitesimally rigid if
 - **1** \mathcal{M} is the plane or sphere and rank $R_{\mathcal{M}}(G, p) = 3|V| 3;$
 - 2 \mathcal{M} is the cylinder and rank $R_{\mathcal{M}}(G,p) = 3|V| 2;$
 - 3 \mathcal{M} is the cone or torus and rank $R_{\mathcal{M}}(G, p) = 3|V| 1$;
 - \mathcal{M} is the ellipsoid and rank $R_{\mathcal{M}}(G, p) = 3|V|$.
- The constants above correspond to the number of isometries of the surface.

The rigidity matrix $R_{\mathcal{M}}(G, p)$ is an $(|E| + |V|) \times 3|V|$ matrix with columns labelled $x_1, y_1, z_1, \ldots, x_n, y_n, z_n$ where the entries in the row corresponding to the edge ij are 0 except in the triple for i where the entries are $x_i - x_j, y_i - y_j, z_i - z_j$ and the triple for j where the entries are $x_j - x_i, y_j - y_i, z_j - z_i$. The entries in the row corresponding to the vertex i are 0 except in the triple for i where the entries are $\mathcal{M}(p_i)$; the normal to \mathcal{M} at the point p_i .

- A framework on $\mathcal M$ is infinitesimally rigid if
 - **1** \mathcal{M} is the plane or sphere and rank $R_{\mathcal{M}}(G, p) = 3|V| 3;$
 - 2 \mathcal{M} is the cylinder and rank $R_{\mathcal{M}}(G,p) = 3|V| 2;$
 - 3 \mathcal{M} is the cone or torus and rank $R_{\mathcal{M}}(G, p) = 3|V| 1$;
 - \mathcal{M} is the ellipsoid and rank $R_{\mathcal{M}}(G, p) = 3|V|$.
- The constants above correspond to the number of isometries of the surface.
- For generic p, (G, p) is rigid if and only if it is infinitesimally rigid.

- The basic proof strategy:
- In the plane -
 - Maxwell direction: rigid implies counting.
 - Sufficiency falls into two steps:
 - Reduction Henneberg-Laman recursive construction of graphs.
 - Extension Recursive operations on frameworks.

- The basic proof strategy:
- In the plane -
 - Maxwell direction: rigid implies counting.
 - Sufficiency falls into two steps:
 - Reduction Henneberg-Laman recursive construction of graphs.
 - Extension Recursive operations on frameworks.
- On the sphere -
 - Equivalence of geometries for rigidity.

- The basic proof strategy:
- In the plane -
 - Maxwell direction: rigid implies counting.
 - Sufficiency falls into two steps:
 - Reduction Henneberg-Laman recursive construction of graphs.
 - Extension Recursive operations on frameworks.
- On the sphere -
 - Equivalence of geometries for rigidity.
- On other surfaces -
 - Elaboration of the scheme for the plane.

- The converse is false.
 - K_5 has rank |E| 1 in 3-dimensions.
 - Hence a 1-dimensional motion on the ellipsoid.

- The converse is false.
 - K_5 has rank |E| 1 in 3-dimensions.
 - Hence a 1-dimensional motion on the ellipsoid.
- Why 2-dimensional varieties?
- The theorems on the previous slide become trivial for 1-dimensional frameworks:
- On the line, a framework is minimally rigid if and only if it is a tree.

- The converse is false.
 - K_5 has rank |E| 1 in 3-dimensions.
 - Hence a 1-dimensional motion on the ellipsoid.
- Why 2-dimensional varieties?
- The theorems on the previous slide become trivial for 1-dimensional frameworks:
- On the line, a framework is minimally rigid if and only if it is a tree.
- For 3-dimensional frameworks it is an open problem to characterise generic minimal rigidity as a property of the graph.

Symmetric Graphs

- An automorphism of G is a permutation π of the vertex set V(G) of G such that {u, v} ∈ E(G) if and only if {π(u), π(v)} ∈ E(G).
- The set of all automorphisms of G forms a group, called the automorphism group Aut(G) of G.
- An action of a group S on G is a group homomorphism $\theta: S \rightarrow Aut(G)$.
- If θ(s)(v) ≠ v for all v ∈ V(G) and all non-trivial elements s of the group S, then the action θ is called *free*.
- If S acts on G by θ, then we say that the graph G is S-symmetric (with respect to θ).
- the quotient graph G/S is the multi-graph which has the set V(G)/S of vertex orbits as its vertex set and the set E(G)/S of edge orbits as its edge set.

Given a group S and a graph H = (V, E), an S-gain graph is a pair (H, Φ), where H is a directed multi-graph and Φ : E(H) → S is a map which assigns an element of S to each edge of H.

Gain Graphs

- Given a group S and a graph H = (V, E), an S-gain graph is a pair (H,Φ), where H is a directed multi-graph and Φ : E(H) → S is a map which assigns an element of S to each edge of H.
- The covering graph H^φ is the graph with vertex set V × S and, for v, u ∈ V and g, h ∈ S, an edge from (v, g) to (u, h) if and only if there is an edge vu with gain m and g * m = h.

Gain Graphs

- Given a group S and a graph H = (V, E), an S-gain graph is a pair (H, Φ), where H is a directed multi-graph and Φ : E(H) → S is a map which assigns an element of S to each edge of H.
- The covering graph H^φ is the graph with vertex set V × S and, for v, u ∈ V and g, h ∈ S, an edge from (v, g) to (u, h) if and only if there is an edge vu with gain m and g * m = h.

- The *net-gain* on a cycle of (H, φ) is the (group) product of the gains on the edges in the cycle.
- A graph is *balanced* if every cycle has net-gain 0 and is unbalanced if some cycle has non-zero net-gain.

- A symmetry operation of the framework (G, p) on M is an isometry x of R³ which maps M onto itself such that for some α_x ∈ Aut(G), we have x(p_i) = p_{α_x(i)} for all i ∈ V(G).
- The set of all symmetry operations of a framework (G, p) on M forms a subgroup of the orthogonal group O(ℝ^d).
- If there exists an action $\theta : S \to \operatorname{Aut}(G)$ so that $x(p(v)) = p(\theta(x)(v))$ for all $v \in V(G)$ and all $x \in S$ then (G, p) is *S*-symmetric.

- A symmetry operation of the framework (G, p) on M is an isometry x of R³ which maps M onto itself such that for some α_x ∈ Aut(G), we have x(p_i) = p_{α_x(i)} for all i ∈ V(G).
- The set of all symmetry operations of a framework (G, p) on M forms a subgroup of the orthogonal group O(ℝ^d).
- If there exists an action $\theta : S \to \operatorname{Aut}(G)$ so that $x(p(v)) = p(\theta(x)(v))$ for all $v \in V(G)$ and all $x \in S$ then (G, p) is *S*-symmetric.
- (G, p) is S-generic (with *n* and hence *p* large enough) if $td[\mathbb{Q}(p) : \mathbb{Q}(S)] = 2n/|S|$.

Figure : Restrict to groups about the z-axis

• For simplicity reflection or rotational symmetry. More on symmetries orthogonal to the *z*-axis and on dihedral groups later...

- For simplicity reflection or rotational symmetry. More on symmetries orthogonal to the *z*-axis and on dihedral groups later...
- An infinitesimal motion is a non-trivial vector in the kernel of the (surface) rigidity matrix.
- An infinitesimal motion u of a framework (G, p) on S is S-symmetric if $x(u(v)) = u(\theta(x)(v))$ for all $v \in V(G)$ and all $s \in S$.
- (*G*, *p*) is (forced) *S*-symmetrically infinitesimally rigid if every *S*-symmetric infinitesimal motion is trivial.

- For simplicity reflection or rotational symmetry. More on symmetries orthogonal to the *z*-axis and on dihedral groups later...
- An infinitesimal motion is a non-trivial vector in the kernel of the (surface) rigidity matrix.
- An infinitesimal motion u of a framework (G, p) on S is S-symmetric if $x(u(v)) = u(\theta(x)(v))$ for all $v \in V(G)$ and all $s \in S$.
- (*G*, *p*) is (forced) *S*-symmetrically infinitesimally rigid if every *S*-symmetric infinitesimal motion is trivial.
- (*G*, *p*) is (forced) S-symmetrically continuously rigid if every continuous edge-length preserving motion of the vertices that preserves the symmetry is an isometry of *M*.
- For simplicity reflection or rotational symmetry. More on symmetries orthogonal to the *z*-axis and on dihedral groups later...
- An infinitesimal motion is a non-trivial vector in the kernel of the (surface) rigidity matrix.
- An infinitesimal motion u of a framework (G, p) on S is S-symmetric if $x(u(v)) = u(\theta(x)(v))$ for all $v \in V(G)$ and all $s \in S$.
- (*G*, *p*) is (forced) *S*-symmetrically infinitesimally rigid if every *S*-symmetric infinitesimal motion is trivial.
- (*G*, *p*) is (forced) S-symmetrically continuously rigid if every continuous edge-length preserving motion of the vertices that preserves the symmetry is an isometry of M.
- For generic frameworks, symmetric infinitesimal rigidity and symmetric continuous rigidity coincide.

 \sum^{1}

 ∇^{1}

The Orbit Rigidity Matrix

For each edge orbit $Se = \{se | s \in S\}$ of *G*, the *orbit rigidity matrix* $\mathbf{O}(G, p, S)$ of (G, p) has the following corresponding $(3v_0$ -dimensional) row vector:

If the two end-vertices of the edge e lie in distinct vertex orbits, then there exists an edge in *Se* that is of the form $\{a, sb\}$ for some $s \in S$, where $a, b \in O_{V(G)}$. The row we write in $\mathbf{O}(G, p, S)$ is:

$$\begin{array}{ccc} a & b \\ \left(0...0 & \left(p_{a}-s(p_{b})\right) & 0...0 & \left(p_{b}-s^{-1}(p_{a})\right) & 0...0\right). \end{array}$$

If the two end-vertices of the edge e lie in the same vertex orbit, then there exists an edge in Se that is of the form $\{a, sa\}$ for some $s \in S$, where $a \in O_{V(G)}$. The row we write in O(G, p, S) is:

$$\begin{pmatrix} a \\ (0\ldots 0 \quad (2p_a - s(p_a) - s^{-1}(p_a)) \quad 0\ldots 0 \end{pmatrix}.$$

The Orbit Surface Matrix

Let (G, p) be a framework with quotient *S*-gain graph (G_0, Φ) . The orbit-surface rigidity matrix $\mathbf{O}_{\mathcal{M}}(G, p, S)$ of (G, p) is the $(|E(G_0)| + |V(G_0)|) \times 3|V(G_0)|$ block matrix

 $\begin{bmatrix} \mathbf{O}(G, p, S) \\ \mathcal{N}_0(p_0) \end{bmatrix}$

where $\mathbf{O}(G, p, S)$ is the standard orbit rigidity matrix for the framework and symmetry group considered in \mathbb{R}^3 and $\mathcal{N}_0(p_0)$ represents the surface normals to the framework joints corresponding to the vertex representatives. Let (G, p) be a framework with quotient *S*-gain graph (G_0, Φ) . The orbit-surface rigidity matrix $\mathbf{O}_{\mathcal{M}}(G, p, S)$ of (G, p) is the $(|E(G_0)| + |V(G_0)|) \times 3|V(G_0)|$ block matrix

 $\begin{bmatrix} \mathbf{O}(G, p, S) \\ \mathcal{N}_0(p_0) \end{bmatrix}$

where $\mathbf{O}(G, p, S)$ is the standard orbit rigidity matrix for the framework and symmetry group considered in \mathbb{R}^3 and $\mathcal{N}_0(p_0)$ represents the surface normals to the framework joints corresponding to the vertex representatives.

Theorem: N. and Schulze 2013+

Let (G, p) be a *S*-symmetric framework on \mathcal{M} . The solutions to $\mathbf{O}_{\mathcal{M}}(G, p, S)u = 0$ are isomorphic to the space of *S*-symmetric infinitesimal motions of (G, p).

Theorem: Malestein and Theran 2012+, Jordan, Kaszanitsky and Tanigawa 2012+, N. and Schulze 2013+

Let \mathcal{M} be an irreducible algebraic variety admitting ℓ isometries. Let S be a cyclic symmetry group of \mathbb{R}^3 acting on \mathcal{M} such that under S, \mathcal{M} admits ℓ_S symmetric isometries. Let (G, p) be a framework on \mathcal{M} with quotient S-gain graph (G_0, Φ) . Let (G, p) be a generic forced-S-symmetric isostatic framework. Then G_0 satisfies:

$$|E(G_0)| = 2|V(G_0)| - \ell_S$$

- 2 $|E(G_0')| \le 2|V(G_0')| \ell_S$ for every unbalanced subgraph G_0' and
- $|E(G'_0)| \le 2|V(G'_0)| \ell$ for every balanced subgraph G'_0 .

Theorem: Malestein and Theran 2012+, Jordan, Kaszanitsky and Tanigawa 2012+, N. and Schulze 2013+

Let \mathcal{M} be an irreducible algebraic variety admitting ℓ isometries. Let S be a cyclic symmetry group of \mathbb{R}^3 acting on \mathcal{M} such that under S, \mathcal{M} admits ℓ_S symmetric isometries. Let (G, p) be a framework on \mathcal{M} with quotient S-gain graph (G_0, Φ) . Let (G, p) be a generic forced-S-symmetric isostatic framework. Then G_0 satisfies:

$$|E(G_0)| = 2|V(G_0)| - \ell_S$$

2
$$|E(G_0')| \le 2|V(G_0')| - \ell_S$$
 for every unbalanced subgraph G_0' and

● $|E(G'_0)| \le 2|V(G'_0)| - \ell$ for every balanced subgraph G'_0 .

A similar results holds for dihedral groups and products of cyclic groups. However the subgraph conditions are more complicated. • Schulze 2010 proved characterisations of rigidity under incidental C_2 , C_3 or C_s symmetry for frameworks in the plane.

Planes

- Schulze 2010 proved characterisations of rigidity under incidental C_2 , C_3 or C_s symmetry for frameworks in the plane.
- Malestein and Theran 2012+ proved forced symmetry rigidity results for C_n , C_s symmetry in the plane using matroid representability techniques.

Planes

- Schulze 2010 proved characterisations of rigidity under incidental C_2 , C_3 or C_s symmetry for frameworks in the plane.
- Malestein and Theran 2012+ proved forced symmetry rigidity results for C_n , C_s symmetry in the plane using matroid representability techniques.
- Jordan, Kaszanitsky and Tanigawa 2012+ proved, again for frameworks in the plane:
 - forced rigidity results for C_n , C_s using inductive constructions,
 - the D_h (odd order) case and
 - they found counterexamples (to the natural class of graphs) for even order dihedral groups.

- Schulze and Whiteley 2012 translated results from the plane to the sphere.
- So theorems for symmetry groups in the plane 'lift' to theorems for symmetries of the sphere.

- Schulze and Whiteley 2012 translated results from the plane to the sphere.
- So theorems for symmetry groups in the plane 'lift' to theorems for symmetries of the sphere.
- There are symmetries of the sphere that do not occur as symmetry groups in the plane. These groups can be covered using our method.

Cylinders

An S-gain graph G_0 is (k, ℓ, ℓ_S) -gain-tight if it satisfies

$$|E(G_0)| = k |V(G_0)| - \ell_S,$$

- 3 $|E(G_0')| \le k|V(G_0')| \ell_S$ for every unbalanced subgraph and
- $|E(G'_0)| \le k|V(G'_0)| \ell$ for every balanced subgraph.
 - About the *z*-axis, we want
 - (2, 2, 2)-gain tight for C_n symmetry on the cylinder,
 - (2,2,1)-gain tight for C_s symmetry on the cylinder,

Cylinders

An S-gain graph G_0 is (k, ℓ, ℓ_S) -gain-tight if it satisfies

$$|E(G_0)| = k |V(G_0)| - \ell_S,$$

- 3 $|E(G_0')| \le k|V(G_0')| \ell_S$ for every unbalanced subgraph and
- $|E(G'_0)| \le k|V(G'_0)| \ell$ for every balanced subgraph.
 - About the *z*-axis, we want
 - (2, 2, 2)-gain tight for C_n symmetry on the cylinder,
 - (2,2,1)-gain tight for C_s symmetry on the cylinder,
 - We want to recursively characterise all such graphs using simple operations.

Henneberg operations

Henneberg operations

Figure : The vertex-to- K_4 move, in this case expanding a degree 4 vertex.

Figure : The vertex-to- K_4 move, in this case expanding a degree 4 vertex.

Figure : The vertex-to-4-cycle operation.

Theorem: N. and Schulze 2013+

Let S be a cyclic group, G a simple graph and G_0 the corresponding S-gain graph. Then G_0 is (2, 2, 2)-gain-tight if and only if G_0 can be constructed sequentially from K_1 by H1a, H1b, H2a, H2b, vertex-to- K_4 and vertex-to-4-cycle operations.

Theorem: N. and Schulze 2013+

Let S be a cyclic group, G a simple graph and G_0 the corresponding S-gain graph. Then G_0 is (2, 2, 2)-gain-tight if and only if G_0 can be constructed sequentially from K_1 by H1a, H1b, H2a, H2b, vertex-to- K_4 and vertex-to-4-cycle operations.

Theorem: N. and Schulze 2013+

Let S be a group of order 2, G a simple graph and G_0 the corresponding S-gain graph. Then G_0 is (2, 2, 1)-gain-tight if and only if G_0 can be constructed sequentially from an unbalanced loop or an unbalanced $3K_2$ by H1a, H1b, H1c, H2a, H2b, vertex-to- K_4 , vertex-to-4-cycle and edge joining operations.

Theorem: N. and Schulze 2013+

Let S be a cyclic group, G a simple graph and G_0 the corresponding S-gain graph. Then G_0 is (2, 2, 2)-gain-tight if and only if G_0 can be constructed sequentially from K_1 by H1a, H1b, H2a, H2b, vertex-to- K_4 and vertex-to-4-cycle operations.

Theorem: N. and Schulze 2013+

Let S be a group of order 2, G a simple graph and G_0 the corresponding S-gain graph. Then G_0 is (2, 2, 1)-gain-tight if and only if G_0 can be constructed sequentially from an unbalanced loop or an unbalanced $3K_2$ by H1a, H1b, H1c, H2a, H2b, vertex-to- K_4 , vertex-to-4-cycle and edge joining operations.

I'll now sketch the proof for the (2,2,1)-gain-tight case. The (2,2,2)-gain-tight case is simpler.

To *switch* v with $s \in S$ means to change the gain function Φ on E(H) as follows:

$$\Phi'(e) = \begin{cases} s \cdot \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a loop incident with } v \\ s \cdot \Phi(e) & \text{if } e \text{ is a non-loop incident from } v \\ \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a non-loop incident to } v \\ \Phi(e) & \text{otherwise} \end{cases}$$

To *switch* v with $s \in S$ means to change the gain function Φ on E(H) as follows:

$$\Phi'(e) = \begin{cases} s \cdot \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a loop incident with } v \\ s \cdot \Phi(e) & \text{if } e \text{ is a non-loop incident from } v \\ \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a non-loop incident to } v \\ \Phi(e) & \text{otherwise} \end{cases}$$

To *switch* v with $s \in S$ means to change the gain function Φ on E(H) as follows:

$$\Phi'(e) = \begin{cases} s \cdot \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a loop incident with } v \\ s \cdot \Phi(e) & \text{if } e \text{ is a non-loop incident from } v \\ \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a non-loop incident to } v \\ \Phi(e) & \text{otherwise} \end{cases}$$

To *switch* v with $s \in S$ means to change the gain function Φ on E(H) as follows:

$$\Phi'(e) = \begin{cases} s \cdot \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a loop incident with } v \\ s \cdot \Phi(e) & \text{if } e \text{ is a non-loop incident from } v \\ \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a non-loop incident to } v \\ \Phi(e) & \text{otherwise} \end{cases}$$

To *switch* v with $s \in S$ means to change the gain function Φ on E(H) as follows:

$$\Phi'(e) = \begin{cases} s \cdot \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a loop incident with } v \\ s \cdot \Phi(e) & \text{if } e \text{ is a non-loop incident from } v \\ \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a non-loop incident to } v \\ \Phi(e) & \text{otherwise} \end{cases}$$

To *switch* v with $s \in S$ means to change the gain function Φ on E(H) as follows:

$$\Phi'(e) = \begin{cases} s \cdot \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a loop incident with } v \\ s \cdot \Phi(e) & \text{if } e \text{ is a non-loop incident from } v \\ \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a non-loop incident to } v \\ \Phi(e) & \text{otherwise} \end{cases}$$

To *switch* v with $s \in S$ means to change the gain function Φ on E(H) as follows:

$$\Phi'(e) = \begin{cases} s \cdot \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a loop incident with } v \\ s \cdot \Phi(e) & \text{if } e \text{ is a non-loop incident from } v \\ \Phi(e) \cdot s^{-1} & \text{if } e \text{ is a non-loop incident to } v \\ \Phi(e) & \text{otherwise} \end{cases}$$

- Jordan, Kaszanitsky and Tanigawa:
 - Switching a vertex of an S-gain graph (H, Φ) does not alter the balance of (H, Φ).

- Jordan, Kaszanitsky and Tanigawa:
 - Switching a vertex of an S-gain graph (H, Φ) does not alter the balance of (H, Φ).
 - An S-gain graph (H, Φ) is balanced if and only if the vertices in V(H) can be switched so that every edge in the resulting S-gain graph (H, Φ') has the identity element of S as its gain.

- Jordan, Kaszanitsky and Tanigawa:
 - Switching a vertex of an S-gain graph (H, Φ) does not alter the balance of (H, Φ).
 - An S-gain graph (H, Φ) is balanced if and only if the vertices in V(H) can be switched so that every edge in the resulting S-gain graph (H, Φ') has the identity element of S as its gain.
 - If two subgraphs H, K have H ∩ K connected and H and K are balanced, then H ∪ K is also balanced.

- Jordan, Kaszanitsky and Tanigawa:
 - Switching a vertex of an S-gain graph (H, Φ) does not alter the balance of (H, Φ).
 - An S-gain graph (H, Φ) is balanced if and only if the vertices in V(H) can be switched so that every edge in the resulting S-gain graph (H, Φ') has the identity element of S as its gain.
 - If two subgraphs H, K have H ∩ K connected and H and K are balanced, then H ∪ K is also balanced.

Let G be (2, 2, 1)-gain-tight.

- In each case the minimum degree is 2 or 3.
- H1a, H1b and H1c let us suppose it is 3.
Idea of the proofs 2

- Jordan, Kaszanitsky and Tanigawa:
 - Switching a vertex of an S-gain graph (H, Φ) does not alter the balance of (H, Φ).
 - An S-gain graph (H, Φ) is balanced if and only if the vertices in V(H) can be switched so that every edge in the resulting S-gain graph (H, Φ') has the identity element of S as its gain.
 - If two subgraphs H, K have H ∩ K connected and H and K are balanced, then H ∪ K is also balanced.

Let G be (2, 2, 1)-gain-tight.

- In each case the minimum degree is 2 or 3.
- H1a, H1b and H1c let us suppose it is 3.
- H2a and H2b work unless all degree 3 vertices are contained in copies of *K*₄ with 0-gains on each edge.

Idea of the proofs 3

- Now we try to contract a copy of K_4 .
- If this fails there are vertices $a, b \in K$ and a vertex $x \notin K$ such that $(ax)_m, (bx)_m \in E(H_0)$.

Idea of the proofs 4

- Let c be the final vertex in K. In the (2,2,2)-gain-tight we are done. In the (2,2,1)-gain-tight it must be that cx ∈ E(H₀).
- Repeat for each degree 3 vertex to show that H_0 contains a bridge.

Conjecture

Let \mathcal{M} be the unit cylinder defined by the polynomial $x^2 + y^2 = 1$. Let S be the cyclic group C_n representing *n*-fold rotation around the *z*-axis. Let (G, p) be a framework on \mathcal{M} with quotient S-gain graph (G_0, Φ) . Then (G, p) is minimally rigid if and only if G_0 is (2, 2, 2)-gain-tight.

Conjecture

Let \mathcal{M} be the unit cylinder defined by the polynomial $x^2 + y^2 = 1$. Let S be the cyclic group C_n representing *n*-fold rotation around the *z*-axis. Let (G, p) be a framework on \mathcal{M} with quotient S-gain graph (G_0, Φ) . Then (G, p) is minimally rigid if and only if G_0 is (2, 2, 2)-gain-tight.

Conjecture

Let \mathcal{M} be the unit cylinder defined by the polynomial $x^2 + y^2 = 1$. Let S be order 2 reflection group with mirror a plane containing the z-axis. Let (G, p) be a framework on \mathcal{M} with quotient S-gain graph (G_0, Φ) . Then (G, p) is minimally rigid if and only if G_0 is (2, 2, 1)-gain-tight.

An S-gain graph G_0 is (k, ℓ, ℓ_S) -gain-tight if it satisfies $|E(G_0)| = k|V(G_0)| - \ell_S$, every subgraph G'_0 is either balanced and satisfies $|E(G'_0)| \le k|V(G'_0)| - \ell$ or is unbalanced and satisfies $|E(G'_0)| \le k|V(G'_0)| - \ell_S$.

- about the *z*-axis, we want
 - (2,1,1)-gain tight for C_n symmetry on the cone,
 - (2, 1, 0)-gain tight for C_s symmetry on the cone.

Theorem: N. and Schulze 2013+

Let S be a cyclic group, G a simple graph and G_0 the corresponding S-gain graph. Then G_0 is (2, 1, 1)-gain-tight if and only if G_0 can be constructed sequentially from an unbalanced loop or an unbalanced $3K_2$ by H1a, H1b, H1c, H2a, H2b, vertex-to- K_4 , vertex-to-4-cycle and edge joining operations.

Theorem: N. and Schulze 2013+

Let S be a cyclic group, G a simple graph and G_0 the corresponding S-gain graph. Then G_0 is (2,1,1)-gain-tight if and only if G_0 can be constructed sequentially from an unbalanced loop or an unbalanced $3K_2$ by H1a, H1b, H1c, H2a, H2b, vertex-to- K_4 , vertex-to-4-cycle and edge joining operations.

Conjecture

Let \mathcal{M} be the infinite cone defined by the polynomial $x^2 + y^2 = z^2$. Let S be the cyclic group C_n representing *n*-fold rotation around the *z*-axis. Let (G, p) be a framework on \mathcal{M} with quotient S-gain graph (G_0, Φ) . Then (G, p) is minimally rigid if and only if G_0 is (2, 1, 1)-gain-tight.

Theorem: N. and Schulze 2013+

Let S be a cyclic group, G a simple graph and G_0 the corresponding S-gain graph. Then G_0 is (2,1,1)-gain-tight if and only if G_0 can be constructed sequentially from an unbalanced loop or an unbalanced $3K_2$ by H1a, H1b, H1c, H2a, H2b, vertex-to- K_4 , vertex-to-4-cycle and edge joining operations.

Conjecture

Let \mathcal{M} be the infinite cone defined by the polynomial $x^2 + y^2 = z^2$. Let S be the cyclic group C_n representing *n*-fold rotation around the *z*-axis. Let (G, p) be a framework on \mathcal{M} with quotient S-gain graph (G_0, Φ) . Then (G, p) is minimally rigid if and only if G_0 is (2, 1, 1)-gain-tight.

• To prove the 3 conjectures it remains to show that we can apply the inductive operations symmetrically and preserve rigidity.

- Firstly the restriction to groups about the *z*-axis of the cylinder or cone was just for convenience.
- Groups with symmetry plane orthogonal to the *z*-axis are doable, but can have different isometry counts.
 - Reflection about a plane orthogonal to the cone is easier than reflection through the axis.
 - 2-fold rotation orthogonal to the z-axis of the cylinder.
 - The necessary count is (2,2,0)-gain-tight.
 - These are 4-regular and hence require X-replacement and variants...

- Abelian groups for the cylinder or cone with no isometries.
 - These require $(2, \ell, 0)$ -gain-tight graphs...
- Dihedral groups. Are there generalisations of Jordan, Kaszanitsky and Tanigawa's counterexamples?
- Extensions from the cone to other surfaces admitting exactly 1 isometry: the torus, the elliptical cylinder, parabaloids, helicoids,...
 - For example: any minimally rigid framework (*G*, *p*) on the cone with mirror symmetry about a plane through the *z*-axis must have quotient graph *H* being (2,1,0)-gain-tight. However for the elliptical cylinder, the same group must have (2,1,1)-gain-tight quotient graphs.
- The ellipsoid and other surfaces admitting no isometries.

Thanks for listening!