Ricci curvature and spectra estimates on graphs

Shiping Liu

Joint work with Frank Bauer and Jürgen Jost

LMS EPSRC Durham Symposium
Graph Theory and Interactions
July 16, 2013

Introduction: two ingredients

Graph Laplace operator

Settings: an undirected, simple, finite, connected graph $G=(V, E)$.

- Combinatorial Laplace operator L

$$
L f(x)=\sum_{y, y \sim x} f(y)-d_{x} f(x), \quad \forall f: V \rightarrow \mathbb{R} ;
$$

- Normalized Laplace operator Δ

$$
\Delta f(x)=\frac{1}{d_{x}} \sum_{y, y \sim x} f(y)-f(x), \quad \forall f: V \rightarrow \mathbb{R}
$$

We call λ an eigenvalue of Δ if there exists some $f \not \equiv 0$ such that

$$
\Delta f=-\lambda f
$$

Graph Laplace operator

Settings: an undirected, simple, finite, connected graph $G=(V, E)$.

- Combinatorial Laplace operator L

$$
L f(x)=\sum_{y, y \sim x} f(y)-d_{x} f(x), \quad \forall f: V \rightarrow \mathbb{R} ;
$$

- Normalized Laplace operator Δ

$$
\begin{gathered}
\Delta f(x)=\sum_{y \in V} f(y) m_{x}(y)-f(x), \quad \forall f: V \rightarrow \mathbb{R} . \\
m_{x}(y)= \begin{cases}\frac{1}{d_{x}}, & \text { if } y \sim x ; \\
0, & \text { otherwise } .\end{cases}
\end{gathered}
$$

We call λ an eigenvalue of Δ if there exists some $f \not \equiv 0$ such that

$$
\Delta f=-\lambda f
$$

Number of common neighbors and Ricci curvature

Number of common neighbors of $x \sim y$,

$$
\sharp(x, y):=\sum_{z, z \sim x, z \sim y} 1 .
$$

$$
\sharp(x, y)=2
$$

Overlaps of two distance balls $\nrightarrow--\rightarrow$ lower Ricci curvature bounds

Number of common neighbors and Ricci curvature

Number of common neighbors of $x \sim y$,

$$
\sharp(x, y):=\sum_{z, z \sim x, z \sim y} 1 .
$$

Overlaps of two distance balls $+---\rightarrow$ lower Ricci curvature bounds

Largest eigenvalue and number of common neighbors

The largest eigenvalue

Let $0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{N-1}$ be eigenvalues of L.

- Anderson-Morley, 1985

$$
\lambda_{N-1} \leq \max _{x \sim y}\left\{d_{x}+d_{y}\right\} ;
$$

- Rojo-Soto-Rojo, 2000

$$
\lambda_{N=1} \leq \max _{x \neq y}\left\{d_{x}+d_{y}-\sharp(x, y)\right\} ;
$$

- Das, 2003

The largest eigenvalue

Let $0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{N-1}$ be eigenvalues of L.

- Anderson-Morley, 1985

$$
\lambda_{N-1} \leq \max _{x \sim y}\left\{d_{x}+d_{y}\right\}
$$

- Rojo-Soto-Rojo, 2000

$$
\lambda_{N=1} \leq \max _{x \neq y}\left\{d_{x}+d_{y}-\sharp(x, y)\right\} ;
$$

- Das, 2003

$$
\lambda_{N-1} \leq \max _{x \sim y}\left\{d_{x}+d_{y}-\sharp(x, y)\right\} .
$$

The largest eigenvalue

Combinatorial Laplace operator:

- Das, 2003

$$
\lambda_{N-1} \leq \max _{x \sim y}\left\{d_{x}+d_{y}-\sharp(x, y)\right\} .
$$

Normalized Laplace operator:

- Bauer-Jost-L. 2012

The largest eigenvalue

Combinatorial Laplace operator:

- Das, 2003

$$
\lambda_{N-1} \leq \max _{x \sim y}\left\{d_{x}+d_{y}-\sharp(x, y)\right\} .
$$

Normalized Laplace operator:

- Bauer-Jost-L. 2012

$$
\lambda_{N-1} \leq 2-\frac{\min _{x \sim y} \sharp(x, y)}{\max _{x} d_{x}} .
$$

The largest eigenvalue

Combinatorial Laplace operator:

- Das, 2003

$$
\lambda_{N-1} \leq \max _{x \sim y}\left\{d_{x}+d_{y}-\sharp(x, y)\right\} .
$$

Normalized Laplace operator:

- Bauer-Jost-L. 2012

$$
\lambda_{N-1} \leq 2-\frac{\min _{x \sim y} \sharp(x, y)}{\max _{x} d_{x}} .
$$

- $\lambda_{N-1}=2$ iff G is bipartite (with out any odd-length cycles)

Iterated operator

Consider the iterated operator $\Delta[2]=-I+(I+\Delta)^{2}$. We have

$$
\Delta[2] f(x)=\frac{1}{d_{x}} \sum_{y, y \sim[2] x}\left(\sum_{\substack{z, z \sim x \\ z \sim y}} \frac{1}{d_{z}}\right) f(y)-f(x) .
$$

Proof: For u s.t. $\Delta u=-\lambda_{N-1} u$, we have

where we used
$=(f, g)=\sum_{x} f(x) g(x) d_{x} ;$
$\Rightarrow \min _{x \sim y} \sharp(x, y) \neq 0$ ensures $x \sim y \Rightarrow x \sim_{[2]} y$.

Iterated operator

Consider the iterated operator $\Delta[2]=-I+(I+\Delta)^{2}$. We have

$$
\Delta[2] f(x)=\frac{1}{d_{x}} \sum_{y, y \sim\{2]^{x}}\left(\sum_{\substack{z, z \sim x \\ z \sim y}} \frac{1}{d_{z}}\right) f(y)-f(x) .
$$

Proof: For u s.t. $\Delta u=-\lambda_{N-1} u$, we have

$$
\begin{aligned}
2-\lambda_{N-1} & =\frac{(u, \Delta[2] u)}{(u, \Delta u)}=\frac{\sum_{x \sim[2]}\left(\sum_{\substack{z, z \sim x, z \sim y}}, \frac{1}{d_{z}}\right)(u(x)-u(y))^{2}}{\sum_{x \sim y}(u(x)-u(y))^{2}} \\
& \geq \min _{\substack{x \sim y}} \sum_{\substack{z, z \sim x, z \sim y}} \frac{1}{d_{z}} \geq \frac{\min _{x \sim y} \sharp(x, y)}{\max _{x} d_{x}},
\end{aligned}
$$

where we used

- $(f, g)=\sum_{x} f(x) g(x) d_{x} ;$
- $\min _{x \sim y} \sharp(x, y) \neq 0$ ensures $x \sim y \Rightarrow x \sim_{[2]} y$.

Iterated operator

Consider the iterated operator $\Delta[2]=-I+(I+\Delta)^{2}$. We have

$$
\Delta[2] f(x)=\frac{1}{d_{x}} \sum_{y, y \sim[2] \times} \underbrace{\left(\sum_{\substack{z, z \sim x, z \sim y}} \frac{1}{d_{z}}\right)}_{\text {weight! }} f(y)-f(x) .
$$

Proof: For u s.t. $\Delta u=-\lambda_{N-1} u$, we have

$$
\begin{aligned}
2-\lambda_{N-1} & =\frac{(u, \Delta[2] u)}{(u, \Delta u)}=\frac{\sum_{x \sim[2]}\left(\sum_{\substack{z, z \sim x, z \sim y}}, \frac{1}{d_{z}}\right)(u(x)-u(y))^{2}}{\sum_{x \sim y}(u(x)-u(y))^{2}} \\
& \geq \min _{x \sim y} \sum_{\substack{z, z \sim x, z \sim y}} \frac{1}{d_{z}} \geq \frac{\min _{x \sim y} \sharp(x, y)}{\max _{x} d_{x}},
\end{aligned}
$$

where we used

- $(f, g)=\sum_{x} f(x) g(x) d_{x} ;$
- $\min _{x \sim y} \sharp(x, y) \neq 0$ ensures $x \sim y \Rightarrow x \sim_{[2]} y$.

Neighborhood graphs

Definition (Bauer-Jost 2010)
The neighborhood graph $G[t]=(V, E[t])$ of the graph $G=(V, E)$ of order $t \geq 1$ is defined as

- V : unchanged;
- $E[t]$ changed:

$$
w_{x y}[t]:=\delta_{x} P^{t}(y) d_{x}=\sum_{\substack{x_{1}, \ldots, x_{t-1} \\ x \sim x_{1} \sim \ldots \sim x_{t-1} \sim y}} \frac{1}{d_{x_{1}}} \cdots \frac{1}{d_{x_{t-1}}} .
$$

- $x \sim_{[t]} y$ in $G[t]$ iff \exists a path of length t between x and y in G;

Neighborhood graphs

Definition (Bauer-Jost 2010)

The neighborhood graph $G[t]=(V, E[t])$ of the graph $G=(V, E)$ of order $t \geq 1$ is defined as

- V : unchanged;
- $E[t]$ changed:

$$
w_{x y}[t]:=\delta_{x} P^{t}(y) d_{x}=\sum_{\substack{x_{1}, \ldots, x_{t-1} \\ x \sim x_{1} \sim \ldots \sim x_{t-1} \sim y}} \frac{1}{d_{x_{1}}} \cdots \frac{1}{d_{x_{t-1}}} .
$$

- $x \sim_{[t]} y$ in $G[t]$ iff \exists a path of length t between x and y in G;

Neighborhood graphs

Definition (Bauer-Jost 2010)

The neighborhood graph $G[t]=(V, E[t])$ of the graph $G=(V, E)$ of order $t \geq 1$ is defined as

- V : unchanged;
- $E[t]$ changed:

$$
w_{x y}[t]:=\delta_{x} P^{t}(y) d_{x}=\sum_{\substack{x_{1}, \ldots, x_{t-1} \\ x \sim x_{1} \sim \ldots \sim x_{t-1} \sim y}} \frac{1}{d_{x_{1}}} \cdots \frac{1}{d_{x_{t-1}}} .
$$

- $x \sim_{[t]} y$ in $G[t]$ iff \exists a path of length t between x and y in G;

H

$\mathrm{H}[2]$

Neighborhood graphs

Definition (Bauer-Jost 2010)

The neighborhood graph $G[t]=(V, E[t])$ of the graph $G=(V, E)$ of order $t \geq 1$ is defined as

- V : unchanged;
- $E[t]$ changed:

$$
w_{x y}[t]:=\delta_{x} P^{t}(y) d_{x}=\sum_{\substack{x_{1}, \ldots, x_{t-1} \\ x \sim x_{1} \sim \ldots \sim \chi_{t-1} \sim y}} \frac{1}{d_{x_{1}}} \cdots \frac{1}{d_{x_{t-1}}} .
$$

- $x \sim_{[t]} y$ in $G[t]$ iff \exists a path of length t between x and y in G;

H[2]

Neighborhood graphs

Definition (Bauer-Jost 2010)

The neighborhood graph $G[t]=(V, E[t])$ of the graph $G=(V, E)$ of order $t \geq 1$ is defined as

- V : unchanged;
- $E[t]$ changed:

$$
w_{x y}[t]:=\delta_{x} P^{t}(y) d_{x}=\sum_{\substack{x_{1}, \ldots, x_{t-1} \\ x \sim x_{1} \sim \ldots \sim \chi_{t-1} \sim y}} \frac{1}{d_{x_{1}}} \cdots \frac{1}{d_{x_{t-1}}} .
$$

- $x \sim_{[t]} y$ in $G[t]$ iff \exists a path of length t between x and y in G;

Neighborhood graphs

Definition (Bauer-Jost 2010)

The neighborhood graph $G[t]=(V, E[t])$ of the graph $G=(V, E)$ of order $t \geq 1$ is defined as

- V : unchanged;
- $E[t]$ changed:

$$
w_{x y}[t]:=\delta_{x} P^{t}(y) d_{x}=\sum_{\substack{x_{1}, \ldots, x_{t-1} \\ x \sim x_{1} \sim \ldots \sim x_{t-1} \sim y}} \frac{1}{d_{x_{1}}} \cdots \frac{1}{d_{x_{t-1}}} .
$$

- $x \sim_{[t]} y$ in $G[t]$ iff \exists a path of length t between x and y in G;

$$
\begin{gathered}
d_{x}[t]:=\sum_{y} w_{x y}[t]=d_{x} ; \\
\Delta[t]=-I+(I+\Delta)^{t} .
\end{gathered}
$$

Eigenvalues and number of common neighbors

Eigenvalues and coarse Ricci curvature

Ollivier's Ricci curvature notion

Definition (Ollivier, 2009)

For any two distinct points $x, y \in X$, the (Ollivier-) Ricci curvature of G along ($x y$) is defined as

$$
\kappa(x, y):=1-\frac{W_{1}\left(m_{x}, m_{y}\right)}{d(x, y)}
$$

- $W_{1}\left(m_{x}, m_{y}\right)$ is the optimal transportation distance between the two probability measures m_{x} and m_{y} using the graph distance as cost function.

Ollivier's Ricci curvature notion

Definition (Ollivier, 2009)

For any two distinct points $x, y \in X$, the (Ollivier-) Ricci curvature of G along ($x y$) is defined as

$$
\kappa(x, y):=1-\frac{W_{1}\left(m_{x}, m_{y}\right)}{d(x, y)}
$$

- $W_{1}\left(m_{x}, m_{y}\right)$ is the optimal transportation distance between the two probability measures m_{x} and m_{y} using the graph distance as cost function.
- Earlier ideas of defining Ricci curvature on graphs, Dodziuk-Karp 1988, Chung-Yau 1996.

Ricci curvature and common neighbors

Theorem (Jost-L., 2011)
For any pair of neighboring vertices x, y,

$$
\begin{aligned}
\frac{\sharp(x, y)}{d_{x} \vee d_{y}} \geq \kappa(x, y) \geq & -\left(1-\frac{1}{d_{x}}-\frac{1}{d_{y}}-\frac{\sharp(x, y)}{d_{x} \wedge d_{y}}\right)_{+} \\
& -\left(1-\frac{1}{d_{x}}-\frac{1}{d_{y}}-\frac{\sharp(x, y)}{d_{x} \vee d_{y}}\right)_{+}+\frac{\sharp(x, y)}{d_{x} \vee d_{y}} .
\end{aligned}
$$

Moreover, this inequality is sharp for certain graphs.
Notations:
$a_{+}:=\max \{a, 0\}, a \wedge b:=\min \{a, b\}$, and $a \vee b:=\max \{a, b\}$.

- Lower bound improves the estimate of Lin-Yau 2010.

Ricci curvature $\kappa[t]$

$\kappa[t]$ capture the information of number of 3 -cycles on $G[t]$ which may come from

- 3-cycles are preserved from G to $G[t]$.
- $x \in$ an odd cycle in $G \rightarrow x \in 3$-cycles in $G[t]$.

$\Rightarrow x \in$ a single edge in G, then it is still possible that $x \in$ a 3 -cycle in ${ }_{6[t]}$

Ricci curvature $\kappa[t]$

$\kappa[t]$ capture the information of number of 3 -cycles on $G[t]$ which may come from

- 3-cycles are preserved from G to $G[t]$.
- $x \in$ an odd cycle in $G \rightarrow x \in 3$-cycles in $G[t]$.

C_{5}

- $x \in$ a single edge in G, then it is still possible that $x \in$ a 3 -cycle in $G[t]$.

G

Eigenvalues and Curvature

Theorem (Bauer-Jost-L. 2012)
Let $k[t]$ be a lower bound of Ollivier-Ricci curvature of the neighborhood graph $G[t]$. Then for all $t \geq 1$ the eigenvalues of Δ on G satisfy

$$
1-(1-k[t])^{\frac{1}{t}} \leq \lambda_{1} \leq \cdots \leq \lambda_{N-1} \leq 1+(1-k[t])^{\frac{1}{t}} .
$$

Moreover, if G is not bipartite, then there exists a $t^{\prime} \geq 1$ such that for all $t \geq t^{\prime}$ the eigenvalues of Δ on G satisfy

$$
0<1-(1-k[t])^{\frac{1}{t}} \leq \lambda_{1} \leq \cdots \leq \lambda_{N-1} \leq 1+(1-k[t])^{\frac{1}{t}}<2 .
$$

- $t=1$ case follows directly from Ollivier.
is nontrivial only when $k>0$.

Eigenvalues and Curvature

Theorem (Bauer-Jost-L. 2012)

Let $k[t]$ be a lower bound of Ollivier-Ricci curvature of the neighborhood graph $G[t]$. Then for all $t \geq 1$ the eigenvalues of Δ on G satisfy

$$
1-(1-k[t])^{\frac{1}{t}} \leq \lambda_{1} \leq \cdots \leq \lambda_{N-1} \leq 1+(1-k[t])^{\frac{1}{t}} .
$$

Moreover, if G is not bipartite, then there exists a $t^{\prime} \geq 1$ such that for all $t \geq t^{\prime}$ the eigenvalues of Δ on G satisfy

$$
0<1-(1-k[t])^{\frac{1}{t}} \leq \lambda_{1} \leq \cdots \leq \lambda_{N-1} \leq 1+(1-k[t])^{\frac{1}{t}}<2 .
$$

- $t=1$ case follows directly from Ollivier.

$$
k \leq \lambda_{1} \leq \cdots \lambda_{N-1} \leq 2-k
$$

is nontrivial only when $k>0$.

An Example

We consider the graph C_{5}.

$$
\begin{gathered}
\lambda_{1}=1-\cos \frac{2 \pi}{5} \doteq 0.6910, \lambda_{4}=1-\cos \frac{4 \pi}{5} \doteq 1.8090 . k=0 . \\
t=1: 0 \leq \lambda_{1} \leq \lambda_{4} \leq 2 .
\end{gathered}
$$

$t=2: 0.1340 \leq \lambda_{1} \leq \lambda_{4} \leq 1.8660$.

$t=3: 0.1450 \leq \lambda_{1} \leq \lambda_{4} \leq 1.8550$.

An Example

We consider the graph C_{5}.

$$
\begin{gathered}
\lambda_{1}=1-\cos \frac{2 \pi}{5} \doteq 0.6910, \lambda_{4}=1-\cos \frac{4 \pi}{5} \doteq 1.8090 . k[2]=1 / 4 \\
t=1: 0 \leq \lambda_{1} \leq \lambda_{4} \leq 2 \\
t=2: 0.1340 \leq \lambda_{1} \leq \lambda_{4} \leq 1.8660
\end{gathered}
$$

An Example

We consider the graph C_{5}.

$$
\begin{gathered}
\lambda_{1}=1-\cos \frac{2 \pi}{5} \doteq 0.6910, \lambda_{4}=1-\cos \frac{4 \pi}{5} \doteq 1.8090 . k[3]=3 / 8 \\
t=1: 0 \leq \lambda_{1} \leq \lambda_{4} \leq 2 \\
t=2: 0.1340 \leq \lambda_{1} \leq \lambda_{4} \leq 1.8660 \\
t=3: 0.1450 \leq \lambda_{1} \leq \lambda_{4} \leq 1.8550
\end{gathered}
$$

An Example

We consider the graph C_{5}.

$$
\begin{gathered}
\lambda_{1}=1-\cos \frac{2 \pi}{5} \doteq 0.6910, \lambda_{4}=1-\cos \frac{4 \pi}{5} \doteq 1.8090 . k[4]=1 / 2 \\
t=1: 0 \leq \lambda_{1} \leq \lambda_{4} \leq 2
\end{gathered}
$$

$$
t=2: 0.1340 \leq \lambda_{1} \leq \lambda_{4} \leq 1.8660
$$

$$
t=3: 0.1450 \leq \lambda_{1} \leq \lambda_{4} \leq 1.8550
$$

$$
t=4: 0.1591 \leq \lambda_{1} \leq \lambda_{4} \leq 1.8409
$$

Exponential decay

Theorem (Bauer-Jost-L. 2012)
If G is not bipartite, the limit

$$
\lim _{t \rightarrow \infty} \frac{\log (1-k[t])}{t}:=-a
$$

exists with $a \in(0,+\infty]$. That means, $k[t]$ behaves like $1-P(t) e^{-a t}$ as $t \rightarrow \infty$ where $P(t)$ is a polynomial in t.

- Subadditivity implies existence of the limit $-a$ (for $s, t \geq t^{\prime}$, $1-k[t+s] \leq(1-k[s])(1-k[t])) ;$
- Further estimates implies $a>0$.

Exponential decay

Theorem (Bauer-Jost-L. 2012)
If G is not bipartite, the limit

$$
\lim _{t \rightarrow \infty} \frac{\log (1-k[t])}{t}:=-a
$$

exists with $a \in(0,+\infty]$. That means, $k[t]$ behaves like $1-P(t) e^{-a t}$ as $t \rightarrow \infty$ where $P(t)$ is a polynomial in t.
Proof:

- Subadditivity implies existence of the limit $-a$ (for $s, t \geq t^{\prime}$,

$$
1-k[t+s] \leq(1-k[s])(1-k[t])) ;
$$

- Further estimates implies $a>0$.

Thank you for your attentions!

