A conjecture of Thomassen on Hamilton cycles in highly connected tournaments

Viresh Patel

School of Mathematics
University of Birmingham

20 July 2013 / Graph Theory and Interactions

Joint work with Daniela Kühn, John Lapinskas, and Deryk Osthus

Basics

- A tournament is an oriented complete graph.
- A Hamilton cycle (HC) in T is a consistently oriented cycle through every vertex of T.
- Interested in edge-disjoint Hamilton cycles

- A tournament is an oriented complete graph.
- A Hamilton cycle (HC) in T is a consistently oriented cycle through every vertex of T.
- Interested in edge-disjoint Hamilton cycles

Basics

- A tournament is an oriented complete graph.
- A Hamilton cycle (HC) in T is a consistently oriented cycle through every vertex of T.
- Interested in edge-disjoint Hamilton cycles

Basics

- What conditions guarantee a Hamilton cycle in a tournament?
- What prevents a Hamilton cycle in a tournament?

Basics

- What conditions guarantee a Hamilton cycle in a tournament?
- What prevents a Hamilton cycle in a tournament?

Basics

- What conditions guarantee a Hamilton cycle in a tournament?
- What prevents a Hamilton cycle in a tournament?

- No HC since no path from y to x.
- i.e. the tournament is not strongly connected.

Connectivity

A tournament T is strongly connected if for all $x, y \in V(T)$,
\exists a path from x to y and \exists a path from y to x.

- Have seen T contains a $\mathrm{HC} \Longrightarrow T$ strongly connected.

Theorem (Camion, 1959)

If T is strongly connected then T contains a HC.

- The proof is about half a page long.

Can we get more (edge-disioint) HCs?

Connectivity

A tournament T is strongly connected if for all $x, y \in V(T)$,
\exists a path from x to y and \exists a path from y to x.

- Have seen T contains a HC $\Longrightarrow T$ strongly connected.

Theorem (Camion, 1959)

If T is strongly connected then T contains a HC.

- The proof is about half a page long.

Can we get more (edge-disjoint) HCs?

Connectivity

A tournament T is strongly connected if for all $x, y \in V(T)$,
\exists a path from x to y and \exists a path from y to x.

- Have seen T contains a HC $\Longrightarrow T$ strongly connected.

Theorem (Camion, 1959)

If T is strongly connected then T contains a HC.

- The proof is about half a page long.

Can we get more (edge-disjoint) HCs?

More edge-disjoint HCs

We need a stronger condition to force more edge-disjoint HCs.
A tournament T is strongly r-connected if deleting any $r-1$ vertices keeps T strongly connected.

Conjecture (Thomassen, 1982)

$\forall k, \exists f(k)$ s.t. if T is a strongly $f(k)$-connected tournament, then
T contains k edge-disjoint HCs.
Know $f(1)=1$. Not known whether $f(2)$ exists.
\square
For everv $k, f(k)$ exists, and we can take $f(k)=C\left(k^{2} \log ^{2} k\right)$
This is asymptotically best possible up to the logarithmic factor.

More edge-disjoint HCs

We need a stronger condition to force more edge-disjoint HCs.
A tournament T is strongly r-connected if deleting any $r-1$ vertices keeps T strongly connected.

Conjecture (Thomassen, 1982)

$\forall k, \exists f(k)$ s.t. if T is a strongly $f(k)$-connected tournament, then T contains k edge-disjoint HCs.

Know $f(1)=1$. Not known whether $f(2)$ exists.
\square
For every $k, f(k)$ exists, and we can take $f(k)=O\left(k^{2} \log ^{2} k\right)$
This is asymptotically best possible up to the logarithmic factor.

More edge-disjoint HCs

We need a stronger condition to force more edge-disjoint HCs.
A tournament T is strongly r-connected if deleting any $r-1$ vertices keeps T strongly connected.

Conjecture (Thomassen, 1982)

$\forall k, \exists f(k)$ s.t. if T is a strongly $f(k)$-connected tournament, then
T contains k edge-disjoint HCs.
Know $f(1)=1$. Not known whether $f(2)$ exists.
Theorem (Kühn, Lapinskas, Osthus, P., 2013+)
For every $k, f(k)$ exists, and we can take $f(k)=O\left(k^{2} \log ^{2} k\right)$.
This is asymptotically best possible up to the logarithmic factor.

Theorem (Kühn, Lapinskas, Osthus, P., 2013+)
 For every $k, f(k)$ exists, and we can take $f(k)=O\left(k^{2} \log ^{2} k\right)$.

This is asymptotically best possible up to the logarithmic factor.

```
- Every strongly (10 12 k 知 2 k)-connected tournament
    contains k edge-disjoint HCs.
- }\forallk,f(k)>\mp@subsup{k}{}{2}/
    there exists a tournament that is
    - strongly k}\mp@subsup{k}{}{2}/4-connected
    - does not contain k edge-disjoint HCs.
```

Conjecture (Kühn, Lapinskas, Osthus, P.)
We can take $f(k)=c k^{2}$ for some constant c.

Theorem (Kühn, Lapinskas, Osthus, P., 2013+)
 For every $k, f(k)$ exists, and we can take $f(k)=O\left(k^{2} \log ^{2} k\right)$.

This is asymptotically best possible up to the logarithmic factor.

- Every strongly $\left(10^{12} k^{2} \log ^{2} k\right)$-connected tournament contains k edge-disjoint HCs.
there exists a tournament that is
- strongly $k^{2} / 4$-connected,
- does not contain k edge-disjoint HCs.

Conjecture (Kühn, Lapinskas, Osthus, P.)
 We can take $f(k)=c k^{2}$ for some constant c.

Theorem (Kühn, Lapinskas, Osthus, P., 2013+)
 For every $k, f(k)$ exists, and we can take $f(k)=O\left(k^{2} \log ^{2} k\right)$.

This is asymptotically best possible up to the logarithmic factor.

- Every strongly $\left(10^{12} k^{2} \log ^{2} k\right)$-connected tournament contains k edge-disjoint HCs.
- $\forall k, f(k)>k^{2} / 4$:
there exists a tournament that is
- strongly $k^{2} / 4$-connected,
- does not contain k edge-disjoint HCs.

Conjecture (Kühn, Lapinskas, Osthus, P.)
 We can take $f(k)=c k^{2}$ for some constant c.

Theorem (Kühn, Lapinskas, Osthus, P., 2013+)

For every $k, f(k)$ exists, and we can take $f(k)=O\left(k^{2} \log ^{2} k\right)$.
This is asymptotically best possible up to the logarithmic factor.

- Every strongly $\left(10^{12} k^{2} \log ^{2} k\right)$-connected tournament contains k edge-disjoint HCs.
- $\forall k, f(k)>k^{2} / 4$:
there exists a tournament that is
- strongly $k^{2} / 4$-connected,
- does not contain k edge-disjoint HCs.

Theorem (Kühn, Lapinskas, Osthus, P., 2013+)

For every $k, f(k)$ exists, and we can take $f(k)=O\left(k^{2} \log ^{2} k\right)$.
This is asymptotically best possible up to the logarithmic factor.

- Every strongly $\left(10^{12} k^{2} \log ^{2} k\right)$-connected tournament contains k edge-disjoint HCs.
- $\forall k, f(k)>k^{2} / 4$:
there exists a tournament that is
- strongly $k^{2} / 4$-connected,
- does not contain k edge-disjoint HCs.

Conjecture (Kühn, Lapinskas, Osthus, P.)

We can take $f(k)=c k^{2}$ for some constant c.

Related results

Thomassen's Conjecture with edge-connectivity?

- $\forall k, \exists g(k)$ s.t. every strongly $g(k)$-edge-connected tournament contains k edge-disjoint HCs.
- False. (Thomassen, 1982)

Kelly's Conjecture
 - How many edge-disjoint HCs are we guaranteed in a highly connected tournament?
 - Regular tournaments are highly connected.

Conjecture (Kelly, 1968)
 Every reaular tournament on n (odd) vertices has a Hamilton decomposition, i.e. $(n-1) / 2$ edge-disjoint HCs.

- Proved by Kühn, Osthus, 2013.
- Thomassen's Conjecture motivated by Kelly's Conjecture

Related results

Thomassen's Conjecture with edge-connectivity?

- $\forall k, \exists g(k)$ s.t. every strongly $g(k)$-edge-connected tournament contains k edge-disjoint HCs.
- False. (Thomassen, 1982)

Kelly's Conjecture

- How many edge-disjoint HCs are we guaranteed in a highly connected tournament?
- Regular tournaments are highly connected.
\square Conjecture (Kely, 1968) Every regular tournament on n (odd) vertices has a Hamilton decomposition, i.e. $(n-1) / 2$ edge-disjoint HCs.
\square
- Thomassen's Conjecture motivated by Kelly's Conjecture.

Related results

Thomassen's Conjecture with edge-connectivity?

- $\forall k, \exists g(k)$ s.t. every strongly $g(k)$-edge-connected tournament contains k edge-disjoint HCs.
- False. (Thomassen, 1982)

Kelly's Conjecture

- How many edge-disjoint HCs are we guaranteed in a highly connected tournament?
- Regular tournaments are highly connected.

Conjecture (Kelly, 1968)

Every regular tournament on n (odd) vertices has a Hamilton decomposition, i.e. $(n-1) / 2$ edge-disjoint HCs.

- Proved by Kühn, Osthus, 2013.
- Thomassen's Conjecture motivated by Kelly's Conjecture.

Lower bound: $f(k)>k^{2} / 4$

Lower bound: $f(k)>k^{2} / 4$

Lower bound: $f(k)>k^{2} / 4$

Lower bound: $f(k)>k^{2} / 4$

All edges between A, B, C are from left to right, except for a perfect matching from B to A.

Lower bound: $f(k)>k^{2} / 4$

All edges between A, B, C are from left to right, except for a perfect matching from B to A.

- T_{k} is strongly $k^{2} / 4$-connected

Lower bound: $f(k)>k^{2} / 4$

All edges between A, B, C are from left to right, except for a perfect matching from B to A.

- T_{k} is strongly $k^{2} / 4$-connected
- T_{k} does not contain k edge-disjoint HCs:

Lower bound: $f(k)>k^{2} / 4$

All edges between A, B, C are from left to right, except for a perfect matching from B to A.

- T_{k} is strongly $k^{2} / 4$-connected
- T_{k} does not contain k edge-disjoint HCs: k edge-disjoint HCs require $>k^{2} / 2$ backwards edges (because of C)

Sketch proof

- Will give a sketch of why $f(2) \leq 10^{13}$
- i.e. will sketch why every strongly 10^{13}-connected tournament contains 2 edge-disjoint HCs.
- Use essentially the same ideas for the full result.

Sketch proof

- Will give a sketch of why $f(2) \leq 10^{13}$
- i.e. will sketch why every strongly 10^{13}-connected tournament contains 2 edge-disjoint HCs.
- Use essentially the same ideas for the full result.

Sketch proof

- Will give a sketch of why $f(2) \leq 10^{13}$
- i.e. will sketch why every strongly 10^{13}-connected tournament contains 2 edge-disjoint HCs.
- Use essentially the same ideas for the full result.

Are there any useful properties of all tournaments?

Theorem (Redei, 1934)

Every tournament has a Hamilton path, i.e. a consistently oriented path through every vertex.

```
Proposition
Let T be any tournament and let D\subseteqT s.t. }\triangle(D)\leqt\mathrm{ . Then in
T - D there exist paths }\mp@subsup{Q}{1}{},\ldots,\mp@subsup{Q}{t+1}{}\mathrm{ s.t.
    - }\mp@subsup{Q}{1}{},\ldots,\mp@subsup{Q}{t+1}{}\mathrm{ are vertex-disjoint,
    - }V(\mp@subsup{Q}{1}{})\cup\cdots\cupV(\mp@subsup{Q}{t+1}{})=V(T
```

The case $t=0$ is Redei's Theorem.

Sketch Proof

Are there any useful properties of all tournaments?

Theorem (Redei, 1934)

Every tournament has a Hamilton path, i.e. a consistently oriented path through every vertex.

Proposition

Let T be any tournament and let $D \subseteq T$ s.t. $\Delta(D) \leq t$. Then in T - D there exist paths Q_{1}, \ldots, Q_{t+1} s.t.

- Q_{1}, \ldots, Q_{t+1} are vertex-disjoint,
- $V\left(Q_{1}\right) \cup \cdots \cup V\left(Q_{t+1}\right)=V(T)$.

The case $t=0$ is Redei's Theorem.

Sketch Proof

Are there any useful properties of all tournaments?

Theorem (Redei, 1934)

Every tournament has a Hamilton path, i.e. a consistently oriented path through every vertex.

Proposition

Let T be any tournament and let $D \subseteq T$ s.t. $\Delta(D) \leq t$. Then in T - D there exist paths Q_{1}, \ldots, Q_{t+1} s.t.

- Q_{1}, \ldots, Q_{t+1} are vertex-disjoint,
- $V\left(Q_{1}\right) \cup \cdots \cup V\left(Q_{t+1}\right)=V(T)$.

The case $t=0$ is Redei's Theorem.

Edge-disjoint path covers

Given tournament T

- take $P=$ Hamilton path, so $\Delta(P)=2$

Edge-disjoint path covers

Given tournament T

- take $P=$ Hamilton path, so $\Delta(P)=2$
- Proposition $\Longrightarrow \exists Q_{1}, Q_{2}, Q_{3}$ s.t.
- $V\left(Q_{1}\right) \sqcup V\left(Q_{2}\right) \sqcup V\left(Q_{3}\right)=V(T)$
- Q_{1}, Q_{2}, Q_{3} edge-disjoint from P

Key idea of the proof - linking structure

Let T be a strongly 10^{13}-connected tournament
We can find a linking structure $L \subseteq T$ s.t.

- $|V(L)| \leq|V(T)| / 100$
- $\Delta(L) \leq 4$
and where L has the following key property:
Given any 5 vertex-disjoint paths P_{1}, \ldots, P_{5} outside of $V(L)$
a each path can be extended into $V(L)$ with a single (suitable) edge
b these extended paths can be connected into a cycle C using edges of L
c the cycle C uses all vertices of L

Key idea of the proof - linking structure

Let T be a strongly 10^{13}-connected tournament

We can find a linking structure $L \subseteq T$ s.t.

- $|V(L)| \leq|V(T)| / 100$
- $\Delta(L) \leq 4$
and where L has the following key property:
Given any 5 vertex-disjoint paths P_{1}, \ldots, P_{5} outside of $V(L)$
a each path can be extended into $V(L)$ with a single (suitable) edge
b these extended paths can be connected into a cycle C using edges of L
c the cycle C uses all vertices of L

Key idea of the proof - linking structure

Key idea of the proof - linking structure

Key idea of the proof - linking structure

Key idea of the proof - linking structure

Key idea of the proof - linking structure

Key idea of the proof - linking structure

If P_{1}, P_{2}, P_{3} cover all of $V(T) \backslash V(L)$ then we obtain a HC.

Obtaining two edge-disjoint HC

How do we find edge-disjoint $H C_{\text {red }}$ and $H C_{\text {blue }}$?

- Find two vertex-disjoint linking structures $L_{\text {red }}$ and $L_{\text {blue }}$ in T.

Obtaining two edge-disjoint HC

How do we find edge-disjoint $H C_{\text {red }}$ and $H C_{\text {blue }}$?

- Find two vertex-disjoint linking structures $L_{\text {red }}$ and $L_{\text {blue }}$ in T.

Obtaining two edge-disjoint HC

For $H C_{\text {red }}$: can find 5 vertex-disjoint red paths s.t.

- they cover $V(T) \backslash V\left(L_{\text {red }}\right)$
- they are edge-disjoint from $L_{\text {blue }}\left(\right.$ recall $\left.\Delta\left(L_{\text {blue }}\right) \leq 4\right)$

Obtaining two edge-disjoint HC

For $H C_{\text {red }}$: can find 5 vertex-disjoint red paths s.t.

- they cover $V(T) \backslash V\left(L_{\text {red }}\right)$
- they are edge-disjoint from $L_{\text {blue }}\left(\right.$ recall $\left.\Delta\left(L_{\text {blue }}\right) \leq 4\right)$

Obtaining two edge-disjoint HC

For $H C_{\text {red }}$: can find 5 vertex-disjoint red paths s.t.

- they cover $V(T) \backslash V\left(L_{\text {red }}\right)$
- they are edge-disjoint from $L_{\text {blue }}\left(\right.$ recall $\left.\Delta\left(L_{\text {blue }}\right) \leq 4\right)$

Obtaining two edge-disjoint HC

For $H C_{\text {red }}$: can find 5 vertex-disjoint red paths s.t.

- they cover $V(T) \backslash V\left(L_{\text {red }}\right)$
- they are edge-disjoint from $L_{\text {blue }}\left(\right.$ recall $\left.\Delta\left(L_{\text {blue }}\right) \leq 4\right)$

Obtaining two edge-disjoint HC

For $H C_{\text {blue }}$: can find 3 vertex-disjoint (blue) paths s.t.

- they cover $V(T) \backslash V\left(L_{\text {blue }}\right)$
- they are edge-disjoint from $H C_{\text {red }}\left(\Delta\left(H C_{\text {red }}\right)=2\right)$

Obtaining two edge-disjoint HC

For $H C_{\text {blue }}$: can find 3 vertex-disjoint (blue) paths s.t.

- they cover $V(T) \backslash V\left(L_{\text {blue }}\right)$
- they are edge-disjoint from $H C_{\text {red }}\left(\Delta\left(H C_{\text {red }}\right)=2\right)$

Obtaining two edge-disjoint HC

For $H C_{\text {blue }}$: can find 3 vertex-disjoint (blue) paths s.t.

- they cover $V(T) \backslash V\left(L_{\text {blue }}\right)$
- they are edge-disjoint from $H C_{\text {red }}\left(\Delta\left(H C_{\text {red }}\right)=2\right)$

Key idea of the proof - linking structure

The linking structure L consists of
\square

Key idea of the proof - linking structure

The linking structure L consists of
a 5 in-dominating sets A_{1}, \ldots, A_{5} and 5 out-dominating sets B_{1}, \ldots, B_{5}

Key idea of the proof - linking structure

The linking structure L consists of
a 5 in-dominating sets A_{1}, \ldots, A_{5} and 5 out-dominating sets B_{1}, \ldots, B_{5}

Key idea of the proof - linking structure

The linking structure L consists of
a 5 in-dominating sets A_{1}, \ldots, A_{5} and 5 out-dominating sets B_{1}, \ldots, B_{5}

Key idea of the proof - linking structure

The linking structure L consists of
a 5 in-dominating sets A_{1}, \ldots, A_{5} and 5 out-dominating sets B_{1}, \ldots, B_{5} (with a Hamilton path in each set)

Key idea of the proof - linking structure

The linking structure L consists of
b vertex-disjoint paths $P_{1}^{*}, \ldots, P_{5}^{*}$ where P_{i}^{*} is from head of A_{i} to tail of B_{i}

Key idea of the proof - linking structure

The linking structure L consists of
b vertex-disjoint paths $P_{1}^{*}, \ldots, P_{5}^{*}$ where P_{i}^{*} is from head of A_{i} to tail of B_{i}

Key idea of the proof - linking structure

Given 3 paths outside L ...

T

Key idea of the proof - linking structure

Given 3 paths outside L ...

- can extend paths into L to form cycle

Key idea of the proof－linking structure

Given 3 paths outside L ．．．
－can extend paths into L to form cycle

Key idea of the proof - linking structure

Given 3 paths outside L ...

- can extend paths into L to form cycle

Key idea of the proof - linking structure

Given 3 paths outside L ...

- can extend paths into L to form cycle
- but the cycle does not contain all vertices of L.

Covering Edges

Method for absorbing vertices into cycles

Covering Edges

Method for absorbing vertices into cycles

- Let $x \in V(T)$ and $y z \in E(T)$.
- $y z$ is a covering edge for x if $y x, x z \in E(T)$.

Covering Edges

Method for absorbing vertices into cycles

- Let $x \in V(T)$ and $y z \in E(T)$.
- $y z$ is a covering edge for x if $y x, x z \in E(T)$.
- For C a cycle, if $x \notin V(C)$ and $y z \in E(C)$, then can absorb x into C.

Covering Edges

Method for absorbing vertices into cycles

- Let $x \in V(T)$ and $y z \in E(T)$.
- $y z$ is a covering edge for x if $y x, x z \in E(T)$.
- For C a cycle, if $x \notin V(C)$ and $y z \in E(C)$, then can absorb x into C.

Key idea of the proof - linking structure

L consists of dominating sets linked by paths and ...

Key idea of the proof - linking structure

L consists of dominating sets linked by paths and ...
c a distinct covering edge on P_{3}^{*} for each vertex in our dominating sets

Key idea of the proof - linking structure

Given 3 paths outside L ...

Key idea of the proof - linking structure

Given 3 paths outside L...

- can extend paths into L to form cycle C

T

Key idea of the proof - linking structure

Given 3 paths outside L ...

- can extend paths into L to form cycle C
- and use covering edges to absorb any missing vertices into C.

Linking structure and connectivity

This completes the proof sketch except ... where do we use connectivity?

- Use strong connectivity to construct P_{i}^{*}
- In fact use linkedness to construct P_{i}^{*}.

Linking structure and connectivity

This completes the proof sketch except ... where do we use connectivity?

- Use strong connectivity to construct P_{i}^{*}.
- In fact use linkedness to construct P_{i}^{*}.

Linking structure and connectivity

This completes the proof sketch except ... where do we use connectivity?

- Use strong connectivity to construct P_{i}^{*}.
- In fact use linkedness to construct P_{i}^{*}.

Connectivity and linkedness

Menger's Theorem (for tournaments)

If T is strongly r-connected with $X, Y \subseteq V(T)$ of size r, then can find r vertex-disjoint $X-Y$-paths.

Connectivity and linkedness

Linkedness (for tournaments)

T is r-linked if given any r pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)$, there exist vertex-disjoint paths connecting x_{i} to $y_{i} \forall i$.

Connectivity and Linkedness

Theorem (Thomassen, 1984)
If a tournament is strongly ck!-connected, then it is k-linked.

Theorem (Kühn, Lapinskas, Osthus, P., 2013+)
If a tournament is strongly ck log k-connected, then it is k-linked.

Short proof based on the idea of a sorting network.
Conjecture (Kühn, Lapinskas, Osthus, P.)
If a tournament is strongly ck-connected, then it is k-linked.

Connectivity and Linkedness

Theorem (Thomassen, 1984)

If a tournament is strongly ck!-connected, then it is k-linked.

Theorem (Kühn, Lapinskas, Osthus, P., 2013+)
If a tournament is strongly ck log k-connected, then it is k-linked.

Short proof based on the idea of a sorting network.
Conjecture (Kühn, Lapinskas, Osthus, P.)
If a tournament is strongly ck-connected, then it is k-linked.

Connectivity and Linkedness

Theorem (Thomassen, 1984)

If a tournament is strongly ck!-connected, then it is k-linked.

Theorem (Kühn, Lapinskas, Osthus, P., 2013+)

If a tournament is strongly ck log k-connected, then it is k-linked.

Short proof based on the idea of a sorting network.
\square
If a tournament is strongly ck-connected, then it is k-linked.

Connectivity and Linkedness

Theorem (Thomassen, 1984)

If a tournament is strongly ck!-connected, then it is k-linked.

Theorem (Kühn, Lapinskas, Osthus, P., 2013+)

If a tournament is strongly ck log k-connected, then it is k-linked.

Short proof based on the idea of a sorting network.
Conjecture (Kühn, Lapinskas, Osthus, P.)
If a tournament is strongly ck-connected, then it is k-linked.

Connectivity, linkedness, and sorting networks

Given T strongly $c k \log k$-connected, find vertex-disjoint paths from x_{i} to y_{i} (example: $k=3$)
\square

Connectivity, linkedness, and sorting networks

Given T strongly $c k \log k$-connected, find vertex-disjoint paths from x_{i} to y_{i} (example: $k=3$)

Connectivity, linkedness, and sorting networks

Given T strongly $c k \log k$-connected, find vertex-disjoint paths from x_{i} to y_{i} (example: $k=3$)

Connectivity, linkedness, and sorting networks

Given T strongly $c k \log k$-connected, find vertex-disjoint paths from x_{i} to y_{i} (example: $k=3$)

Connectivity, linkedness, and sorting networks

Given T strongly $c k \log k$-connected, find vertex-disjoint paths from x_{i} to y_{i} (example: $k=3$)

Connectivity, linkedness, and sorting networks

Given T strongly $c k \log k$-connected, find vertex-disjoint paths from x_{i} to y_{i} (example: $k=3$)

Connectivity, linkedness, and sorting networks

Given T strongly $c k \log k$-connected, find vertex-disjoint paths from x_{i} to y_{i} (example: $k=3$)

- The structure S 'simulates' a sorting network

Connectivity, linkedness, and sorting networks

Given T strongly $c k \log k$-connected, find vertex-disjoint paths from x_{i} to y_{i} (example: $k=3$)

- The structure S 'simulates’ a sorting network
- Crossing edges correspond to comparators

Connectivity, linkedness, and sorting networks

Given T strongly ck log k-connected, find vertex-disjoint paths from x_{i} to y_{i} (example: $k=3$)

- The structure S 'simulates' a sorting network
- Crossing edges correspond to comparators
- \exists sorting network with ck log k comparators (Ajtai, Komlós, Szemerédi, 1983) \Longrightarrow can find small S

Connectivity and Linkedness

Conjecture (Kühn, Lapinskas, Osthus, P.)
If a tournament is strongly ck-connected, then it is k-linked.

Evidence for:

- 22k-connected graphs are k linked (Bollobás, Thomason, 1996).
- 10k-connected graphs are k linked (Thomas, Wollan, 2005)

Evidence against:

- $\forall k \exists$ strongly k-connected digraph that is not 2-linked (Thomassen, 1991).

If the conjecture holds then we can take $f(k)=O\left(k^{2} \log k\right)$
rather than $f(k)=O\left(k^{2} \log ^{2} k\right)$.

Connectivity and Linkedness

Conjecture (Kühn, Lapinskas, Osthus, P.)
If a tournament is strongly ck-connected, then it is k-linked.

Evidence for:

- 22k-connected graphs are k linked (Bollobás, Thomason, 1996).
- 10k-connected graphs are k linked (Thomas, Wollan, 2005)

Evidence against:

- $\forall k \exists$ strongly k-connected digraph that is not 2-linked (Thomassen, 1991).

If the conjecture holds then we can take $f(k)=O\left(k^{2} \log k\right)$ rather than $f(k)=O\left(k^{2} \log ^{2} k\right)$.

Connectivity and Linkedness

Conjecture (Kühn, Lapinskas, Osthus, P.)
If a tournament is strongly ck-connected, then it is k-linked.

Evidence for:

- 22k-connected graphs are k linked (Bollobás, Thomason, 1996).
- 10k-connected graphs are k linked (Thomas, Wollan, 2005)

Evidence against:

- $\forall k \exists$ strongly k-connected digraph that is not 2-linked (Thomassen, 1991).

If the conjecture holds then we can take $f(k)=O\left(k^{2} \log k\right)$
\square

Connectivity and Linkedness

Conjecture (Kühn, Lapinskas, Osthus, P.)

If a tournament is strongly ck-connected, then it is k-linked.

Evidence for:

- 22k-connected graphs are k linked (Bollobás, Thomason, 1996).
- 10k-connected graphs are k linked (Thomas, Wollan, 2005)

Evidence against:

- $\forall k \exists$ strongly k-connected digraph that is not 2-linked (Thomassen, 1991).

If the conjecture holds then we can take $f(k)=O\left(k^{2} \log k\right)$ rather than $f(k)=O\left(k^{2} \log ^{2} k\right)$.

