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High order conforming elements on pyramids

Why?

Arise naturally as ’glueing’ elements in hybrid meshes

Because the design and proofs presented interesting
challenges.

Steven J. Owen, Scott A. Canann and Sunil Saigal, 
Department of Civil and Environmental Engineering, Carnegie Mellon University
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High order conforming elements on pyramids

Pyramidal elements as ’glueing’ elements

Bergot and Durufle, JCP 2013
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High order conforming elements on pyramids

WHY?
A successful 3-D finite element code for Maxwell’s
equations must include all four kinds of geometrical
shapes: tets, hexes, prisms and pyramids. The theory of
exact sequences and higher order elements for the
pyramid element remains one of the most urgent research
issues.

- L. Demkowicz.
Mixed Finite Elements, Compatibility Conditions, and Applications,
C.I.M.E. Summer School held in Cetraro 2006.
HOW?

Finite element exterior calculus is an approach to the
design and understanding of finite element discretizations
for a wide variety of systems of partial di↵erential
equations.

- Arnold, Falk, Winther, Acta Numerica, 2006.
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High order conforming elements on pyramids

Ground rules

1) Compatibility.

2) Approximation. The discrete spaces U (s),k(K ) should allow for
high-order approximation.

3) Stability: The elements satisfy a commuting diagram property:

H r (K )
r����! Hr�1(curl,K )

r⇥����! Hr�1(div,K )
r·����! H r�1(K )

⇧(0)

?

?

y ⇧(1)

?

?

y ⇧(2)

?

?

y ⇧(3)

?

?

y

R(0),k(K )
r����! R(1),k(K )

r⇥����! R(2),k(K )
r·����! R(3),k(K )

Here ⇧(s), s=0,1,2,3, denote interpolation operators induced
by the degrees of freedom, and r is chosen so that the
interpolation operators are well defined.

Tuesday, July 8, 14



High order conforming elements on pyramids

We shall focus on a�ne families

Our work is for a�ne-mapped pyramidal elements and
shape-regular meshes.
Bilinear transformations can lead to loss of approximation (Arnold,
Bo�, Falk, 2002, Bo� 2006.)
Recently, Bergot and Duruflé (JCP 2013) provide elements which
allow for bilinear transformations of pyramids.
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High order conforming elements on pyramids

Continuous elements on pyramids

Wachspress 1975. General polyhedral elements with
3-vertices. Generalises to pyramids.

Bedrosian 1992. First and second order pyramidal elements.

Macro-element based approaches. Wieners 1997...

Sherwin 1997; Chatzi 2000. Attempts at high order.

Bergot, Cohen, Durufle, 2010, 2013, 2014. Includes survey.
“Optimal” high order elements.
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High order conforming elements on pyramids

Conforming pyramidal elements for the de Rham complex

Graglia, 1999. First and second order edge and face elements.

Gradinaru and Hiptmair, 1999. First order elements. Proof of
commutativity.

Zaglmayr. High order: local exact sequences.

Bossavit, 2008. Canonical construction of first order.

Bergot et. al: 2010, 2013, 2014.

Nigam and Phillips, (arXiV) 2007, 2011, 2012. High order:
infinite pyramid.
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High order conforming elements on pyramids

Attempt #1

High-order conforming FEM on hexahedra are well-known...

... so can we use Du↵y transform from cube to pyramid?
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High order conforming elements on pyramids

Theorem

There is no (high order) conforming pyramidal continuous finite
element whose approximation space consists purely of polynomials.

(Bedrossian 92, Wieners 97, Warren 02, NP 07.)

u(x , y , z) =
xz(1� x � z)(1� y � z)

1� z
p(x , y , z) = xz(1� x � z)(1� y � z)

(r(x , z) + ys(x , y , z))

p(x , 0, z) = xz(1� x � z)(1� z)r(x , z)

u(x , 0, z) = xz(1� x � z)

) r(x , z) =
1

1� z

p is a polynomial, conforming, 
interpolant of u (?)
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High order conforming elements on pyramids

Negative result: many versions

It is impossible to construct pyramidal conforming, compatible
high-order finite elements using only polynomials.

There is no conforming global interpolant onto element-wise
polynomials for pyramidal elements.

If ⇡r : H r+1(K ) ! Pr is a projector onto element-wise
polynomials, ku � ⇡ruk1,⌦ cannot be bounded.

This has consequences for construction and for analysis.

Tuesday, July 8, 14



High order conforming elements on pyramids

A strange ’reference’ element

Let K denote reference pyramidal element with square base

K = {(⇠, ⌘, ⇣) | 0  ⇣  1, 0  ⇠, ⌘  ⇣}.

Use ‘infinite reference pyramidal element’ K1

Use pullback mapping induced by the bijection

� : K1 ! K
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High order conforming elements on pyramids

What happens on K1?

Start on K1

Use ‘k-weighted’ tensorial
polynomials

Q l ,m,n
k (x , y , z) =

⇢

u

(1 + z)k
: u 2 Q l ,m,n(x , y , z)

�

.

Consider p1(x , y , z) = x on K1 �! (��1)⇤p = ⇠
1�⇣ onK .

If ↵�(t) = (�(1� t), 0, t) then limt!1(��1)⇤p(↵�(t)) = �
) Must not have p1 in H1

w - approximation space.

Consider the function

p2(x , y , z) =
zk

(1 + z)k
, onK1 �! (��1)⇤p2 = ⇣k .

) Must retain p2 in the H1
w - approximation space.
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High order conforming elements on pyramids

High order elements on K1

We have introduced 3 families of approximation spaces on the
infinite pyramid for s = 0, 1, 2, 3, approximation order k :

1. ’First family’ U (s),k (NP 2007, 2011)

2. ’Second family’ R(s),k (NP 2012)

3. ’Serendipity’ S(s),k (NPP, 2014)
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High order conforming elements on pyramids

Family 1

Definition: Underlying spaces via ‘k-weighted’ tensorial polynomials

Define spaces U (s),k on K1, for s = {0, 1, 2, 3} and k � 0

U (0),k = {u 2 Qk,k,k
k : ru 2 Qk�1,k,k�1

k+1 ⇥ Qk,k�1,k�1
k+1 ⇥ Qk,k,k�1

k+1 }

U (1),k = {u 2 Qk�1,k,k
k+1 ⇥ Qk,k�1,k

k+1 ⇥ Qk,k,k�1
k+1 :

r⇥ u 2 Qk,k�1,k�1
k+2 ⇥ Qk�1,k,k�1

k+2 ⇥ Qk�1,k�1,k
k+2 }

U (2),k = {u 2 Qk,k�1,k�1
k+2 ⇥ Qk�1,k,k�1

k+2 ⇥ Qk�1,k�1,k
k+2 :

r · u 2 Qk�1,k�1,k�1
k+3 }

U (3),k = {u 2 Qk�1,k�1,k�1
k+3 }

First Finite element Family U (s),k : functions u 2 U (s),k such that
on K ,(��1) ⇤ u has appropriate polynomial traces onto faces and
edges.
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High order conforming elements on pyramids

Family 2: High order elements on K1

Q l ,m,n
k (x , y , z) =

⇢

u

(1 + z)k
: u 2 Q l ,m,n(x , y , z)

�

.

Q [l ,m]
k = {x

ayb(1 + z)k�c

(1 + z)k
: c  k , a  c + l � k , b  c +m � k}.

These spaces can be characterised via a decomposition into spaces
of exactly r -weighted tensor product polynomials,

Q [l ,m]
k =

k
M

r=0

Qr+l�k,r+m�k,0
r .
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High order conforming elements on pyramids

Family 2: High order elements on K1

Definition

Define spaces R(s),k on K1, for s = {0, 1, 2, 3} and k � 0

R(0),k(K1) = Q [k,k]
k ,

R(1),k(K1) =
⇣

Q [k�1,k]
k+1 ⇥ Q [k,k�1]

k+1 ⇥ {0}
⌘

� {ru : u 2 Q [k,k]
k },

R(2),k(K1) =
⇣

{0}⇥ {0}⇥ Q [k�1,k�1]
k+2

⌘

�
n

r⇥ u : u 2
⇣

Q [k�1,k]
k+1 ⇥ Q [k,k�1]

k+1 ⇥ {0}
⌘o

,

R(3),k(K1) = Q [k�1,k�1]
k+3 .

R(s),k(K ) :=
n

(��1)⇤u : u 2 R(s),k(K1)
o

, s = 0, 1, 2, 3.
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High order conforming elements on pyramids

Properties

R(0),k = Q [k,k]
k ,

R(1),k =
⇣

Q [k�1,k]
k+1 ⇥ Q [k,k�1]

k+1 ⇥ {0}
⌘

� {ru : u 2 Q [k,k]
k },

R(2),k =
⇣

{0}⇥ {0}⇥ Q [k�1,k�1]
k+2

⌘

�
n

r⇥ u : u 2
⇣

Q [k�1,k]
k+1 ⇥ Q [k,k�1]

k+1 ⇥ {0}
⌘o

,

R(3),k = Q [k�1,k�1]
k+3 .

The exterior derivatives, d : R(s),k ! R(s+1),k are well defined. r
is injective on Q [k,k]/R;

curl is injective on
⇣

Q [k�1,k]
k+1 ⇥ Q [k,k�1]

k+1 ⇥ {0}
⌘

and div is a bijection from
⇣

{0}⇥ {0}⇥ Q [k�1,k�1]
k+2

⌘

to Q [k�1,k�1]
k+3 .
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High order conforming elements on pyramids
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High order conforming elements on pyramids

Properties

R(0),k = Q [k,k]
k ,

R(1),k =
⇣

Q [k�1,k]
k+1 ⇥ Q [k,k�1]

k+1 ⇥ {0}
⌘

� {ru : u 2 Q [k,k]
k },

R(2),k =
⇣

{0}⇥ {0}⇥ Q [k�1,k�1]
k+2

⌘

�
n

r⇥ u : u 2
⇣

Q [k�1,k]
k+1 ⇥ Q [k,k�1]

k+1 ⇥ {0}
⌘o

,

R(3),k = Q [k�1,k�1]
k+3 .

The exterior derivatives, d : R(s),k ! R(s+1),k are well defined. r
is injective on Q [k,k]/R; curl is injective on
⇣

Q [k�1,k]
k+1 ⇥ Q [k,k�1]

k+1 ⇥ {0}
⌘

and div is a bijection from
⇣

{0}⇥ {0}⇥ Q [k�1,k�1]
k+2

⌘

to Q [k�1,k�1]
k+3 .

Tuesday, July 8, 14



High order conforming elements on pyramids

Properties

Theorem (NP 2012): Properties of second family

Discrete sequence

R(0),k(K )
r����! R(1),k(K )

r⇥����! R(2),k(K )
r·����! R(3),k(K )

is exact.

Discrete spaces are conforming

R(0),k(K ) ⇢ H1(K ), R(1),k(K ) ⇢ H(curl,K ),

R(2),k(K ) ⇢ H(div,K ), R(3),k(K ) ⇢ L2(K )

Same result holds for first family U (s),k(K ), (NP 2007, 2011).
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High order conforming elements on pyramids

Properties

Theorem (NP 2012): Properties of second family

Polynomial approximation properties are:

Pk(K ) ⇢ R(0),k)(K ) and Pk�1(K ) ⇢ R(s),k(K ), s = 1, 2, 3.

Compatibility through traces of R(s),k , s = 0, 1, 2 with relevant
traces of Lagrange, curl or div-conforming elements on
neighbouring tets and boxes.

Helmholtz decompositions hold for the bubbles.

Same result holds for first family U (s),k(K ), (NP 2007, 2011).
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High order conforming elements on pyramids

Unisolvency, conformance, exactness, commuting diagram

Exterior degrees of freedom analogous to those from neighbouring
tets or hexes. Volume degrees of freedom based on
projection-based interpolation
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High order conforming elements on pyramids

Reminder: high-order serendipity elements

Serendipity elements on hexahedra are a subset of Qk,k,k

Arnold and Awanou (2011) define high-order H1-conforming
serendipity spaces as

Sk(box) := Pk(box)� span{xy azb, xaybz , xaybz , a+ b = k + 1}
�span{xyzk , xykz , xkyz}
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High order conforming elements on pyramids

High-order ’serendipity’ elements on a pyramid?

Must be compatible with neighbouring tetrahedral and
(serendipity) hexahedra through boundary traces

Must be subspace of R(0),k(K )

Must allow for arbitrary order approximation by polynomials.
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High order conforming elements on pyramids

High-order ’serendipity’ elements on infinite pyramid

Definition (NP2013)

S(0),k(K1) := span{ x↵y�z�

(1 + z)k�1
/↵+ � + �  k � 1}

�span{ x↵y�z

(1 + z)k�1
/↵+ � = k � 1 }

�span{ xy↵z�

(1 + z)k�1
/↵+ � = k � 1, � < k � 1, � 6= 1}

�span{ x↵yz�

(1 + z)k�1
/↵+ � = k � 1, 1 6= ↵, � < k � 1, � 6= 1}

�span{ xk�1yz

(1 + z)k�1
,

xyk�1z

(1 + z)k�1
}
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Quadrature

Quadrature
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Quadrature

Error due to quadrature

Elliptic bilinear form a : H1
0 (⌦)⇥ H1

0 (⌦) ! R,

a(u, v) :=

Z

⌦
A(r u,r v) dx

A positive definite covariant tensor, entries in W k,1(⌦).
Let Vh ⇢ H1

0 (⌦)be a polynomial approximation space (degree
k).
SK ,k(·) be a quadrature rule, which satisfies

SK ,k(@iu@jv) =

Z

K
(@iu@jv), 8i , j , 8u, v 2 Vh

, over element K .
Discrete bilinear form ah(u, v) :=

P

K2Th SK ,k(A(ru,rv)).
Approximate

ah(u, v) ⇡ a(u, v), 8v 2 Vh.
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Quadrature

Refresher: quadrature

”Our basic objective is to give su�cient conditions
on the quadrature scheme which ensure that the
e↵ect of the numerical integration does not decrease
[the] order of convergence”,

- Ciarlet 1978.

If approximation space ⇢ H1
0 (⌦), and true solution is

u 2 Hk+1(⌦), want hk convergence in the H1 norm.

Rule of thumb: If approximation space has polynomials of
degree k , quadrature rule should be exact at 2k � 2.
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Quadrature

Quadrature on pyramids

Conical product formulae (Stroud, 72).

Du↵y transform + Gauss Legendre / Jacobi.

k3 evaluations
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Quadrature

Conical product formulae

kth degree formula is exact for polynomials of degree 2k on
the pyramid.

Exact for products of any pair of kth order pyramidal shape
functions from each family of elements, including the rational
functions.

Numerical evidence that they perform well for continuous
elements (Bergot et al, 2010).
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Quadrature

A nitpicky question

We know the quadrature rule is exact for pairs of basis functions.
Does this su�ce for the analysis of errors?
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Quadrature

What we would like

Let 8v 2 Vh,

a(u, v) =
R

⌦ A(ru,rv) = f (v),

ah(uh, v) =
P

K2Th SK ,k(A(ruh,rv)) = f (v).

We’d like to conclude:

ku � uhk1  Chk (|u|k+1 + kAkk,1kukk+1)

Analyze variational crime via First Strang Lemma:

ku � uhk1  C inf
vh2Vh

✓

ku � vhk1 + sup
wh2Vh

|a(vh,wh)� ah(vh,wh)|
kwhk1

◆

 C
�

hk |u|k+1 + hkkAkk,1kukk+1

�
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Quadrature

What is needed?

Need estimate of the global consistency error.

sup
wh2Vh

kwhk1=1

|
Z

⌦
A(⇧hu,wh)�

X

K2Th

SK ,k(⇧hu,wh)|  ChkkAkk,1k⇧ukk+1

 ChkkAkk,1kukk+1

where ⇧h : H1
0 (⌦) ! Vh is a bounded interpolation operator.

The constant C = C (⌦, k) is independent of h (and changed
from line to line).

Need a local estimate to control the consistency error: let

quadrature error = Ek,K (� ) = 0 8�, basis functions on K .

Usually use Bramble-Hilbert lemma, and get: There 9C s.t.
8A 2 W k,1(K ), 8p, q 2 Pk(K )

|Ek,K (A@ip@jq))|  ChkkAkk,1,Kk@ipkk�1,Kk@jqk0,K
Can we do the same?
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Quadrature

Attempt #2

Our quadrature formula is exact for basis functions....

Our approximation spaces contain polynomials....

ergo, Optimistic Conjecture: Let K 2 Th be a pyramid.
Since the quadrature rule (with error functional Ek,K ) integrates

products of shape functions in R(1),k
k (K ) exactly, desired estimate

8v ,w 2 R(1),k
k (K ),

|Ek,K (Avw)|  ChkkAkk,1,Kkwk0,Kkvkk�1,K

holds. This conjecture cannot be used.
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Quadrature

Rational functions can’t be ignored

R(0),k contains Pk(K ).

R(0),k also contains rational polynomials!

Take the R(0),k(⌦) shape function associated with the base vertex,
(1, 1, 0):

v(⇠, ⌘, ⇣) =
⇠⌘

1� ⇣
.

The third partial ⇣-derivative @3v
@⇣3 62 L2(⌦):

Z

⌦

✓
@3v

@⇣3

◆2

dx̂ =

Z 1

0

Z 1�⇣

0

Z 1�⇣

0

✓
�6⇠⌘

(1� ⇣)4

◆2

d⇠d⌘d⇣ =

Z 1

0

9

(1� ⇣)2
d⇣.

Hence v 62 H3(⌦).
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Quadrature

Attempt #2

Our quadrature formula is exact for basis functions....

Our approximation spaces contain polynomials....

ergo, Optimistic Conjecture: Let K 2 Th be a pyramid.
Since the quadrature rule (with error functional Ek,K ) integrates

products of shape functions in R(1),k
k (K ) exactly, desired estimate

8v ,w 2 R(1),k
k (K ),

|Ek,K (Avw)|  ChkkAkk,1,Kkwk0,Kkvkk�1,K

holds. This conjecture cannot be used.
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Quadrature

Negative result

It is impossible to analyze quadrature errors for pyramidal
high-order finite elements by considering only polynomials.
Direct application of classical arguments fail when we attempt to
use the Bramble-Hilbert lemma to obtain the estimate

|⇧(s)
k,Ku|k,K  C |u|k,K

where ⇧(s)
k,K is any bounded interpolant to R(s),k(K ).
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Quadrature

The fix

Go back to the Bramble-Hilbert lemma...
Bramble-Hilbert Lemma

Let ⌦ ⇢ Rn be open. For some integer k � 0 and p 2 [0,1] let the linear
functional, f : W k+1,p(⌦) ! R have the property that 8 2 Pk(⌦),
f ( ) = 0. Then there exists a constant C (⌦) such that

8v 2 W k+1,p(⌦), |f (v)|  C (⌦)kf kWk+1,p(⌦)0 |v |k+1

... and modify it.
Don’t apply it to the whole approximation space at once!
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Quadrature

Resolution: the local estimate

Observation: On pyramid, the components of each basis
function in R(0),k(K ) live in spaces spanned by eabr :

eabr (x , y , z) := xayb(1� z)r�a�b r  k and a, b  r + 1

Regularity increases with r: eabr 2 H r+1(K ) 8a, b

|Ek,K [A
ij@ieabr@jv ]|  ChrkAkr ,1,Kkeabrkr ,K |w |1,K

Let Aij be element-wise polynomial. Quadrature is still exact:

Ek,K [A
ij@ieabr@jw ] = 0 8Aij 2 Pk�r , w 2 Vk(K )

Need to modify the Bramble Hilbert Lemma and scaling
argument to get ”missing” hk�r .
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Quadrature

Modification via decomposition

Fix ↵ � 0 and let k � ↵ be an integer. Suppose that:

Let Rk be finite dimensional, Pk ⇢ Rk ⇢ H↵(K ) ;
⇧ : H↵(K ) ! Rk a bounded linear projection;
9Vr ⇢ H r (K ) for each r 2 {0, . . . , k} such that decomposition
holds:

Rk = V0 � · · ·� Vk .

Interpolation-on-decomposition estimate (NP 2012)

Let 8u 2 Hk(K ), interpolant ⇧u 2 Rk = v0 + · · ·+ vk , vr 2 Vr .

For each r satisfying ↵  r  k :

|vr |r  C |u|r .

If ⇢ Vr has poly. of homogenous degree r , then

|vr |r  C |u|r+1 + |u|r , 8r 2 [↵� 1,�1].
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Quadrature

Modification via decomposition

Fix ↵ � 0 and let k � ↵ be an integer. Suppose that:

Let Rk be finite dimensional, Pk ⇢ Rk ⇢ H↵(K ) ;
⇧ : H↵(K ) ! Rk a bounded linear projection;
9Vr ⇢ H r (K ) for each r 2 {0, . . . , k} such that decomposition
holds:

Rk = V0 � · · ·� Vk .

Interpolation-on-decomposition estimate (NP 2012)

Let 8u 2 Hk(K ), interpolant ⇧u 2 Rk = v0 + · · ·+ vk , vr 2 Vr .

For each r satisfying ↵  r  k :

|vr |r  C |u|r .

If ⇢ Vr has poly. of homogenous degree r , then

|vr |r  C |u|r+1 + |u|r , 8r 2 [↵� 1,�1].
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Quadrature

Our approximation spaces R(s),k satisfy the decomposition
properties needed. Therefore, combining errors on subspaces,

Theorem (NP 2012)

The consistency error for the elliptic bilinear form

a(·, ·) :=
Z

⌦
A(r u,r v) dx

is

sup
v2Vh

|a(�(0)
h u, v)� ah(�

(0)
h u, v)|

kvk1
< ChkkAkk,1,⌦kukk+1,⌦.

Here, �(0)
h is a bounded projection operator onto R(0),k . Analogous results

hold for R(s),k , s = 0, 1, 2, 3
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Numerical experiments

Nitpicky question answered.

We have a full accounting of quadrature errors for the second
family of (a�ne) finite elements on the pyramid.
We do not have a complete analysis for non-a�ne pyramids.
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Numerical experiments

Stokes flow in a pipe with square cross-section

�4u +rp = f in ⌦,

r · u = 0 in ⌦

uT = gT on �

uN = gN on �N

p = � on �P
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Numerical experiments

Find w 2 H(curl,⌦), u 2 H(div,⌦; gN) and p 2 L2(⌦) such that

(w , ⌧)⌦ � (u,r⇥ ⌧)⌦ = (gT , n ⇥ ⌧)� 8⌧ 2 H(curl,⌦)

�(r⇥ w , v)⌦ + (p,r · v)⌦ = (�, v · n)�P � (f , v)⌦ 8v 2 H(div,⌦; 0)

(r · u, q)⌦ = 0 8q 2 L2(⌦)

2

4

I C t 0
C 0 Dt

0 D 0

3

5

2

4

w
u
p

3

5 =

2

4

G
�� F

0

3

5

[0 D] has closed range, and first block is invertible on ker [0 D].
Exactness of discrete sequence allows us to show these.
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Numerical experiments
0.0727

0.0104

0.0208

0.0312

0.00  

0.0520

0.0623

0.0416

error at x=0.3

2x2x2 grid of 
cubes, each 
containing 6 
4th order 
pyramidal 
elements

pressure at x=0.3
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Numerical experiments

Dispersion error

From: High-order optimal edge elements for pyramids, prisms, and
hexahedra, Bergot and Duruflé, JCP 2013.
A�ne mesh.
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Numerical experiments

Dispersion error

From: High-order optimal edge elements for pyramids, prisms, and
hexahedra, Bergot and Duruflé, JCP 2013.
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Numerical experiments

Gaussian source in cavity

From: High-order optimal edge elements for pyramids, prisms, and
hexahedra, Bergot and Duruflé, JCP 2013.

Mesh contains affine and non-affine elements.
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Numerical experiments

Eigenvalue calculations

From: High-order optimal edge elements for pyramids, prisms, and
hexahedra, Bergot and Duruflé, JCP 2013.
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Numerical experiments

Summary

Constructed (two families of) high order compatible pyramidal
elements for the spaces of the de Rham complex.

The elements satisfy a commuting diagram property.

Stroud’s conical product rules can be used to construct
numerical integration formulae that do not decrease the order
of convergence.

Some supporting numerical results.
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Thank you for your 
attention!
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