LMS-EPSRC Durham Symposia, 12 August 2015

Monstrous Heterosis

Roberto Volpato SLAC & SITP Stanford

New Moonshines, Mock Modular Forms and String Theory

work in progress with

Natalie Paquette

Daniel Persson

Motivation

- Monstrous Moonshine: mysterious relation
 [McKay,Thompson; Conway, Norton]
 McKay-Thompson T_g(τ) ↔ Monster group M

 "Physics" interpretation:
 - * 2-D holomorphic CFT V^{\natural} with c = 24 such that
 - \mathbb{M} is group of automorphisms of V^{\natural}
 - $T_g(\tau)$ is a "twined" partition function [Frenkel, Lepowsky, Meurman]
 - Explains invariance of $T_g(\tau)$ under subgr. of $SL_2(\mathbb{Z})$

Motivation

- * $T_g(\tau)$ is Hauptmodul for genus zero group $\Gamma_g \subset SL_2(\mathbb{R})$
- * In many cases, $\Gamma_g \not\subset SL_2(\mathbb{Z})$ but contains Atkin-Lehner involutions, such as

$$au o -\frac{1}{N au}$$

- Proved using (chiral!) bosonic string theory
 + generalized (Borcherds-)Kac-Moody algebras
 [Borcherds; Scott's talks]
- Physical meaning of A-L involutions?
- Physical meaning of Monstrous Lie algebra?

Ideas!

- Atkin-Lehner involutions appear naturally in CHL models as T-dualities [Persson, R.V. (Daniel's talk)]
- * BPS indices are invariant under T-dualities
- Idea: find some CHL models whose BPS indices equal McKay-Thompson series
- * We provide a physical interpretation of Γ_g
- * Hauptmodul property? Monstrous Lie algebra?

Outline

- Monstrous Heterotic Model
- Supersymmetric index
- Heterotic CHL models and moonshine groups
- Conclusions and open questions

Monstrous Heterotic Model

The Model

- * Heterotic compactification on $V^{\natural} \otimes \bar{V}^{s\natural}$
- * $\bar{V}^{s\natural}$ is anti-holomorphic SVOA with c = 12 and
 - no NS states of conformal weight 1/2
 - 24 Ramond ground states of conformal weight 1/2
- * 2-D theory with (0,24) space-time SUSY with algebra

$$\{Q^i, Q^j\} = 2\delta^{ij}(k_R^0 - k_R^1)$$

where k_R^{μ} , $\mu = 0, 1$, are right-moving momenta

[Green, Kutasov; Bergman, Distler, Varadarajan; ...]

[Jonh Duncan's talk]

BPS states

$$\{Q^i, Q^j\} = 2\delta^{ij}(k_R^0 - k_R^1)$$

* Compactify on a circle of radius R

$$k_L^1 = \frac{1}{\sqrt{2}} \left(\frac{m}{R} - wR\right) \qquad k_R^1 = \frac{1}{\sqrt{2}} \left(\frac{m}{R} + wR\right) \qquad k_L^0 = k_R^0 = E$$

where $m, w \in \mathbb{Z}$

- * "BPS condition" $E = k_R^1$
- * BPS + physical state condition (state in V_{mw+1}^{\natural}) \otimes (state in $\bar{V}_{1/2}^{s\natural}$) $\otimes |k^{\mu}\rangle$

BPS states

- * BPS + physical state condition (state in V_{mw+1}^{\natural}) \otimes (state in $\bar{V}_{1/2}^{s\natural}$) $\otimes |k^{\mu}\rangle$
- * The only states in $\bar{V}_{1/2}^{s\natural}$ are Ramond \Rightarrow all space-time fermions (same chirality)
- * For each momentum-winding m, w there are 24c(mw) fermionic BPS states of energy

$$E = \frac{1}{\sqrt{2}} \left(\frac{m}{R} + wR\right)$$

(recall: $J(\tau) = \sum_{n} c(n)q^{n}$)

Supersymmetric index

Supersymmetric index

- * Second-quantized space of states \mathcal{H}
- * Refined supersymmetric index $Z(R, \beta, b, v) = \text{Tr}_{\mathcal{H}}((-1)^{F}e^{-\beta H}e^{2\pi i bW}e^{2\pi i vM})$
 - non-vanishing contributions only from BPS states
 - independent of string coupling constant

Second-quantized strings

- * Construct a "BPS Fock space" (free theory limit) \mathcal{H}_{BPS}
 - * single-particle BPS state $a \rightarrow$ fermionic operator η_a
 - a ground state $|0\rangle_R$ with $\eta_a |0\rangle_R = 0$ for E(a) < 0
 - Space \mathcal{H}_{BPS} acting on $|0\rangle_R$ by η_a for E(a) > 0
 - Possible non-zero ground momentum and winding
 $M|0\rangle_R = m_0|0\rangle_R$ $W|0\rangle_R = w_0|0\rangle_R$

BPS index

Can restrict the trace to this BPS space

$$Z(R,\beta,b,v) = \operatorname{Tr}_{\mathcal{H}_{BPS}}((-1)^F e^{-\beta H} e^{2\pi i b W} e^{2\pi i v M})$$

where the following relation holds

$$H = \frac{1}{\sqrt{2}} \left(\frac{M}{R} + WR\right)$$

* Define $T = b + i \frac{\beta R}{2\sqrt{2}\pi}$ and $U = v + i \frac{\beta}{2\sqrt{2}\pi R}$ $Z(T, U) = \operatorname{Tr}_{\mathcal{H}_{BPS}}((-1)^F e^{2\pi i TW} e^{2\pi i UM})$

BPS index

$$Z(T,U) = \operatorname{Tr}_{\mathcal{H}_{BPS}}((-1)^F e^{2\pi i TW} e^{2\pi i UM})$$

* Easy to compute (R > 1)

 $Z(T,U)^{\frac{1}{24}} = e^{2\pi i (Tw_0 + Um_0)} \prod_{m,w} (1 - e^{2\pi i wT} e^{2\pi i mU})^{c(mw)}$

product over m, w > 0 or (m, w) = (-1, 1)

- Same form as denominator of Monster Lie algebra!
 (for suitable (m₀, w₀))
- Is there any Lie algebra involved?

A Lie algebra

- * Let V_a be vertex operator of (single-string) BPS state a
- SUSY variation is either zero or BRST exact

$$\{Q_i, \mathcal{V}_a\} = [\mathcal{Q}_{BRST}, \mathcal{U}_a]$$

- Recall: *massless* BRST exact states generate algebra of gauge symmetries
- * \mathcal{U}_a are not massless, but generate a Lie algebra \mathfrak{g}

$$[\mathcal{U}_a, \mathcal{U}_b] = f^c_{\ ab} \mathcal{U}_c$$

* \mathcal{U}_a has the form

(state in
$$V_{mw+1}^{\natural}$$
) $\otimes |k_L^{\mu}\rangle \otimes |k_R^{\mu}\rangle$

A Lie algebra

* \mathcal{U}_a are not massless, but generate a Lie algebra \mathfrak{g}

$$[\mathcal{U}_a, \mathcal{U}_b] = f^c_{\ ab} \mathcal{U}_c$$

- * \mathcal{U}_a has the form (state in V_{mw+1}^{\natural}) $\otimes |k_L^{\mu}\rangle \otimes |k_R^{\mu}\rangle$
- * g is Monster Lie algebra!!
- * g has a linear action on space of BPS states

$$\mathcal{U}_a(\mathcal{V}_b) = f^c_{\ ab} \mathcal{V}_c$$

Algebra vs BPS states

- * Single particle BPS states $\cong \mathfrak{g}$
- * Positive energy BPS states $\cong \mathfrak{g}_+$
- * Fock space $\mathcal{H} \cong \bigwedge \mathfrak{g}_+$
- * Momentum-winding or $k_L^{\mu} \longrightarrow$ roots
- * Ground state mom-wind (m_0, w_0) $\longrightarrow 1/2$ sum over positive roots (regularized)
- * We can show that (m_0, w_0) is Weyl vector
- * "Additive" side of Weyl-Kac-Borcherds denom. formula

*
$$\mathcal{H}^{j} \cong \bigwedge^{j} \mathfrak{g}_{+}$$
 space of *j*-particles states

Define nilpotent operators

$$d: \mathcal{H}^j \to \mathcal{H}^{j-1} \qquad d^{\dagger}: \mathcal{H}^j \to \mathcal{H}^{j+1}$$

Z(*T*, *U*) gets contributions only from ker of {*d*, *d*[†]}
Physical meaning of *d* and *d*[†] not clear...

[Garland, Lepowsky; Jurisich]

Algebra homology

Theorem(?)

1. Regularized ground state winding-momentum $(m_0(s), w_0(s)) := \frac{1}{2} \sum_{m,w} (m, w) c(mw) e^{-sE}$

converges to analytic function for $\Re s > s_0$

- 2. Analytic continuation $(m_0(0), w_0(0))$ is Weyl vector
- 3. Anticommutator of d, d^{\dagger} equals quadratic Casimir

$$\{d, d^{\dagger}\} \sim 2(M - m_0)(W - w_0) - 2m_0w_0$$

Denominator identity

- * For R > 1
 - Weyl vector $(m_0, w_0) = (0, 1)$

•
$$\{d, d^{\dagger}\} = 2M(W-1)$$

- * Positive energy states $w \in \mathbb{Z}_{>0}$ and $m \in \mathbb{Z}$
- * Contribution from W = 1 states is -J(U)
- * Contribution from M = 0 states is J(T)

$$Z(T,U)^{1/24} = e^{-2\pi iT} \prod_{w>0,m} (1 - e^{2\pi iTw} e^{2\pi iUm})^{c(mw)} = J(T) - J(U)$$

Path integral

- * Z(T, U) given by path integral on Euclidean \mathbb{T}^2 with Kaehler modulus *T* and cplx structure *U*
- * Z(T, U) independent of string coupling \longrightarrow 1-loop exact

$$Z(T, U) = \exp(-S_{1-loop}(T, U))$$

1-loop string amplitude (naive!)

$$S_{1\text{-loop}}^{\pm} = \int_{\mathcal{F}} \frac{d\tau^2}{2\tau_2} \left(\text{Tr}_{NS} \left(q^{L_0} \bar{q}^{\bar{L}_0} \frac{1 - (-1)^{\bar{F}}}{2} \right) - \text{Tr}_R \left(q^{L_0} \bar{q}^{\bar{L}_0} \frac{1 \pm (-1)^{\bar{F}}}{2} \right) \right)$$

* GSO projection not quite correct for R ground states...

GSO projection

- * $S_{1-loop}^+(T, U)$ introduces contributions from R ground states with wrong space-time chirality
- Wrong contributions make the path integral invariant under space-time parity transformation
- Under parity transformation

 $Z(T,U) \to \overline{Z(T,U)}$

Expected:

$$\exp(-S_{1-loop}^+) = |Z(T,U)|^2$$

1-loop integral

Evaluating the traces gives

$$S_{1-\text{loop}}^+(T,U) = \frac{1}{2} \int_{\mathcal{F}} \frac{d\tau^2}{\tau_2} (-24) J(\tau) \Theta(T,U;\tau)$$

where

- $-24 \text{ from } \bar{V}^{s\natural}$
- + $J(\tau)$ from V^{\natural}
- + $\Theta(T, U, \tau) = \sum_{m_i, w_i} q^{\frac{k_L^2}{2}} \bar{q}^{\frac{k_R^2}{2}}$ from winding-mom. along \mathbb{T}^2
- * This is theta lift of $J(\tau)$!

[Harvey, Moore; Borcherds]

Summary

- 3 ways of computing Z(T, U)
- 1. Second quantized Fock space $Z(T,U)^{1/24} = e^{-2\pi i T} \prod_{w>0,m} (1 - e^{2\pi i T w} e^{2\pi i U m})^{c(mw)}$
- 2. 1-loop string vacuum amplitude on Euclidean target \mathbb{T}^2 $|Z(T,U)|^2 = \exp\left(-\frac{1}{2}\int_{\mathcal{F}}\frac{d\tau^2}{\tau_2}(-24)J(\tau)\Theta(T,U;\tau)\right)$
- 3. Weyl-Kac-Borcherds denominator formula $Z(T,U)^{1/24} = J(T) J(U)$

Monstrous CHL models

CHL models

- Consider Monstrous Heterotic model on circle
- * Take orbifold by (δ, g) , where
 - + δ is shift along circle of 1/N period
 - * $g \in Aut(V^{\natural}) = \mathbb{M}$ of order N
- * All previous constructions generalize:
 - can construct 2nd quantized BPS space
 - can define index $Z_{g,e}(T,U)$
 - Lie algebra from null states

CHL index

1. Second quantized Fock space

$$Z_{g,e}(T,U)^{1/24} = e^{-2\pi i T} \prod (1 - e^{2\pi i U \frac{m}{N}} e^{2\pi i T w})^{\hat{c}_{w,m}(\frac{mw}{N})}$$

where $\hat{c}_{r,s}$ are coefficients of $\frac{1}{N} \sum_{k=1}^{N} e^{-\frac{2\pi i s k}{N}} T_{g^r,g^k}$

2. 1-loop string amplitude on Euclidean target \mathbb{T}^2 $|Z_{a,e}(T,U)|^2 = \exp\left(-\int_{\tau} \frac{d^2\tau}{2\pi} \frac{-24}{N} \sum_{i=1}^{N} \Theta_{r,e} T_{a^r,e}\right)$

$$|Z_{g,e}(T,U)|^2 = \exp\left(-\int_{\mathcal{F}} \frac{d^2\tau}{2\tau_2} \frac{-24}{N} \sum_{r,s=1}^N \Theta_{r,s} T_{g^r,g^s}\right)$$

3. Denominator formula

[Carnahan]

$$Z_{g,e}(T,U)^{1/24} = T_{e,g}(T) - T_{g,e}(U)$$

T-duality

* Euclidean CHL model on T² has w-m lattice (m₁, w₁, m₂, w₂) ∈ L_N = Z ⊕ Z ⊕ Z ⊕ 1/N Z (more complicated depending on level matching)
* Aut(L) is subgroup of SO⁺(2, 2) ≅ SL₂(ℝ)_T × SL₂(ℝ)_U Aut(L) = Γ₀(N) × Γ₀(N) + (W_e, W_e)

where W_e are Atkin-Lehner involutions

- * Projection $\operatorname{Aut}(L) \to SL_2(\mathbb{R})_{T,U}$ contains Γ_g
- * Aut(L) is group of T-dualities

[Persson, R.V.; Daniel's talk]

T-duality

- * In general, Aut(L) maps to a *different* CHL model
- * $\operatorname{Aut}_0(L) \subset \operatorname{Aut}(L)$ is group of self-dualities
- * $Z_{g,e}(T,U)$ invariant under $\operatorname{Aut}_0(L)$ $\longrightarrow T_{e,g}(T)$ invariant under image $\operatorname{Aut}_0(L) \to SL_2(\mathbb{R})_T$ Conjecture: Image $\operatorname{Aut}_0(L) \to SL_2(\mathbb{R})_T$ is Γ_q
- * If true, group Γ_g is a T-duality group!
- * To be done: show that Γ_g is not accidentally larger

Genus zero

- * Cusps for $(T, U) \in \mathbb{H} \times \mathbb{H}$ are decompactification limits
- * Decomp. limits are heterotic on orbifold $V^{\natural}/\langle g^e \rangle \times \bar{V}^{s\natural}$
- * At each cusp, $Z_{g,e}(T,U)$ is un/bounded iff decomp. limit has/hasn't massless states $(V^{\natural}/\langle g^e \rangle$ has/hasn't currents)

Conjecture: If decomp. limit (cusp) has no currents, it is related to $R \to \infty$ cusp by a self-duality in $\operatorname{Aut}_0(L_N)$

* If true, then $T_{e,g}$ has only one single pole on $\overline{\mathbb{H}/\Gamma}_g$ $\longrightarrow \Gamma_g$ has genus zero and $T_{e,g}$ is Hauptmodul [Tuite]

Conclusions

- * Denominator formula for (twisted) Monster Lie algebra is BPS index in second quantized heterotic (CHL) model
- Algebra realized in terms of BRST exact states in string theory
- * Moonshine group Γ_g is subgroup of T-duality group of CHL model on \mathbb{T}^2 (maybe equal self-duality group)
- * Order of $T_{e,g}$ at cusps related to nature of CHL models in decompactification limits

Open questions

- Physical interpretation of many ingredients (d, d[†], decomp. limits,...) not clear
- * Genus zero as Rademacher summability? [Duncan, Frenkel]
- * Unfolding 1-loop integral as sum over BPS states?
- * Generalized Moonshine? [Norton; Hoehn; Carnahan]
- * BPS algebra as described by Harvey-Moore?
- * Same construction starting from models with currents?
- * Type IIA duals?