Monstrous Heterosis

New Moonshines, Mock Modular Forms and String Theory
work in progress with

Natalie Paquette

Daniel Persson

Motivation

* Monstrous Moonshine: mysterious relation
[McKay,Thompson; Conway, Norton]
McKay-Thompson $T_{g}(\tau) \longleftrightarrow \quad$ Monster group \mathbb{M}
* "Physics" interpretation:
+ 2-D holomorphic CFT V^{\natural} with $c=24$ such that
- \mathbb{M} is group of automorphisms of V^{\natural}
- $T_{g}(\tau)$ is a "twined" partition function
[Frenkel, Lepowsky, Meurman]
* Explains invariance of $T_{g}(\tau)$ under subgr. of $S L_{2}(\mathbb{Z})$

Motivation

* $T_{g}(\tau)$ is Hauptmodul for genus zero group $\Gamma_{g} \subset S L_{2}(\mathbb{R})$
* In many cases, $\Gamma_{g} \not \subset S L_{2}(\mathbb{Z})$ but contains Atkin-Lehner involutions, such as

$$
\tau \rightarrow-\frac{1}{N \tau}
$$

* Proved using (chiral!) bosonic string theory + generalized (Borcherds-)Kac-Moody algebras
[Borcherds; Scott's talks]
* Physical meaning of A-L involutions?
* Physical meaning of Monstrous Lie algebra?

Ideas!

* Atkin-Lehner involutions appear naturally in CHL models as T-dualities [Persson, R.V. (Daniel's talk)]
* BPS indices are invariant under T-dualities
* Idea: find some CHL models whose BPS indices equal McKay-Thompson series
* We provide a physical interpretation of Γ_{g}
* Hauptmodul property? Monstrous Lie algebra?

Outline

* Monstrous Heterotic Model
* Supersymmetric index
* Heterotic CHL models and moonshine groups
* Conclusions and open questions

Monstrous Heterotic Model

The Model

* Heterotic compactification on $V^{\natural} \otimes \bar{V}^{s \natural}$
* $\bar{V}^{\text {s凸 }}$ is anti-holomorphic SVOA with $c=12$ and
[Jonh Duncan's talk]
* no NS states of conformal weight $1 / 2$
+ 24 Ramond ground states of conformal weight $1 / 2$
* 2-D theory with $(0,24)$ space-time SUSY with algebra

$$
\left\{Q^{i}, Q^{j}\right\}=2 \delta^{i j}\left(k_{R}^{0}-k_{R}^{1}\right)
$$

where $k_{R}^{\mu}, \mu=0,1$, are right-moving momenta
[Green, Kutasov; Bergman, Distler, Varadarajan; ...]

BPS states

$$
\left\{Q^{i}, Q^{j}\right\}=2 \delta^{i j}\left(k_{R}^{0}-k_{R}^{1}\right)
$$

* Compactify on a circle of radius R
$k_{L}^{1}=\frac{1}{\sqrt{2}}\left(\frac{m}{R}-w R\right) \quad k_{R}^{1}=\frac{1}{\sqrt{2}}\left(\frac{m}{R}+w R\right) \quad k_{L}^{0}=k_{R}^{0}=E$
where $m, w \in \mathbb{Z}$
* "BPS condition" $E=k_{R}^{1}$
* BPS + physical state condition $\left(\right.$ state in $\left.V_{m w+1}^{\natural}\right) \otimes\left(\right.$ state in $\left.\bar{V}_{1 / 2}^{s \natural}\right) \otimes\left|k^{\mu}\right\rangle$

BPS states

* BPS + physical state condition

$$
\left(\text { state in } V_{m w+1}^{\natural}\right) \otimes\left(\text { state in } \bar{V}_{1 / 2}^{s \natural}\right) \otimes\left|k^{\mu}\right\rangle
$$

* The only states in $\bar{V}_{1 / 2}^{s \natural}$ are Ramond \Rightarrow all space-time fermions (same chirality)
* For each momentum-winding m, w there are $24 c(m w)$ fermionic BPS states of energy

$$
E=\frac{1}{\sqrt{2}}\left(\frac{m}{R}+w R\right)
$$

(recall: $\left.J(\tau)=\sum_{n} c(n) q^{n}\right)$

Supersymmetric index

Supersymmetric index

* Second-quantized space of states \mathcal{H}
* Refined supersymmetric index

$$
Z(R, \beta, b, v)=\operatorname{Tr}_{\mathcal{H}}\left((-1)^{F} e^{-\beta H} e^{2 \pi i b W} e^{2 \pi i v M}\right)
$$

* non-vanishing contributions only from BPS states
+ independent of string coupling constant

Second-quantized strings

* Construct a "BPS Fock space" (free theory limit) $\mathcal{H}_{B P S}$
+ single-particle BPS state $a \rightarrow$ fermionic operator η_{a}
* a ground state $|0\rangle_{R}$ with $\eta_{a}|0\rangle_{R}=0$ for $E(a)<0$
+ Space $\mathcal{H}_{B P S}$ acting on $|0\rangle_{R}$ by η_{a} for $E(a)>0$
+ Possible non-zero ground momentum and winding

$$
M|0\rangle_{R}=m_{0}|0\rangle_{R} \quad W|0\rangle_{R}=w_{0}|0\rangle_{R}
$$

BPS index

* Can restrict the trace to this BPS space

$$
Z(R, \beta, b, v)=\operatorname{Tr}_{\mathcal{H}_{B P S}}\left((-1)^{F} e^{-\beta H} e^{2 \pi i b W} e^{2 \pi i v M}\right)
$$

where the following relation holds

$$
H=\frac{1}{\sqrt{2}}\left(\frac{M}{R}+W R\right)
$$

* Define $T=b+i \frac{\beta R}{2 \sqrt{2} \pi}$ and $U=v+i \frac{\beta}{2 \sqrt{2} \pi R}$

$$
Z(T, U)=\operatorname{Tr}_{\mathcal{H}_{B P S}}\left((-1)^{F} e^{2 \pi i T W} e^{2 \pi i U M}\right)
$$

BPS index

$$
Z(T, U)=\operatorname{Tr}_{\mathcal{H}_{B P S}}\left((-1)^{F} e^{2 \pi i T W} e^{2 \pi i U M}\right)
$$

* Easy to compute ($R>1$)

$$
Z(T, U)^{\frac{1}{24}}=e^{2 \pi i\left(T w_{0}+U m_{0}\right)} \prod_{m, w}\left(1-e^{2 \pi i w T} e^{2 \pi i m U}\right)^{c(m w)}
$$

product over $m, w>0$ or $(m, w)=(-1,1)$

* Same form as denominator of Monster Lie algebra! (for suitable $\left(m_{0}, w_{0}\right)$)
* Is there any Lie algebra involved?

A Lie algebra

* Let \mathcal{V}_{a} be vertex operator of (single-string) BPS state a
* SUSY variation is either zero or BRST exact

$$
\left\{Q_{i}, \mathcal{V}_{a}\right\}=\left[\mathcal{Q}_{B R S T}, \mathcal{U}_{a}\right]
$$

* Recall: massless BRST exact states generate algebra of gauge symmetries
* \mathcal{U}_{a} are not massless, but generate a Lie algebra \mathfrak{g}

$$
\left[\mathcal{U}_{a}, \mathcal{U}_{b}\right]=f^{c}{ }_{a b} \mathcal{U}_{c}
$$

- \mathcal{U}_{a} has the form

$$
\left(\text { state in } V_{m w+1}^{\natural}\right) \otimes\left|k_{L}^{\mu}\right\rangle \otimes\left|k_{R}^{\mu}\right\rangle
$$

A Lie algebra

* \mathcal{U}_{a} are not massless, but generate a Lie algebra \mathfrak{g}

$$
\left[\mathcal{U}_{a}, \mathcal{U}_{b}\right]=f^{c}{ }_{a b} \mathcal{U}_{c}
$$

* \mathcal{U}_{a} has the form

$$
\left(\text { state in } V_{m w+1}^{\natural}\right) \otimes\left|k_{L}^{\mu}\right\rangle \otimes\left|k_{R}^{\mu}\right\rangle
$$

* \mathfrak{g} is Monster Lie algebra!!
* \mathfrak{g} has a linear action on space of BPS states

$$
\mathcal{U}_{a}\left(\mathcal{V}_{b}\right)=f^{c}{ }_{a b} \mathcal{V}_{c}
$$

Algebra vs BPS states

* Single particle BPS states $\cong \mathfrak{g}$
* Positive energy BPS states $\cong \mathfrak{g}_{+}$
* Fock space $\mathcal{H} \cong \bigwedge \mathfrak{g}_{+}$
* Momentum-winding or $k_{L}^{\mu} \longrightarrow$ roots
* Ground state mom-wind (m_{0}, w_{0})
$\longrightarrow 1 / 2$ sum over positive roots (regularized)
* We can show that $\left(m_{0}, w_{0}\right)$ is Weyl vector
* "Additive" side of Weyl-Kac-Borcherds denom. formula

Algebra Homology

* $\quad \mathcal{H}^{j} \cong \bigwedge^{j} \mathfrak{g}_{+}$space of j - particles states
* Define nilpotent operators

$$
d: \mathcal{H}^{j} \rightarrow \mathcal{H}^{j-1} \quad d^{\dagger}: \mathcal{H}^{j} \rightarrow \mathcal{H}^{j+1}
$$

* $Z(T, U)$ gets contributions only from ker of $\left\{d, d^{\dagger}\right\}$
* Physical meaning of d and d^{\dagger} not clear...
[Garland, Lepowsky; Jurisich]

Algebra homology

Theorem(?)

1. Regularized ground state winding-momentum

$$
\left(m_{0}(s), w_{0}(s)\right):=\frac{1}{2} \sum_{m, w}(m, w) c(m w) e^{-s E}
$$

converges to analytic function for $\Re s>s_{0}$
2. Analytic continuation $\left(m_{0}(0), w_{0}(0)\right)$ is Weyl vector
3. Anticommutator of d, d^{\dagger} equals quadratic Casimir

$$
\left\{d, d^{\dagger}\right\} \sim 2\left(M-m_{0}\right)\left(W-w_{0}\right)-2 m_{0} w_{0}
$$

Denominator identity

* For $R>1$
+ Weyl vector $\left(m_{0}, w_{0}\right)=(0,1)$
* $\left\{d, d^{\dagger}\right\}=2 M(W-1)$
+ Positive energy states $w \in \mathbb{Z}_{>0}$ and $m \in \mathbb{Z}$
* Contribution from $W=1$ states is $-J(U)$
* Contribution from $M=0$ states is $J(T)$
$Z(T, U)^{1 / 24}=e^{-2 \pi i T} \prod_{w>0, m}\left(1-e^{2 \pi i T w} e^{2 \pi i U m}\right)^{c(m w)}=J(T)-J(U)$

Path integral

* $Z(T, U)$ given by path integral on Euclidean \mathbb{T}^{2} with Kaehler modulus T and cplx structure U
* $Z(T, U)$ independent of string coupling \longrightarrow 1-loop exact

$$
Z(T, U)=\exp \left(-S_{1-\text { loop }}(T, U)\right)
$$

* 1-loop string amplitude (naive!)

$$
S_{1-\text { loop }}^{ \pm}=\int_{\mathcal{F}} \frac{d \tau^{2}}{2 \tau_{2}}\left(\operatorname{Tr}_{N S}\left(q^{L_{0}} \bar{q}^{\bar{L}_{0}} \frac{1-(-1)^{\bar{F}}}{2}\right)-\operatorname{Tr}_{R}\left(q^{L_{0}} \bar{q}^{\bar{L}_{0}} \frac{1 \pm(-1)^{\bar{F}}}{2}\right)\right)
$$

* GSO projection not quite correct for R ground states...

GSO projection

- $S_{1-\text { loop }}^{+}(T, U)$ introduces contributions from R ground states with wrong space-time chirality
* Wrong contributions make the path integral invariant under space-time parity transformation
* Under parity transformation

$$
Z(T, U) \rightarrow \overline{Z(T, U)}
$$

Expected:

$$
\exp \left(-S_{1-\text { loop }}^{+}\right)=|Z(T, U)|^{2}
$$

1-loop integral

* Evaluating the traces gives

$$
S_{1 \text {-loop }}^{+}(T, U)=\frac{1}{2} \int_{\mathcal{F}} \frac{d \tau^{2}}{\tau_{2}}(-24) J(\tau) \Theta(T, U ; \tau)
$$

where

+ -24 from $\bar{V}^{s \natural}$
+ $J(\tau)$ from V^{\natural}
$+\Theta(T, U, \tau)=\sum_{m_{i}, w_{i}} q^{\frac{k_{L}^{2}}{2}} \bar{q}^{\frac{k_{R}^{2}}{2}}$ from winding-mom. along \mathbb{T}^{2}
* This is theta lift of $J(\tau)$!
[Harvey, Moore; Borcherds]

Summary

3 ways of computing $Z(T, U)$

1. Second quantized Fock space

$$
Z(T, U)^{1 / 24}=e^{-2 \pi i T} \prod_{w>0, m}\left(1-e^{2 \pi i T w} e^{2 \pi i U m}\right)^{c(m w)}
$$

2. 1-loop string vacuum amplitude on Euclidean target \mathbb{T}^{2}

$$
|Z(T, U)|^{2}=\exp \left(-\frac{1}{2} \int_{\mathcal{F}} \frac{d \tau^{2}}{\tau_{2}}(-24) J(\tau) \Theta(T, U ; \tau)\right)
$$

3. Weyl-Kac-Borcherds denominator formula

$$
Z(T, U)^{1 / 24}=J(T)-J(U)
$$

Monstrous CHL models

CHL models

* Consider Monstrous Heterotic model on circle
* Take orbifold by (δ, g), where
+ δ is shift along circle of $1 / N$ period
+ $g \in \operatorname{Aut}\left(V^{\natural}\right)=\mathbb{M}$ of order N
* All previous constructions generalize:
+ can construct 2nd quantized BPS space
+ can define index $Z_{g, e}(T, U)$
+ Lie algebra from null states

CHL index

1. Second quantized Fock space
$Z_{g, e}(T, U)^{1 / 24}=e^{-2 \pi i T} \prod\left(1-e^{2 \pi i U \frac{m}{N}} e^{2 \pi i T w}\right)^{\hat{c}_{w, m}\left(\frac{m w}{N}\right)}$
where $\hat{c}_{r, s}$ are coefficients of $\frac{1}{N} \sum_{k=1}^{N} e^{-\frac{2 \pi i s k}{N}} T_{g^{r}, g^{k}}$
2. 1-loop string amplitude on Euclidean target \mathbb{T}^{2}

$$
\left|Z_{g, e}(T, U)\right|^{2}=\exp \left(-\int_{\mathcal{F}} \frac{d^{2} \tau}{2 \tau_{2}} \frac{-24}{N} \sum_{r, s=1}^{N} \Theta_{r, s} T_{g^{r}, g^{s}}\right)
$$

3. Denominator formula

$$
Z_{g, e}(T, U)^{1 / 24}=T_{e, g}(T)-T_{g, e}(U)
$$

[Carnahan]

T-duality

* Euclidean CHL model on \mathbb{T}^{2} has w-m lattice

$$
\left(m_{1}, w_{1}, m_{2}, w_{2}\right) \in L_{N}=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \frac{1}{N} \mathbb{Z}
$$

(more complicated depending on level matching)

* $\operatorname{Aut}(L)$ is subgroup of $S O^{+}(2,2) \cong S L_{2}(\mathbb{R})_{T} \times S L_{2}(\mathbb{R})_{U}$

$$
\operatorname{Aut}(L)=\Gamma_{0}(N) \times \Gamma_{0}(N)+\left(W_{e}, W_{e}\right)
$$

where W_{e} are Atkin-Lehner involutions

* Projection $\operatorname{Aut}(L) \rightarrow S L_{2}(\mathbb{R})_{T, U}$ contains Γ_{g}
* $\operatorname{Aut}(L)$ is group of T-dualities

T-duality

* In general, Aut (L) maps to a different CHL model
* $\operatorname{Aut}_{0}(L) \subset \operatorname{Aut}(L)$ is group of self-dualities
* $Z_{g, e}(T, U)$ invariant under $\operatorname{Aut}_{0}(L)$
$\longrightarrow T_{e, g}(T)$ invariant under image $\operatorname{Aut}_{0}(L) \rightarrow S L_{2}(\mathbb{R})_{T}$
Conjecture: Image $\operatorname{Aut}_{0}(L) \rightarrow S L_{2}(\mathbb{R})_{T}$ is Γ_{g}
* If true, group Γ_{g} is a T-duality group!
* To be done: show that Γ_{g} is not accidentally larger

Genus zero

* Cusps for $(T, U) \in \mathbb{H} \times \mathbb{H}$ are decompactification limits
* Decomp. limits are heterotic on orbifold $V^{\natural} /\left\langle g^{e}\right\rangle \times \bar{V}^{s \natural}$
* At each cusp, $Z_{g, e}(T, U)$ is un/bounded iff decomp. limit has/hasn't massless states
($V^{\natural} /\left\langle g^{e}\right\rangle$ has /hasn't currents)
Conjecture: If decomp. limit (cusp) has no currents, it is related to $R \rightarrow \infty$ cusp by a self-duality in $\operatorname{Aut}_{0}\left(L_{N}\right)$
* If true, then $T_{e, g}$ has only one single pole on $\overline{\mathbb{H} / \Gamma}{ }_{g}$ $\longrightarrow \Gamma_{g}$ has genus zero and $T_{e, g}$ is Hauptmodul

Conclusions

* Denominator formula for (twisted) Monster Lie algebra is BPS index in second quantized heterotic (CHL) model
* Algebra realized in terms of BRST exact states in string theory
* Moonshine group Γ_{g} is subgroup of T-duality group of CHL model on \mathbb{T}^{2} (maybe equal self-duality group)
* Order of $T_{e, g}$ at cusps related to nature of CHL models in decompactification limits

Open questions

* Physical interpretation of many ingredients (d, d^{\dagger}, decomp. limits,...) not clear
* Genus zero as Rademacher summability? [Duncan, Frenkel]
* Unfolding 1-loop integral as sum over BPS states?
* Generalized Moonshine?
[Norton; Hoehn; Carnahan]
* BPS algebra as described by Harvey-Moore?
- Same construction starting from models with currents?
* Type IIA duals?

