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Introduction
On each of n unsteady steps, a drunken gardener drops a
seed. Once the flowers have bloomed, what is the minimum
length of fencing needed to enclose the garden?
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Introduction

Let Z1,Z2, . . . be independent, identically distributed random
vectors in R2.

The Zi will be the increments of the planar random walk Sn,
n ≥ 0, defined by S0 = 0 (the origin in R2) and

Sn =
n∑

i=1

Zi .

We are interested in asymptotic properties of the convex hull
hull(S0, . . . ,Sn).

In particular, the n→∞ limit behaviour of the random variables

Ln = the perimeter length of hull(S0, . . . ,Sn).



Introduction

Standing assumption: E(‖Z1‖2) <∞ (two moments).

There is going to be a clear distinction between the zero drift
case (EZ1 = 0) and the non-zero drift case (‖EZ1‖ > 0).

For example, under mild conditions:
• the zero-drift walk is recurrent and the convex hull tends to

the whole of R2;
• the walk with drift is transient with a limiting direction and

the convex hull sits inside some arbitrarily narrow wedge.

We will look at both cases in this talk. First, we give a brief
summary of some history.
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Some history

Spitzer & Widom (1961) and Baxter (1961) showed that

ELn = 2
n∑

k=1

1
k
E‖Sk‖.

So, under mild conditions:
• the zero-drift case has ELn �

√
n;

• the case with drift has ELn � n.

Snyder & Steele (1993) showed that
1
n
Var(Ln) ≤ π2

2

(
E‖Z1‖2 − ‖EZ1‖2

)
. (1)

Snyder & Steele deduced from (1) the strong law

lim
n→∞

n−1Ln = 2‖EZ1‖, a.s.



Some questions

The work of Snyder & Steele raised some natural questions.

• Is n the correct order for Var(Ln)?
• Is there a distributional limit theorem for Ln?
• If so, is the limit distribution normal?

The answers to these questions turn out be be essentially
• yes, yes, no in the zero drift case, and
• yes, yes, yes in the non-zero drift case,

excluding some degenerate cases.

First, we have a quick look at some simulation evidence.



Some simulations

As a concrete example, let Z1 be distributed as (µ,0) + eΘ,
where
• eθ = (cos θ, sin θ) is the unit vector in direction θ;
• Θ is a uniform random variable on [0,2π).

So EZ1 = (µ,0), ‖EZ1‖ = µ.

The case µ = 0 is the Pearson–Rayleigh random walk.

Picture for µ = 0.2:



Some simulations: non-zero drift
• Left: Histogram of Ln samples for n = 104; 106 simulations.
• Right: Plot of point estimates for y = Var(Ln) against

x = n; also shown is the line y = 2x .
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Simulations suggest:

n−1Var(Ln)→ const. (2 in this case!); Ln satisfies a CLT.



Some simulations: zero drift
• Left: Histogram of Ln samples for n = 104; 106 simulations.
• Right: Plot of point estimates for y = Var(Ln) against

x = n; also shown is the line y = 0.536x .
Histogram of z
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Simulations suggest:

n−1Var(Ln)→ const. ≈ 0.536; Ln non-Gaussian limit.



First tool: Cauchy formula
Let eθ = (cos θ, sin θ), unit vector in direction θ. Set

Mn(θ) = max
0≤k≤n

(Sk · eθ), mn(θ) = min
0≤k≤n

(Sk · eθ).

Cauchy’s perimeter formula from convex geometry:

Ln =

∫ π

0
(Mn(θ)−mn(θ)) dθ.

θ

Mn(θ)



First tool: Cauchy formula

Ln =

∫ π

0
(Mn(θ)−mn(θ)) dθ.

A first consequence: classical fluctuation theory for random
walk on R gives

EMn(θ) =
n∑

k=1

k−1E[(Sk · eθ)+],

a formula attributed variously to Kac, Hunt, Dyson, and Chung,
and which can be proved combinatorially, or analytically as a
consequence of the Spitzer–Baxter fluctuation theory identities.
Then

ELn =
n∑

k=1

k−1E
∫ π

0
|Sk · eθ|dθ = 2

n∑
k=1

k−1E‖Sk‖,

which is the Spitzer–Widom formula.



Zero drift case

Suppose EZ1 = 0. The
random walk has Brownian
motion as its scaling limit.

So one would expect that the
convex hull of the random walk
is described in the limit by the
convex hull of Brownian
motion. The latter was studied
by Lévy; more recently by El
Bachir (1983) and others.

We need to know a little about
convex hulls of continuous
paths, and need to set things
up on the right space(s).

●



Paths and hulls

Consider continuous f : [0,T ]→ Rd with f (0) = 0; say f ∈ C0
d .

(T is not very important—enough to take T ≡ 1.)

With the supremum norm ρ∞(f ,g) = supx ‖f (x)− g(x)‖ we get
a metric space (C0

d , ρ∞).

The path segment (≡ interval image) f [0, t ] = {f (s) : s ∈ [0, t ]}
is compact. =⇒ hull(f [0, t ]) is compact (by a theorem of
Carathéodory).

That is, hull(f [0, t ]) is an element of the metric space (K0
d , ρH)

of compact convex subsets of Rd containing 0, with the
Hausdorff metric.



Paths and hulls

Metric space (K0
d , ρH) of compact convex subsets of Rd

containing 0, with the Hausdorff metric.

Given A ∈ K0
d and r > 0, let Ar := {x ∈ Rd : ρ(x ,A) ≤ r}.

For A,B ∈ K0
d ,

ρH(A,B) ≤ r ⇔ A ⊆ Br and B ⊆ Ar .

Lemma 1
For each t, the map f 7→ hull(f [0, t ]) is a continuous function
from (C0

d , ρ∞) to (K0
d , ρH).



Scaling limit

Given random walk Sn =
∑n

i=1 Zi , define

Xn(t) := n−1/2 (Sbntc + (nt − bntc)
(
Sbntc+1 − Sbntc

))
.

So for each n, Xn ∈ C0
d ; Xn(0) = 0 and Xn(1) = n−1/2Sn.

Let bt , t ≥ 0 denote standard Brownian motion on Rd .

Donsker’s Theorem
Suppose E(‖Z1‖2) <∞, EZ1 = 0, and E(Z1Z>1 ) = σ2I, σ2 > 0.
Then Xn/σ ⇒ b in the sense of weak convergence on (C0

d , ρ∞).

Note hull(Xn[0,1]) = n−1/2 hull(S0, . . . ,Sn). Then with Lemma
1 and the continuous mapping theorem, we get:

Theorem 2
Under the same conditions,
n−1/2 hull(S0, . . . ,Sn)⇒ hull(b[0,1]) in the sense of weak
convergence on (K0

d , ρH).



Functionals

Now take d = 2. One neat way to define perimeter length of a
set A ∈ K0

2 is via intrinsic volumes:

L(A) := lim
r↓0

(
|Ar | − |A|

r

)
,

where | · | is Lebesgue measure on R2; the limit exists by the
Steiner formula of integral geometry. In particular,

L(A) =

{
H1(∂A) if int(A) 6= ∅

2H1(∂A) if int(A) = ∅

where H1 is one-dimensional Hausdorff measure.



Functionals

Lemma 3
The map A 7→ L(A) is a continuous function from (K0

2, ρH) to (R+, ρ).

Note L(Xn[0,1]) = L(n−1/2 hull(S0, . . . ,Sn)) = n−1/2Ln.

Corollary 4
Suppose E(‖Z1‖2) <∞, EZ1 = 0, and E(Z1Z>1 ) = σ2I, σ2 > 0.

Then n−1/2Ln
d−→ `1, where `1 = L(hull(b[0,1])) is the perimeter

length of the convex hull of planar Brownian motion run for unit time.

Assuming E(‖Z1‖2+ε) <∞, a uniform integrability argument gives

lim
n→∞

n−1Var(Ln) = Var(`1).

Work in progress. We can show Var(`1) > 0. We’d like an exact
formula. Goldman (1996) manages to do a similar calculation for the
planar Brownian bridge, but it is tricky.



Non-zero drift case

Now suppose ‖EZ1‖ > 0. Our results are:

Theorem 5

lim
n→∞

1
n
Var(Ln) =

4E[((Z1 − EZ1) · EZ1)2]

‖EZ1‖2
=: s2 ∈ [0,∞).

Theorem 6
Suppose that s2 > 0. Then for any x ∈ R,

lim
n→∞

P
(

Ln − ELn√
VarLn

≤ x
)

= lim
n→∞

P
(

Ln − ELn√
ns2

≤ x
)

= Φ(x),

the standard normal distribution function.



Remarks

(i) A little algebra shows s2 ≤ 4(E‖Z1‖2 − ‖EZ1‖2).

Compare to the Snyder–Steele upper bound
n−1Var(Ln) ≤ π2

2 (E‖Z1‖2 − ‖EZ1‖2).

I.e., the constant in the Snyder–Steele upper bound is not
sharp (4 < π2/2).

(ii) s2 = 0 if and only if Z1 − EZ1 is a.s. orthogonal to EZ1.

This is the case, for instance, if Z1 takes values (1,1) or
(1,−1), each with probability 1/2.

In this case Theorem 5 says that Var(Ln) = o(n).
The Snyder–Steele bound says only that Var(Ln) ≤ π2n/2.
Simulations suggest that actually Var(Ln) = O(log n).



Degenerate example

Z1 takes values (1,1) or (1,−1), each with probability 1/2.

This 2-dimensional walk can be viewed as a space-time
diagram of a 1-dimensional simple symmetric random walk:

Interesting combinatorics here, related to the
Bohnenblust–Spitzer algorithm; see Steele (2002).

Behaviour of Ln for this case is largely an open problem.



Proof idea: Martingale differences

Let Fn = σ(Z1, . . . ,Zn). Define Dn,i = E[Ln − L(i)
n | Fi ].

Lemma 7
(i) Ln − ELn =

∑n
i=1 Dn,i .

(ii) Var(Ln) =
∑n

i=1 E(D2
n,i).

Sketch proof.
As Z ′i is independent of Fi , E[L(i)

n | Fi ] = E[L(i)
n | Fi−1] = E[Ln | Fi−1].

So Dn,i = E[Ln | Fi ]− E[Ln | Fi−1]; a standard construction of a
martingale difference sequence.

n∑
i=1

Dn,i = E[Ln | Fn]− E[Ln | F0] = Ln − ELn.

Now use orthogonality of martingale differences.



Aside: Upper bounds

Lemma 3 with the conditional Jensen inequality gives:

Var(Ln) ≤
n∑

i=1

E[(Ln − L(i)
n )2].

A related result, the Efron–Stein inequality, says

Var(Ln) ≤ 1
2

n∑
i=1

E[(Ln − L(i)
n )2].

It is this latter result that Snyder & Steele used to obtain their
upper bound.



Cauchy formula revisited

We need to study Dn,i = E[Ln − L(i)
n | Fi ].

We have the Cauchy formula for Ln, and similarly for L(i)
n , so that

Ln − L(i)
n =

∫ π

0
∆n,i(θ)dθ,

where

∆n,i(θ) =
(

Mn(θ)−M(i)
n (θ)

)
−
(

mn(θ)−m(i)
n (θ)

)
,

where, similarly to before,

M(i)
n (θ) = max

0≤j≤n
(S(i)

j · eθ), m(i)
n (θ) = min

0≤j≤n
(S(i)

j · eθ).



Proof idea: Control of extrema

We want to understand the relationship between Mn(θ), mn(θ)

and M(i)
n (θ), m(i)

n (θ) (resampled versions).

WLOG suppose EZ1 = µeπ/2 = (0, µ), where µ > 0.

Then for each fixed θ, Sj · eθ is a one-dimensional random walk.

Indeed, Sj · eθ =
∑j

k=1 Zk · eθ, with mean increment
E[Z1 · eθ] = E[Z1] · eθ = µ sin θ, which is positive for θ ∈ (0, π).

So, with high probability, the maximum Mn(θ) will be achieved
nearby step n while the minimum mn(θ) will be achieved nearby
step 0.

To formalize this needs only the strong law of large numbers,
plus some care (need some uniformity in θ).



Proof idea: Control of extrema

To get uniform control, take θ ∈ (δ, π − δ).

Let Jn(θ) = arg min
0≤j≤n

(Sj · eθ) and Jn(θ) = arg max
0≤j≤n

(Sj · eθ);

similarly J(i)
n (θ) and J(i)

n (θ) for the walk with Zi resampled.

Let E := En,i(δ, γ) be the event that for all θ ∈ (δ, π − δ),

• Jn(θ) < γn, Jn(θ) > (1− γ)n;

• J(i)
n (θ) < γn, J(i)

n (θ) > (1− γ)n.

Lemma 8
For any δ ∈ (0, π/2) and γ ∈ (0,1), P(E)→ 1, uniformly in i.

Sketch proof.
Follows from the SLLN.



Proof idea: Control of extrema

Lemma 9
On E, ∆n,i(θ) = (Zi − Z ′i ) · eθ for all i with γn < i < (1− γ)n.

Sketch proof.
On E , both the J are > (1− γ)n and both the J are < γn.

It follows that for i in the middle, J = J(i) and J = J(i).

So mn(θ) = m(i)
n (θ), and

M(i)
n (θ) = S(i)

J
· eθ = (SJ − Zi + Z ′i ) · eθ = Mn(θ) + (Z ′i − Zi) · eθ.

See the picture!



Proof idea: Control of extrema
So mn(θ) = m(i)

n (θ), and

M(i)
n (θ) = S(i)

J
· eθ = (SJ − Zi + Z ′i ) · eθ = Mn(θ) + (Z ′i − Zi) · eθ.

See the picture!



Finishing the proofs

The main technical work (details omitted!) now is dealing with
the error terms (sending δ → 0, γ → 0, n→∞).

Up to these error terms, we have shown that

Dn,i = E[Ln − L(i)
n | Fi ] ≈

∫ π

0
E[(Zi − Z ′i ) · eθ | Fi ]dθ.

Here Zi is Fi -measurable and Z ′i is independent of Fi , so

E[(Zi − Z ′i ) · eθ | Fi ] = (Zi − EZ1) · eθ.

Doing the integral gives

Dn,i = E[Ln − L(i)
n | Fi ] ≈

2(Zi − EZ1) · EZ1

‖EZ1‖
.



Finishing the proofs

Formalizing the analysis we get:

Theorem 10

n−1/2

∣∣∣∣∣Ln − ELn −
n∑

i=1

2(Zi − EZ1) · EZ1

‖EZ1‖

∣∣∣∣∣→ 0, in L2.

So, perhaps surprisingly, Ln − ELn is well-approximated by a
sum of i.i.d. random variables.

Theorems 5 and 6 now follow from Theorem 10 easily enough.



Concluding remarks

The assumption that the Zi are identically distributed is not
essential to the main argument.

For example, let Gn = 1
n+1

∑n
i=0 Si =

∑n
i=1

n+1−i
n+1 Zi .

G0,G1, . . . is the centre-of-mass process associated with
S0,S1, . . ..

By convexity, hull(G0, . . . ,Gn) ⊆ hull(S0, . . . ,Sn).

If L?n is the perimeter length of hull(G0, . . . ,Gn), then the
statement of Theorem 10 applies to L?n in place of Ln with
n+1−i

n+1 Zi in place of Zi .

In particular, the analogue of Theorem 5 says that

lim
n→∞

1
n
Var(L?n) = s2/3,

where s2 is the same as before.



Concluding remarks

A picture:



Concluding remarks

Ongoing work: look at An, the area of hull(S0, . . . ,Sn).

There’s a (more complicated) formula for E(An), due to
Barndorff-Nielsen and Baxter (1963).

We can show
• Var(An) = O(n3) in the case with drift;
• Var(An) = O(n2) in the zero-drift case.

We expect these bounds are of the correct order.

There’s a (more complicated) Cauchy formula here, too, but to
get a precise limit statement (or even a lower bound) in this
case looks harder.

Several interesting open problems. . .
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