Convex hulls of random walks

Andrew Wade
Department of Mathematical Sciences Durham University

March 2014
Joint work with Chang Xu, University of Strathclyde

Introduction

On each of n unsteady steps, a drunken gardener drops a seed. Once the flowers have bloomed, what is the minimum length of fencing needed to enclose the garden?

Introduction

Let Z_{1}, Z_{2}, \ldots be independent, identically distributed random vectors in \mathbb{R}^{2}.

The Z_{i} will be the increments of the planar random walk S_{n}, $n \geq 0$, defined by $S_{0}=0$ (the origin in \mathbb{R}^{2}) and

$$
S_{n}=\sum_{i=1}^{n} Z_{i}
$$

We are interested in asymptotic properties of the convex hull hull $\left(S_{0}, \ldots, S_{n}\right)$.

In particular, the $n \rightarrow \infty$ limit behaviour of the random variables
$L_{n}=$ the perimeter length of $\operatorname{hull}\left(S_{0}, \ldots, S_{n}\right)$.

Introduction

Standing assumption: $\mathbb{E}\left(\left\|Z_{1}\right\|^{2}\right)<\infty$ (two moments).
There is going to be a clear distinction between the zero drift case $\left(\mathbb{E} Z_{1}=0\right)$ and the non-zero drift case ($\left\|\mathbb{E} Z_{1}\right\|>0$).

For example, under mild conditions:

- the zero-drift walk is recurrent and the convex hull tends to the whole of \mathbb{R}^{2};
- the walk with drift is transient with a limiting direction and the convex hull sits inside some arbitrarily narrow wedge.

We will look at both cases in this talk. First, we give a brief summary of some history.
(1) Introduction
(2) Background
(3) Zero drift and Brownian scaling limit
(4) Non-zero drift and central limit theorem
(5) Concluding remarks

Some history

Spitzer \& Widom (1961) and Baxter (1961) showed that

$$
\mathbb{E} L_{n}=2 \sum_{k=1}^{n} \frac{1}{k} \mathbb{E}\left\|S_{k}\right\|
$$

So, under mild conditions:

- the zero-drift case has $\mathbb{E} L_{n} \asymp \sqrt{n}$;
- the case with drift has $\mathbb{E} L_{n} \asymp n$.

Snyder \& Steele (1993) showed that

$$
\begin{equation*}
\frac{1}{n} \mathbb{V} \operatorname{ar}\left(L_{n}\right) \leq \frac{\pi^{2}}{2}\left(\mathbb{E}\left\|Z_{1}\right\|^{2}-\left\|\mathbb{E} Z_{1}\right\|^{2}\right) \tag{1}
\end{equation*}
$$

Snyder \& Steele deduced from (1) the strong law

$$
\lim _{n \rightarrow \infty} n^{-1} L_{n}=2\left\|\mathbb{E} Z_{1}\right\|, \text { a.s. }
$$

Some questions

The work of Snyder \& Steele raised some natural questions.

- Is n the correct order for $\mathbb{V a r}\left(L_{n}\right)$?
- Is there a distributional limit theorem for L_{n} ?
- If so, is the limit distribution normal?

The answers to these questions turn out be be essentially

- yes, yes, no in the zero drift case, and
- yes, yes, yes in the non-zero drift case,
excluding some degenerate cases.
First, we have a quick look at some simulation evidence.

Some simulations

As a concrete example, let Z_{1} be distributed as $(\mu, 0)+\mathbf{e}_{\ominus}$, where

- $\mathbf{e}_{\theta}=(\cos \theta, \sin \theta)$ is the unit vector in direction $\theta ;$
- Θ is a uniform random variable on $[0,2 \pi)$.

So $\mathbb{E} \boldsymbol{Z}_{1}=(\mu, 0),\left\|\mathbb{E} \boldsymbol{Z}_{1}\right\|=\mu$.
The case $\mu=0$ is the Pearson-Rayleigh random walk.
Picture for $\mu=0.2$:

Some simulations: non-zero drift

- Left: Histogram of L_{n} samples for $n=10^{4} ; 10^{6}$ simulations.
- Right: Plot of point estimates for $y=\mathbb{V a r}\left(L_{n}\right)$ against $x=n$; also shown is the line $y=2 x$.

Simulations suggest:
$n^{-1} \operatorname{Var}\left(L_{n}\right) \rightarrow$ const. (2 in this case!); L_{n} satisfies a CLT.

Some simulations: zero drift

- Left: Histogram of L_{n} samples for $n=10^{4} ; 10^{6}$ simulations.
- Right: Plot of point estimates for $y=\operatorname{Var}\left(L_{n}\right)$ against $x=n$; also shown is the line $y=0.536 x$.

Simulations suggest:
$n^{-1} \operatorname{Var}\left(L_{n}\right) \rightarrow$ const. $\approx 0.536 ; L_{n}$ non-Gaussian limit.

First tool: Cauchy formula

Let $\mathbf{e}_{\theta}=(\cos \theta, \sin \theta)$, unit vector in direction θ. Set

$$
M_{n}(\theta)=\max _{0 \leq k \leq n}\left(S_{k} \cdot \mathbf{e}_{\theta}\right), \quad m_{n}(\theta)=\min _{0 \leq k \leq n}\left(S_{k} \cdot \mathbf{e}_{\theta}\right) .
$$

Cauchy's perimeter formula from convex geometry:

First tool: Cauchy formula

$$
L_{n}=\int_{0}^{\pi}\left(M_{n}(\theta)-m_{n}(\theta)\right) \mathrm{d} \theta
$$

A first consequence: classical fluctuation theory for random walk on \mathbb{R} gives

$$
\mathbb{E} M_{n}(\theta)=\sum_{k=1}^{n} k^{-1} \mathbb{E}\left[\left(S_{k} \cdot \mathbf{e}_{\theta}\right)^{+}\right]
$$

a formula attributed variously to Kac, Hunt, Dyson, and Chung, and which can be proved combinatorially, or analytically as a consequence of the Spitzer-Baxter fluctuation theory identities. Then

$$
\mathbb{E} L_{n}=\sum_{k=1}^{n} k^{-1} \mathbb{E} \int_{0}^{\pi}\left|S_{k} \cdot \mathbf{e}_{\theta}\right| \mathrm{d} \theta=2 \sum_{k=1}^{n} k^{-1} \mathbb{E}\left\|S_{k}\right\|,
$$

which is the Spitzer-Widom formula.

Zero drift case

Suppose $\mathbb{E} Z_{1}=0$. The random walk has Brownian motion as its scaling limit.
So one would expect that the convex hull of the random walk is described in the limit by the convex hull of Brownian motion. The latter was studied by Lévy; more recently by El Bachir (1983) and others.
We need to know a little about convex hulls of continuous paths, and need to set things
 up on the right space(s).

Paths and hulls

Consider continuous $f:[0, T] \rightarrow \mathbb{R}^{d}$ with $f(0)=0$; say $f \in \mathcal{C}_{d}^{0}$. (T is not very important-enough to take $T \equiv 1$.)
With the supremum norm $\rho_{\infty}(f, g)=\sup _{x}\|f(x)-g(x)\|$ we get a metric space $\left(\mathcal{C}_{d}^{0}, \rho_{\infty}\right)$.
The path segment (\equiv interval image) $f[0, t]=\{f(s): s \in[0, t]\}$ is compact. \Longrightarrow hull $(f[0, t])$ is compact (by a theorem of Carathéodory).
That is, hull $(f[0, t])$ is an element of the metric space $\left(\mathcal{K}_{d}^{0}, \rho_{H}\right)$ of compact convex subsets of \mathbb{R}^{d} containing 0 , with the Hausdorff metric.

Paths and hulls

Metric space $\left(\mathcal{K}_{d}^{0}, \rho_{H}\right)$ of compact convex subsets of \mathbb{R}^{d} containing 0 , with the Hausdorff metric.
Given $A \in \mathcal{K}_{d}^{0}$ and $r>0$, let $A^{r}:=\left\{x \in \mathbb{R}^{d}: \rho(x, A) \leq r\right\}$.
For $A, B \in \mathcal{K}_{d}^{0}$,

$$
\rho_{H}(A, B) \leq r \quad \Leftrightarrow \quad A \subseteq B^{r} \text { and } B \subseteq A^{r} .
$$

Lemma 1
For each t, the map $f \mapsto$ hull $(f[0, t])$ is a continuous function from $\left(\mathcal{C}_{d}^{0}, \rho_{\infty}\right)$ to $\left(\mathcal{K}_{d}^{0}, \rho_{H}\right)$.

Scaling limit

Given random walk $S_{n}=\sum_{i=1}^{n} Z_{i}$, define

$$
X_{n}(t):=n^{-1 / 2}\left(S_{\lfloor n t\rfloor}+(n t-\lfloor n t\rfloor)\left(S_{\lfloor n t\rfloor+1}-S_{\lfloor n t\rfloor}\right)\right)
$$

So for each $n, X_{n} \in \mathcal{C}_{d}^{0} ; X_{n}(0)=0$ and $X_{n}(1)=n^{-1 / 2} S_{n}$. Let $b_{t}, t \geq 0$ denote standard Brownian motion on \mathbb{R}^{d}.
Donsker's Theorem
Suppose $\mathbb{E}\left(\left\|Z_{1}\right\|^{2}\right)<\infty, \mathbb{E} Z_{1}=0$, and $\mathbb{E}\left(Z_{1} Z_{1}^{\top}\right)=\sigma^{2} I$, $\sigma^{2}>0$. Then $X_{n} / \sigma \Rightarrow b$ in the sense of weak convergence on $\left(\mathcal{C}_{d}^{0}, \rho_{\infty}\right)$. $\operatorname{Note} \operatorname{hull}\left(X_{n}[0,1]\right)=n^{-1 / 2} \operatorname{hull}\left(S_{0}, \ldots, S_{n}\right)$. Then with Lemma 1 and the continuous mapping theorem, we get:

Theorem 2

Under the same conditions, $n^{-1 / 2}$ hull $\left(S_{0}, \ldots, S_{n}\right) \Rightarrow \operatorname{hull}(b[0,1])$ in the sense of weak convergence on $\left(\mathcal{K}_{d}^{0}, \rho_{H}\right)$.

Functionals

Now take $d=2$. One neat way to define perimeter length of a set $A \in \mathcal{K}_{2}^{0}$ is via intrinsic volumes:

$$
\mathcal{L}(A):=\lim _{r \downarrow 0}\left(\frac{\left|A^{r}\right|-|A|}{r}\right),
$$

where $|\cdot|$ is Lebesgue measure on \mathbb{R}^{2}; the limit exists by the Steiner formula of integral geometry. In particular,

$$
\mathcal{L}(A)=\left\{\begin{aligned}
\mathcal{H}_{1}(\partial A) & \text { if } \operatorname{int}(A) \neq \emptyset \\
2 \mathcal{H}_{1}(\partial A) & \text { if } \operatorname{int}(A)=\emptyset
\end{aligned}\right.
$$

where \mathcal{H}_{1} is one-dimensional Hausdorff measure.

Functionals

Lemma 3
The map $A \mapsto \mathcal{L}(A)$ is a continuous function from $\left(\mathcal{K}_{2}^{0}, \rho_{H}\right)$ to $\left(\mathbb{R}_{+}, \rho\right)$.
Note $\mathcal{L}\left(X_{n}[0,1]\right)=\mathcal{L}\left(n^{-1 / 2}\right.$ hull $\left.\left(S_{0}, \ldots, S_{n}\right)\right)=n^{-1 / 2} L_{n}$.
Corollary 4
Suppose $\mathbb{E}\left(\left\|Z_{1}\right\|^{2}\right)<\infty, \mathbb{E} Z_{1}=0$, and $\mathbb{E}\left(Z_{1} Z_{1}^{\top}\right)=\sigma^{2} l, \sigma^{2}>0$. Then $n^{-1 / 2} L_{n} \xrightarrow{d} \ell_{1}$, where $\ell_{1}=\mathcal{L}($ hull $(b[0,1]))$ is the perimeter length of the convex hull of planar Brownian motion run for unit time.
Assuming $\mathbb{E}\left(\left\|Z_{1}\right\|^{2+\varepsilon}\right)<\infty$, a uniform integrability argument gives

$$
\lim _{n \rightarrow \infty} n^{-1} \operatorname{Var}\left(L_{n}\right)=\mathbb{V a r}\left(\ell_{1}\right) .
$$

Work in progress. We can show $\operatorname{Var}\left(\ell_{1}\right)>0$. We'd like an exact formula. Goldman (1996) manages to do a similar calculation for the planar Brownian bridge, but it is tricky.

Non-zero drift case

Now suppose $\left\|\mathbb{E} Z_{1}\right\|>0$. Our results are:
Theorem 5

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{V} \operatorname{ar}\left(L_{n}\right)=\frac{4 \mathbb{E}\left[\left(\left(Z_{1}-\mathbb{E} Z_{1}\right) \cdot \mathbb{E} Z_{1}\right)^{2}\right]}{\left\|\mathbb{E} Z_{1}\right\|^{2}}=: s^{2} \in[0, \infty) .
$$

Theorem 6
Suppose that $s^{2}>0$. Then for any $x \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{L_{n}-\mathbb{E} L_{n}}{\sqrt{\operatorname{VarL}_{n}}} \leq x\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{L_{n}-\mathbb{E} L_{n}}{\sqrt{n s^{2}}} \leq x\right)=\Phi(x),
$$

the standard normal distribution function.

Remarks

(i) A little algebra shows $s^{2} \leq 4\left(\mathbb{E}\left\|Z_{1}\right\|^{2}-\left\|\mathbb{E} Z_{1}\right\|^{2}\right)$.

Compare to the Snyder-Steele upper bound
$n^{-1} \operatorname{Var}\left(L_{n}\right) \leq \frac{\pi^{2}}{2}\left(\mathbb{E}\left\|Z_{1}\right\|^{2}-\left\|\mathbb{E} Z_{1}\right\|^{2}\right)$.
I.e., the constant in the Snyder-Steele upper bound is not sharp $\left(4<\pi^{2} / 2\right)$.
(ii) $s^{2}=0$ if and only if $Z_{1}-\mathbb{E} Z_{1}$ is a.s. orthogonal to $\mathbb{E} Z_{1}$.

This is the case, for instance, if Z_{1} takes values $(1,1)$ or $(1,-1)$, each with probability $1 / 2$.
In this case Theorem 5 says that $\mathbb{V a r}\left(L_{n}\right)=o(n)$.
The Snyder-Steele bound says only that $\operatorname{Var}\left(L_{n}\right) \leq \pi^{2} n / 2$.
Simulations suggest that actually $\operatorname{Var}\left(L_{n}\right)=O(\log n)$.

Degenerate example

Z_{1} takes values $(1,1)$ or $(1,-1)$, each with probability $1 / 2$.
This 2-dimensional walk can be viewed as a space-time diagram of a 1-dimensional simple symmetric random walk:

Interesting combinatorics here, related to the Bohnenblust-Spitzer algorithm; see Steele (2002).
Behaviour of L_{n} for this case is largely an open problem.

Proof idea: Martingale differences

Let $\mathcal{F}_{n}=\sigma\left(Z_{1}, \ldots, Z_{n}\right)$. Define $D_{n, i}=\mathbb{E}\left[L_{n}-L_{n}^{(i)} \mid \mathcal{F}_{i}\right]$.
Lemma 7
(i) $L_{n}-\mathbb{E} L_{n}=\sum_{i=1}^{n} D_{n, i}$.
(ii) $\operatorname{Var}\left(L_{n}\right)=\sum_{i=1}^{n} \mathbb{E}\left(D_{n, i}^{2}\right)$.

Sketch proof.
As Z_{i}^{\prime} is independent of $\mathcal{F}_{i}, \mathbb{E}\left[L_{n}^{(i)} \mid \mathcal{F}_{i}\right]=\mathbb{E}\left[L_{n}^{(i)} \mid \mathcal{F}_{i-1}\right]=\mathbb{E}\left[L_{n} \mid \mathcal{F}_{i-1}\right]$.
So $D_{n, i}=\mathbb{E}\left[L_{n} \mid \mathcal{F}_{i}\right]-\mathbb{E}\left[L_{n} \mid \mathcal{F}_{i-1}\right]$; a standard construction of a martingale difference sequence.

$$
\sum_{i=1}^{n} D_{n, i}=\mathbb{E}\left[L_{n} \mid \mathcal{F}_{n}\right]-\mathbb{E}\left[L_{n} \mid \mathcal{F}_{0}\right]=L_{n}-\mathbb{E} L_{n}
$$

Now use orthogonality of martingale differences.

Aside: Upper bounds

Lemma 3 with the conditional Jensen inequality gives:

$$
\operatorname{Var}\left(L_{n}\right) \leq \sum_{i=1}^{n} \mathbb{E}\left[\left(L_{n}-L_{n}^{(i)}\right)^{2}\right] .
$$

A related result, the Efron-Stein inequality, says

$$
\operatorname{Var}\left(L_{n}\right) \leq \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left[\left(L_{n}-L_{n}^{(i)}\right)^{2}\right] .
$$

It is this latter result that Snyder \& Steele used to obtain their upper bound.

Cauchy formula revisited

We need to study $D_{n, i}=\mathbb{E}\left[L_{n}-L_{n}^{(i)} \mid \mathcal{F}_{i}\right]$.
We have the Cauchy formula for L_{n}, and similarly for $L_{n}^{(i)}$, so that

$$
L_{n}-L_{n}^{(i)}=\int_{0}^{\pi} \Delta_{n, i}(\theta) \mathrm{d} \theta
$$

where

$$
\Delta_{n, i}(\theta)=\left(M_{n}(\theta)-M_{n}^{(i)}(\theta)\right)-\left(m_{n}(\theta)-m_{n}^{(i)}(\theta)\right)
$$

where, similarly to before,

$$
M_{n}^{(i)}(\theta)=\max _{0 \leq j \leq n}\left(S_{j}^{(i)} \cdot \mathbf{e}_{\theta}\right), \quad m_{n}^{(i)}(\theta)=\min _{0 \leq j \leq n}\left(S_{j}^{(i)} \cdot \mathbf{e}_{\theta}\right)
$$

Proof idea: Control of extrema

We want to understand the relationship between $M_{n}(\theta), m_{n}(\theta)$ and $M_{n}^{(i)}(\theta), m_{n}^{(i)}(\theta)$ (resampled versions).
WLOG suppose $\mathbb{E} Z_{1}=\mu \mathbf{e}_{\pi / 2}=(0, \mu)$, where $\mu>0$.
Then for each fixed $\theta, S_{j} \cdot \mathbf{e}_{\theta}$ is a one-dimensional random walk.
Indeed, $S_{j} \cdot \mathbf{e}_{\theta}=\sum_{k=1}^{j} Z_{k} \cdot \mathbf{e}_{\theta}$, with mean increment $\mathbb{E}\left[Z_{1} \cdot \mathbf{e}_{\theta}\right]=\mathbb{E}\left[Z_{1}\right] \cdot \mathbf{e}_{\theta}=\mu \sin \theta$, which is positive for $\theta \in(0, \pi)$. So, with high probability, the maximum $M_{n}(\theta)$ will be achieved nearby step n while the minimum $m_{n}(\theta)$ will be achieved nearby step 0.
To formalize this needs only the strong law of large numbers, plus some care (need some uniformity in θ).

Proof idea: Control of extrema

To get uniform control, take $\theta \in(\delta, \pi-\delta)$.
Let $\underline{J}_{n}(\theta)=\arg \min \left(S_{j} \cdot \mathbf{e}_{\theta}\right)$ and $\bar{J}_{n}(\theta)=\arg \max \left(S_{j} \cdot \mathbf{e}_{\theta}\right)$;

$$
0 \leq j \leq n
$$

$$
0 \leq \leq \leq n
$$

similarly $\underline{J}_{n}^{(i)}(\theta)$ and $\bar{J}_{n}^{(i)}(\theta)$ for the walk with Z_{i} resampled.
Let $E:=E_{n, i}(\delta, \gamma)$ be the event that for all $\theta \in(\delta, \pi-\delta)$,

- $\underline{J}_{n}(\theta)<\gamma n, \bar{J}_{n}(\theta)>(1-\gamma) n ;$
- $\underline{J}_{n}^{(i)}(\theta)<\gamma n, \bar{J}_{n}^{(i)}(\theta)>(1-\gamma) n$.

Lemma 8
For any $\delta \in(0, \pi / 2)$ and $\gamma \in(0,1), \mathbb{P}(E) \rightarrow 1$, uniformly in i.
Sketch proof.
Follows from the SLLN.

Proof idea: Control of extrema

Lemma 9
On $E, \Delta_{n, i}(\theta)=\left(Z_{i}-Z_{i}^{\prime}\right) \cdot \mathbf{e}_{\theta}$ for all i with $\gamma n<i<(1-\gamma) n$.
Sketch proof.
On E, both the \bar{J} are $>(1-\gamma) n$ and both the J are $<\gamma$ n.
It follows that for i in the middle, $\bar{J}=\bar{J}^{(i)}$ and $\underline{J}=\underline{J}^{(i)}$.
So $m_{n}(\theta)=m_{n}^{(i)}(\theta)$, and
$M_{n}^{(i)}(\theta)=S_{J}^{(i)} \cdot \mathbf{e}_{\theta}=\left(S_{J}-Z_{i}+Z_{i}^{\prime}\right) \cdot \mathbf{e}_{\theta}=M_{n}(\theta)+\left(Z_{i}^{\prime}-Z_{i}\right) \cdot \mathbf{e}_{\theta}$.
See the picture!

Proof idea: Control of extrema

So $m_{n}(\theta)=m_{n}^{(i)}(\theta)$, and

$$
M_{n}^{(i)}(\theta)=S_{J}^{(i)} \cdot \mathbf{e}_{\theta}=\left(S_{j}-Z_{i}+Z_{i}^{\prime}\right) \cdot \mathbf{e}_{\theta}=M_{n}(\theta)+\left(Z_{i}^{\prime}-Z_{i}\right) \cdot \mathbf{e}_{\theta} .
$$

See the picture!

Finishing the proofs

The main technical work (details omitted!) now is dealing with the error terms (sending $\delta \rightarrow 0, \gamma \rightarrow 0, n \rightarrow \infty$).

Up to these error terms, we have shown that

$$
D_{n, i}=\mathbb{E}\left[L_{n}-L_{n}^{(i)} \mid \mathcal{F}_{i}\right] \approx \int_{0}^{\pi} \mathbb{E}\left[\left(Z_{i}-Z_{i}^{\prime}\right) \cdot \mathbf{e}_{\theta} \mid \mathcal{F}_{i}\right] \mathrm{d} \theta
$$

Here Z_{i} is \mathcal{F}_{i}-measurable and Z_{i}^{\prime} is independent of \mathcal{F}_{i}, so

$$
\mathbb{E}\left[\left(Z_{i}-Z_{i}^{\prime}\right) \cdot \mathbf{e}_{\theta} \mid \mathcal{F}_{i}\right]=\left(Z_{i}-\mathbb{E} Z_{1}\right) \cdot \mathbf{e}_{\theta}
$$

Doing the integral gives

$$
D_{n, i}=\mathbb{E}\left[L_{n}-L_{n}^{(i)} \mid \mathcal{F}_{i}\right] \approx \frac{2\left(Z_{i}-\mathbb{E} Z_{1}\right) \cdot \mathbb{E} Z_{1}}{\left\|\mathbb{E} Z_{1}\right\|}
$$

Finishing the proofs

Formalizing the analysis we get:
Theorem 10

$$
n^{-1 / 2}\left|L_{n}-\mathbb{E} L_{n}-\sum_{i=1}^{n} \frac{2\left(Z_{i}-\mathbb{E} Z_{1}\right) \cdot \mathbb{E} Z_{1}}{\left\|\mathbb{E} Z_{1}\right\|}\right| \rightarrow 0, \text { in } L^{2} .
$$

So, perhaps surprisingly, $L_{n}-\mathbb{E} L_{n}$ is well-approximated by a sum of i.i.d. random variables.

Theorems 5 and 6 now follow from Theorem 10 easily enough.

Concluding remarks

The assumption that the Z_{i} are identically distributed is not essential to the main argument.
For example, let $G_{n}=\frac{1}{n+1} \sum_{i=0}^{n} S_{i}=\sum_{i=1}^{n} \frac{n+1-i}{n+1} Z_{i}$.
G_{0}, G_{1}, \ldots is the centre-of-mass process associated with S_{0}, S_{1}, \ldots
By convexity, hull $\left(G_{0}, \ldots, G_{n}\right) \subseteq \operatorname{hull}\left(S_{0}, \ldots, S_{n}\right)$.
If L_{n}^{\star} is the perimeter length of $\operatorname{hull}\left(G_{0}, \ldots, G_{n}\right)$, then the statement of Theorem 10 applies to L_{n}^{\star} in place of L_{n} with $\frac{n+1-i}{n+1} Z_{i}$ in place of Z_{i}.
In particular, the analogue of Theorem 5 says that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{V} \operatorname{ar}\left(L_{n}^{\star}\right)=s^{2} / 3
$$

where s^{2} is the same as before.

Concluding remarks

A picture:

Concluding remarks

Ongoing work: look at A_{n}, the area of hull $\left(S_{0}, \ldots, S_{n}\right)$.
There's a (more complicated) formula for $\mathbb{E}\left(A_{n}\right)$, due to Barndorff-Nielsen and Baxter (1963).

We can show

- $\operatorname{Var}\left(A_{n}\right)=O\left(n^{3}\right)$ in the case with drift;
- $\operatorname{Var}\left(A_{n}\right)=O\left(n^{2}\right)$ in the zero-drift case.

We expect these bounds are of the correct order.
There's a (more complicated) Cauchy formula here, too, but to get a precise limit statement (or even a lower bound) in this case looks harder.

Several interesting open problems...

References

- O. Barndorff-Nielsen \& G. Baxter, Combinatorial lemmas in higher dimensions, Trans. Amer. Math. Soc. 108 (1963) 313-325.
- G. Baxter, A combinatorial lemma for complex numbers, Ann. Math. Statist. 32 (1961) 901-904.
- M. El Bachir, L'enveloppe convexe du mouvement brownien, Ph.D. thesis, Université Toulouse III, 1983.
- A. Goldman, Le spectre de certaines mosaïques poissoniennes du plan et lénveloppe convexe du pont brownien, Probab. Theory Relat. Fields 105 (1996) 57-83.
- S.N. Majumdar, A. Comtet, \& J. Randon-Furling, Random convex hulls and extreme value statistics, J. Stat. Phys. 138 (2010) 955-1009.
- T.L. Snyder \& J.M. Steele, Convex hulls of random walks, Proc. Amer. Math. Soc. 117 (1993) 1165-1173.
- F. Spitzer \& H. Widom, The circumference of a convex polygon, Proc. Amer. Math. Soc. 12 (1961) 506-509.
- J.M. Steele, The Bohnenblust-Spitzer algorithm and its applications, J. Comput. Appl. Math. 142 (2002) 235-249.
- A.R. Wade \& C. Xu, Convex hulls of planar random walks with drift, Proc. Amer. Math. Soc., arXiv:1301.4059.

