Type and type transition for random walks on randomly directed lattices

To lain MacPhee, in memoriam

Dimitri Petritis
Joint work with Massimo Campanino

Institut de recherche mathématique
Université de Rennes 1 and CNRS (UMR 6625)
France

Aspects of random walks
1 April 2014

What is the type problem for random walks?

- How often does a random walker on a denumerably infinite graph \mathbb{X} returns to its starting point?
- It depends on \mathbb{X} and on the law of jumps.
- Typically a dichotomy
- either almost surely infinitely often (recurrence),
- or almost surely finitely many times (transience).

Recall the case $\mathbb{X}=\mathbb{Z}^{d}$

- $\mathbb{X}=\mathbb{Z}^{d}$ is an Abelian group with generating set, e.g. the minimal generating set

$$
\mathbb{A}=\left\{\mathbf{e}_{1},-\mathbf{e}_{1}, \ldots, \mathbf{e}_{d},-\mathbf{e}_{d}\right\} ; \quad \operatorname{card} \mathbb{A}=2 d
$$

- μ probability on $\mathbb{A} \Rightarrow$ probability on \mathbb{X} with $\operatorname{supp} \mu=\mathbb{A}$. Uniform: $\forall x \in \mathbb{A}: \mu(x) \equiv \frac{1}{\operatorname{card} \mathbb{A}}=\frac{1}{2 d}$.
Symmetric: $\forall x \in \mathbb{A}: \mu(x)=\mu(-x)$.
Zero mean: $\sum_{x \in \mathbb{A}} x \mu(x)=0$.
- $\boldsymbol{\xi}=\left(\xi_{n}\right)_{n \in \mathbb{N}}$ i.i.d. sequence with $\xi_{1} \sim \mu$.
- Define $X_{0}=x \in \mathbb{X}$ and $X_{n+1}=X_{n}+\xi_{n+1}$. Then

$$
P(x, y)=\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right)=\mathbb{P}\left(\xi_{n+1}=y-x\right)=\mu(y-x) .
$$

- Simple (=uniform on the minimal generating set) random walk on the \mathbb{X}-valued Markov chain $\left(X_{n}\right)_{n \in \mathbb{N}}$ of $\operatorname{MC}\left(\mathbb{X}, P, \epsilon_{\chi}\right)$

Recall the case $\mathbb{X}=\mathbb{Z}^{d}$? (cont'd)

Theorem (Georg Pólya ${ }^{a}$)

${ }^{a}$ Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt in Straßennetz, Ann. Math.

For $\mathbb{X}=\mathbb{Z}^{d}$ with uniform jumps on n.n.

$$
\begin{array}{r}
d \geq 3: \text { transcience, } \\
d=1,2: \text { recurrence. }
\end{array}
$$

Proof by direct combinatorial and Fourier estimates.

- $P^{n}(x, y):=\sum_{x_{\mathbf{1}}, \ldots x_{n-\mathbf{1}}} \mathbb{P}\left(X_{0}=x, X_{1}=x_{1}, \ldots, X_{n}=y\right)=$ $\mu^{* n}(y-x)$.
- For $\xi \sim \mu$ and μ uniform,

$$
\chi(t)=\mathbb{E} \exp (i\langle t \mid \xi\rangle)=\sum_{x} \exp (i\langle t \mid x\rangle) \mu(x)=\frac{1}{d} \sum_{k=1}^{d} \cos \left(t_{k}\right) .
$$

- $P^{2 n}(0,0) \sim \frac{1}{(2 \pi)^{d}} \int_{[-\pi, \pi]^{d}}\left(\frac{1}{d} \sum_{k=1}^{d} \cos \left(t_{k}\right)\right)^{2 n} d^{d} t \sim \frac{c_{d}}{n^{d / 2}}$ as $n \rightarrow \infty$.
- Conclude by Borel-Cantelli $(d \geq 3)$ or renewal theorem $(d \leq 2)$.

Why simple random walk are studied?

- Mathematical interest: simple models with three interwoven structures:
- low-level algebraic structure conveying combinatorial information,
- high-level algebraic structure conveying geometric information,
- stochastic structure adapted to the two previous structures.
- Discretised (in time/space) versions of stochastic processes, numerous interesting mathematical problems still open.
- Modelling transport (of energy, information, charge, etc.) phenomena
- in crystals (metals, semiconductors, ionic conductors, etc.)
- or on networks.
- Intervening in models described by PDE's involving a Laplacian hence in harmonic analysis
- classical electrodynamics,
- statistical mechanics,
- quantum mechanics, quantum field theory, etc

Short algebraic reminder

Groups, groupoids and semigroupoids

Definition

Let $\Gamma \neq \emptyset$. (Γ, \cdot) is a
semigroup monoid group
if $\cdot: \Gamma \times \Gamma \rightarrow \Gamma$ and $\forall a, b, c \in \Gamma$
$(c b) a=c(b a)$
$\exists!e \in \Gamma: e a=a e=a$
$\exists a^{-1} \in \Gamma: a^{-1}=a^{-1} a=e$
semigroupoid groupoid
if $\exists \Gamma^{2} \subseteq \Gamma \times \Gamma$ and $\cdot: \Gamma^{2} \rightarrow \Gamma$
$(c, b),(b, a) \in \Gamma^{2} \Rightarrow$
$(c b, a),(c, b a) \in \Gamma^{2}$ and $(c b) a=c(b a)$
units not necessarily unique,
$\exists a^{-1}:\left(a^{-1}\right)^{-1}=a$,
$\left(a, a^{-1}\right),\left(a^{-1}, a\right) \in \Gamma^{2}$ and
$(a, b) \in \Gamma^{2} \Rightarrow a^{-1}(a b)=b ;$
$(b, a) \in \Gamma^{2} \Rightarrow(b a) a^{-1}=b$.

Monoidal closure of \mathbb{A}

$$
\begin{aligned}
\mathbb{A} & =\{E, N, W, S\} ; \mathbb{A}^{*}=\cup_{n=0}^{\infty} \mathbb{A}^{n} \\
\mathbb{A}^{0} & =\{\varepsilon\}, \mathbb{A}^{n}=\left\{\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{i} \in \mathbb{A}\right\}
\end{aligned}
$$

Proposition

$\left(\mathbb{A}^{*}, \circ\right)$ is a monoid, the monoidal closure of \mathbb{A}.
$\alpha \circ \varepsilon=\varepsilon \circ \alpha=\alpha$. If $\alpha=E E N N E S W ; \beta=W S N$ then $\alpha \circ \beta=E E N N E S W W S N \neq W S N E E N N E S W=\beta \circ \alpha$.

Combinatorial information \neq geometric information

- $\mathbb{A}^{*} \simeq$ path space. Combinatorial information encoded into the finite automaton $F A$. Paths define a regular language recognised by FA_{1}.
- Road map needed to translate into geometric information $E=a, W=a^{-1} ; N=b, S=b^{-1}$ and relations on reduced words.

Example

$\mathbb{Z}^{2}=\left\langle\mathbb{A} \mid \mathcal{R}_{1}\right\rangle: \mathcal{R}_{1}=\left\{a b a^{-1} b^{-1}=e\right\}$ (Abelian).
$\mathbb{F}_{2}=\left\langle\mathbb{A} \mid \mathcal{R}_{2}\right\rangle: \mathcal{R}_{2}=\emptyset$ (free).
\mathbb{Z}^{2} and \mathbb{F}_{2} have same combinatorial description but are very different groups.

Geometric information encoded into the group structure $\Gamma=\langle\mathbb{A} \mid \mathcal{R}\rangle$. Natural surjection $g: \mathbb{A}^{*} \rightarrow \Gamma$.

The Cayley graph of finitely generated groups

Definition

Let $\Gamma=\langle\mathbb{A} \mid \mathcal{R}\rangle$. The Cayley graph Cayley (Γ, \mathbb{A}) is the graph

- vertex set Γ and
- edge set the pairs $(x, y) \in \Gamma^{2}$ such that $y=a x$ for some $a \in \mathbb{A}$.

Remark

Since \mathbb{A} symmetric, graph undirected.

Example

For $\mathbb{A}=\left\{a, b, a^{-1}, b^{-1}\right\}$,

- Cayley $\left(\mathbb{F}_{2}, \mathbb{A}\right)$ is the homogeneous tree of degree 4 ,
- Cayley $\left(\mathbb{Z}^{2}, \mathbb{A}\right)$ is the standard \mathbb{Z}^{2} lattice with edges over n.n.

The probabilistic structure

- $\mu:=\left(p_{1}, \ldots, p_{\text {card }}\right) \in \mathcal{M}_{1}(\mathbb{A})$ transforms FA into PFA.
- Path space \mathbb{A}^{*} acquires natural probability $\mathbb{P}^{\mu}(\{\alpha\})=\prod_{i=1}^{|\alpha|} p_{\alpha_{i}}$.
- Due to the surjection g, PFA induces natural Markov chain $\left(X_{n}\right)$:

$$
\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right)=\mu\left(\left\{x^{-1} y\right\}\right)=p_{x^{-1} y}, x, y \in \Gamma
$$

- Probabilistic structure adapted to combinatorial/geometric structure if $\operatorname{supp} \mu=\mathbb{A}$.
- When μ replaced by family $\left(\mu_{x}\right)_{x \in \Gamma}$ not necessarily supp $\mu_{x}=\mathbb{A}, \forall x \in \Gamma$ (i.e. ellipticity can fail).
- Suppose there exist $a \in \mathbb{A}$ and $x, y \in \Gamma$, with $x \neq y$, such that

$$
\mu_{x}(\{a\})=0 \text { and } \mu_{y}(\{a\}) \neq 0 .
$$

Then combinatorial structure must be modified for $\left(\mu_{x}\right)_{x \in \Gamma}$ to remain adapted. The resulting Γ may not be a group any longer.RENNES

How can we generalise?

- Distinctive property of simple r.w. on \mathbb{Z}^{d} :
- Abelian group of finite type generated by supp μ,
- i.e. graph on which r.w. evolves $=\operatorname{Cayley}\left(\mathbb{Z}^{d}, \operatorname{supp} \mu\right)$.
- Generalisation to non-commutative groups:
- The three interwoven structures and harmonic analysis survive.

Very active domain (e.g. products of fixed size random matrices, random dynamical systems, amenability issues, etc.).

- Space inhomogeneity: family of probabilities $\left(\mu_{x}\right)_{x \in \mathbb{X}}$, with $\mu_{x} \in \mathcal{M}_{1}(\mathbb{A}) \simeq\left\{\mathbf{p} \in \mathbb{R}_{+}^{\text {card }} \mathbb{A}: \sum_{a \in \mathbb{A}} p_{a}=1\right\}$.

$$
\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right)=\mu_{x}(y-x)
$$

(e.g. i.i.d. random probabilities $\left(\mu_{x}\right)$).

- Combinatorial and geometric structures survive.
- If uniform ellipticity, probabilistic structure remains adapted.
- But harmonic analysis (if any) very cumbersome.

And when the graph is not a group?

R.w. on quasi-periodic tilings of \mathbb{R}^{d} of Penrose type: the groupoid case

- Transport properties on quasi-periodic structures ${ }^{1}$.
- Spectral properties of Schrödinger operators on quasi-periodic structures.
- Random walks on groupoids, non-random inhomogeneity.

[^0]
And when the graph is not a group？
 R．w．on directed graphs：the semi－groupoid case

Alternate lattice	Half－plane one－way	Random horizontal
TYUN1隹	¢TVU1代	HUMU1化
\cdots		$\#$
\longrightarrow	\cdots	\leftrightarrows
凷	水水	戌林

－Hydrodynamic dispersion in porous rocks Matheron and Marsily （1980），numerical simulations Redner（1997）．
－Propagation of information on directed networks（pathway signalling networks in genomics，neural system，world wide web，etc．）
－Differential geometry，causal structures in quantum gravity．
－Random walks on semi－groupoids（and their C^{*}－algebras），failure of the reversibility condition．

And when the graph is not a group?
 R.w. on quadrants with reflecting boundaries

In the interior of the quadrant: zero drift, non-diagonal covariance matrix.

- Many models in queuing theory.
- No algebraic structure encoding the geometry survives.
- Studied by Markov chain methods.
- Thoroughly studied with Lyapunov functions: Fayolle, Malyshev, Menshikov (1994), Asymont, Fayolle Menshikov (1995), Aspiandiarov, lasnogorodsli, Menshikov (1996), Menshikov, P. (2002).

Results

Theorem (de Loynes, thm 3.1.2 in PhD thesis (2012)a)

${ }^{3}$ Available at http: //tel.archives-ouvertes.fr/tel-00726483,
The simple random walk on (adjacent edges of) a generic Penrose tiling of the d-dimensional space is

- recurrent, if $d \leq 2$, and
- transient, if $d \geq 3$.

Theorem (de Loynes (2014))

- The asymptotic entropy of the simple random walk on generic Penrose tiling vanishes,
- hence, the tail and invariant σ-algebras are trivial.

Results

Theorem (Campanino and P., MPRF 2003)

The simple random walk

- on the alternate 2-dimensional lattice is recurrent,
- on the half-plane one-way 2-dimensional lattice is transient,
- on the randomly horizontally directed 2-dimensional lattice, where $\left(\varepsilon_{x_{2}}\right)_{x_{2} \in \mathbb{Z}}$ is an i.i.d. $\{0,1\}$-distributed sequence of average $1 / 2$, is transient for almost all realisations of the sequence.

Various subsequent developments in relation with this model: Guillotin and Schott (2006), Guillotin and Le Ny (2007), Pete (2008), Pène (2009), Devulder and Pène (2011), de Loynes (2012).

Results (cont'd)

For semi-groupoids

Theorem (Campanino and P., JAP 2014, in press)

- $f: \mathbb{Z} \rightarrow\{-1,1\}$ a Q-periodic function $(Q \geq 2): \sum_{y=1}^{Q} f(y)=0$.
- $\left(\rho_{y}\right)_{y \in \mathbb{Z}}$ i.i.d. Rademacher sequence.
- $\left(\lambda_{y}\right)_{y \in \mathbb{Z}}$ i.i.d. $\{0,1\}$-valued sequence such that $\mathbb{P}\left(\lambda_{y}=1\right)=\frac{c}{|y|^{\beta}}$ for large |y|.
- $\varepsilon_{y}=\left(1-\lambda_{y}\right) f(y)+\lambda_{y} \rho_{y}$.

OIf $\beta<1$ then the simple random walk is almost surely transient.
OIf $\beta>1$ then the simple random walk is almost surely recurrent.

Remark

$\boldsymbol{\lambda}$ deterministic sequence with $\|\boldsymbol{\lambda}\|_{1}<\infty \Rightarrow$ recurrence. Nevertheless, there exist deterministic sequences with $\|\lambda\|_{1}=\infty$ leading to recurrence.

And when it is not a group?

- For alternate lattice, again a finite automaton, FA_{2}, governs combinatorics. E.g. starting at even, NSWWNW \notin language.
- Vertical projection of walk $=$ Markov chain on \mathbb{Z} with transitions

And when it is not a group? (cont'd)

- For alternate lattice \Rightarrow path space generated by finite automaton \Rightarrow admissible paths form regular language.
- For half-plane lattice \Rightarrow path space generated by push down automaton \Rightarrow admissible paths form context-free language.
- For randomly horizontally directed lattice \Rightarrow path space generated by linear bounded Turing machine \Rightarrow admissible paths form context-sensitive language.
- Vertical projection of walk $=$ Markov chain on \mathbb{Z} with transitions

Two archetypal examples of (semi)groupoids

Directed graphs

Example

- Directed graph: $\mathbb{G}=\left(\mathbb{G}^{0}, \mathbb{G}^{1}, s, t\right)$ with \mathbb{G}^{0} and \mathbb{G}^{1} denumerable (finite or infinite) sets of vertices (paths of length 0) and edges (paths of length 1) and $s, t: \mathbb{G}^{1} \rightarrow \mathbb{G}^{0}$ the source and terminal maps.
- For $n \geq 2$ define

$$
\mathbb{G}^{n}=\left\{\alpha=\alpha_{n} \ldots \alpha_{1}, \alpha_{i} \in \mathbb{G}^{1}, s\left(\alpha_{i+1}\right)=t\left(\alpha_{i}\right)\right\} \subseteq\left(\mathbb{G}^{1}\right)^{n}
$$

and $\operatorname{PS}(\mathbb{G})=\cup_{n \geq 0} \mathbb{G}^{n}$ the path space of \mathbb{G}. Maps s, t extend trivially to $\operatorname{PS}(\mathbb{G})$.

- On defining $\Gamma=\operatorname{PS}(\mathbb{G}), \Gamma^{2}=\{(\beta, \alpha) \in \Gamma \times \Gamma: s(\beta)=t(\alpha)\}$ and $\cdot: \Gamma^{2} \rightarrow \mathbb{G}$ the left admissible concatenation, $\left(\Gamma, \Gamma^{2}, \cdot\right)$ is a semigroupoid with space of units \mathbb{G}^{0}.

Two archetypal examples of (semi)groupoids

Admissible words on an alphabet

Example

\mathbb{A} alphabet, $A=\left(A_{b, a}\right)_{a, b \in \mathbb{A}}$ with $A_{a, b} \in\{0,1\}, \mathbb{A}^{0}=\{()\}$,
$\mathbb{A}^{n}=\left\{\alpha=\left(\alpha_{n} \cdots \alpha_{1}\right), \alpha_{i} \in \mathbb{A}\right\}$,

- set of words of arbitrary length $\mathbb{A}^{*}=\cup_{n \in \mathbb{N}} \mathbb{A}^{n}$ equipped with left concatenation is a monoid,
- $W_{A}(\mathbb{A})=\left\{\alpha \in \mathbb{A}^{*}: A\left(\alpha_{i+1}, \alpha_{i}\right)=1, i=1, \ldots,|\alpha|\right\}$ (set of A-admissible words) is a semigroupoid with (β, α) composable pair if $A\left(\beta_{1}, \alpha_{|\alpha|}\right)=1$.

Remark

A semigroupoid is not always a category. Consider, for example, $\mathbb{A}=\{a, b\}$ and $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.

Constrained Cayley graphs and semi-groupoids

Constrained Cayley graphs

$$
\begin{gathered}
E W=W E=e, N S=S N=e, \\
E=a \Rightarrow W=a^{-1} \text { and } N=b \Rightarrow S=b^{-1} . \\
\mathbb{A}=\left\{a, a^{-1}, b, b^{-1}\right\} .
\end{gathered}
$$

Definition

Let \mathbb{A} finite be given (generating) and $\Gamma=\langle\mathbb{A} \mid \mathcal{R}\rangle$. Let
$c: \Gamma \times \mathbb{A} \rightarrow\{0,1\}$ be a choice function. Define the constrained Cayley graph $\mathbb{G}=\left(\mathbb{G}^{0}, \mathbb{G}^{1}\right)=$ Cayley $_{c}(\Gamma, \mathbb{A}, \mathcal{R})$ by

- $\mathbb{G}^{0}=\Gamma$,
- $\mathbb{G}^{1}=\{(x, x z) \in \Gamma \times \Gamma: z \in \mathbb{A} ; c(x, z)=1\}$.
- $d_{x}^{-}=\operatorname{card}\left\{y \in \Gamma:(x, y) \in \mathbb{G}^{1}\right\}$.

Properties of constrained Cayley graphs

- $0 \leq d_{x}^{-} \leq \operatorname{card} \mathbb{A}$.
- If $d_{x}^{-}=0$ for some x, then x is a sink. All graphs considered here have $d_{x}^{-}>0$.
- If $c \equiv 1$ then $\left(\mathbb{G}^{1}\right)^{-1}=\mathbb{G}^{1}$ (the graph is undirected).
- The graph can fail to be transitive. All graphs considered here are transitive i.e. for all $x, y \in \mathbb{G}^{0}$, there exists a finite sequence $\left(x_{0}=x, x_{1}, \ldots, x_{n}=y\right)$ with $\left(x_{i-1}, x_{i}\right) \in \mathbb{G}^{1}$ for all $i=1, \ldots, n$.
- Algebraic structure of $\operatorname{Cayley}_{c}(\Gamma, \mathbb{A}, \mathcal{R})$: a groupoid or a semi-groupoid.

Examples of semi-groupoids

Vertex set $\mathbb{X}=\mathbb{Z}^{2}$, i.e. for all $x \in \mathbb{X}$, we write $x=\left(x_{1}, x_{2}\right)$; generating set $\mathbb{A}=\left\{\mathbf{e}_{1},-\mathbf{e}_{1}, \mathbf{e}_{2},-\mathbf{e}_{2}\right\}$.

Alternate lattice	Half-plane one-way	Random horizontal
$\begin{gathered} c\left(\mathbf{x}, \mathbf{e}_{\mathbf{2}}\right)=c\left(\mathbf{x},-\mathbf{e}_{\mathbf{2}}\right)=1 \\ c\left(\mathbf{x}, \mathbf{e}_{1}\right)=1, x_{2} \in 2 \mathbb{Z} \\ c\left(\mathbf{x},-\mathbf{e}_{\mathbf{1}}\right)=1, x_{\mathbf{2}}+1 \in 2 \mathbb{Z} \end{gathered}$	$\begin{gathered} c\left(\mathbf{x}, \mathbf{e}_{\mathbf{2}}\right)=c\left(\mathbf{x},-\mathbf{e}_{\mathbf{2}}\right)=1 \\ c\left(\mathbf{x}, \mathbf{e}_{\mathbf{1}}\right)=1, x_{\mathbf{2}}<0 \\ c\left(\mathbf{x},-\mathbf{e}_{\mathbf{1}}\right)=1, x_{2} \geq 0 \\ \hline \end{gathered}$	$\begin{gathered} c\left(\mathbf{x}, \mathbf{e}_{\mathbf{2}}\right)=c\left(\mathbf{x},-\mathbf{e}_{\mathbf{2}}\right)=1 \\ c\left(\mathbf{x}, \mathbf{e}_{1}\right)=\theta_{\mathbf{x}_{2}} \\ c\left(\mathbf{x},-\mathbf{e}_{\mathbf{1}}\right)=1-\theta_{\mathbf{x}_{2}} \\ \hline \end{gathered}$

For all three lattices: $\forall x \in \mathbb{Z}^{2}, d_{x}^{-}=3$.
Here $\mathbb{G}^{1} \subset \mathbb{G}^{0} \times \mathbb{G}^{0}$. Hence maps s, t superfluous.

Example of groupoid

- Choose integer $N \geq 2$; decompose $\mathbb{R}^{N}=E \oplus E^{\perp}$ with $\operatorname{dim} E=d$ and $\operatorname{dim} E^{\perp}=N-d, 1 \leq d<N$.
- K the unit hypercube in \mathbb{R}^{N}.
- $\pi: \mathbb{R}^{N} \rightarrow E$ and $\pi^{\perp}: \mathbb{R}^{N} \rightarrow E^{\perp}$ projections.
- For generic orientation of E and $t \in E_{\perp}$ let $\mathcal{K}_{t}:=\left\{x \in \mathbb{Z}^{N}: \pi^{\perp}(E+t) \in \pi^{\perp}(K)\right\}$.
- $\pi\left(\mathcal{K}_{t}\right)$ is a quasi-periodic tiling of $E \cong \mathbb{R}^{d}$ (of Penrose type).
- For generic orientations of E, points in \mathcal{K}_{t} are in bijection with points of the tiling.
- $\mathbb{A}=\left\{ \pm \mathbf{e}_{1}, \ldots, \pm \mathbf{e}_{N}\right\}$.
- $c(x, z)=\mathbb{1}_{\mathcal{K}_{\mathbf{t}} \times \mathcal{K}_{\mathbf{t}}}(x, x+z), z \in \mathbb{A}$.

Cayley $_{c}\left(\mathbb{Z}^{N}, \mathbb{A}\right)$

- Cayley $\left(\mathbb{Z}^{N}, \mathbb{A}\right)$ is undirected (groupoid).
- d_{x}^{-}can be made arbitrarily large.

Decomposition

- Condition the Markov chain $\left(\mathbf{M}_{n}\right)$ on the directed version of \mathbb{Z}^{2} to perform vertical moves.
- The so conditionned process is a simple random walk $\left(Y_{n}\right)$ on the vertical \mathbb{Z}. Denote $\eta_{n}(y)$ its occupation measure.
- Let $\left(\xi_{n}^{(y)}\right)_{n \in \mathbb{N}, y \in \mathbb{Z}}$ be a doubly infinite sequence of geometric r.v. of parameter $p=1 / 3$.
- $X_{n}=\sum_{y \in \mathbb{Z}} \varepsilon_{y} \sum_{i=1}^{\eta_{\boldsymbol{n}-\mathbf{1}}(y)} \xi_{i}^{(y)}$ is the horizontally embedded walk, where ε_{y} direction of level y.

Lemma

Let $T_{n}=n+\sum_{y \in \mathbb{Z}} \sum_{i=1}^{\eta_{n-1}(y)} \xi_{i}^{(y)}$ the instant after $n^{\text {th }}$ vertical move. Then

$$
\mathbf{M}_{T_{n}}=\left(X_{n}, Y_{n}\right)
$$

Comparison

Lemma

Let $\left(\sigma_{n}\right)$ sequence of successive returns to 0 for $\left(Y_{n}\right)$.

- If $\left(X_{\sigma_{n}}\right)$ is transient then $\left(M_{n}\right)$ is transient.
- If $\sum_{n=0}^{\infty} \mathbb{P}_{0}\left(X_{\sigma_{n}}=0 \mid \mathcal{F} \vee \mathcal{G}\right)=\infty$ then $\sum_{l=0}^{\infty} \mathbb{P}\left(\mathbf{M}_{l}=(0,0) \mid \mathcal{F} \vee \mathcal{G}\right)=\infty$.

$$
\chi(\theta)=\mathbb{E} \exp (i \theta \xi)=\frac{q}{1-p \exp (i \theta)}=r(\theta) \exp (i \alpha(\theta)), \quad \theta \in[-\pi, \pi],
$$

where

$$
\begin{aligned}
& r(\theta)=|\chi(\theta)|=\frac{q}{\sqrt{q^{2}+2 p(1-\cos \theta)}}=r(-\theta) \\
& \alpha(\theta)=\arctan \frac{p \sin \theta}{1-p \cos \theta}=-\alpha(-\theta)
\end{aligned}
$$

Notice that $r(\theta)<1$ for $\theta \in[-\pi, \pi] \backslash\{0\}$.

Lemma

$$
\begin{aligned}
\mathbb{E} \exp \left(i \theta X_{\sigma_{n}}\right) & =\mathbb{E}\left(\prod_{y \in \mathbb{Z}} \chi\left(\theta \varepsilon_{y}\right)^{\eta_{\sigma_{\boldsymbol{n}}-1}(y)}\right) \\
& =\mathbb{E}\left[r(\theta)^{\sigma_{n}} \exp \left(\alpha(\theta)\left(\sum_{y \in \mathbb{Z}} \varepsilon_{y} \eta_{\sigma_{n}-1}(y)\right)\right)\right] .
\end{aligned}
$$

Alternate and half-plane lattices

- For alternate lattice:
$\sum_{n \in \mathbb{N}} \mathbb{P}\left(X_{\sigma_{n}}=0\right)=\lim _{\epsilon \rightarrow 0} 2 \int_{\epsilon}^{\pi} \frac{1}{\sqrt{1-r(\theta)^{2}}} d \theta=\infty$.
- For half-plane lattice:
$\sum_{n \in \mathbb{N}} \mathbb{P}\left(\mathbf{M}_{\sigma_{n}}=(0,0)\right)=\lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{\pi}\left[2 \operatorname{Re} \chi(\theta) \frac{1}{1-g(\theta)}\right] d \theta=C<\infty$.
Notice that $\left(X_{\sigma_{n}}\right)_{n}$ are heavy-tailed symmetric \mathbb{R}-valued variables.
- Quid for randomly horizontally directed lattice? Very technical.

Randomly horizontally directed lattices

Proof of transience $(\beta<1)$

- Introduce $A_{n}=A_{n, 1} \cap A_{n_{2}}$ and B_{n} with

$$
\begin{aligned}
A_{n, 1} & =\left\{\omega \in \Omega: \max _{0 \leq k \leq 2 n}\left|Y_{k}\right|<n^{\frac{1}{2}+\delta_{1}}\right\} \\
A_{n, 2} & =\left\{\omega \in \Omega: \max _{y \in \mathbb{Z}} \eta_{2 n-1}(y)<n^{\frac{1}{2}+\delta_{2}}\right\}, \\
B_{n} & =\left\{\omega \in A_{n}:\left|\sum_{y \in \mathbb{Z}} \varepsilon_{y} \eta_{2 n-1}(y)\right|>n^{\frac{1}{2}+\delta_{3}}\right\} .
\end{aligned}
$$

- Estimate separately

$$
\begin{aligned}
& p_{n, 1}=\mathbb{P}\left(X_{2 n}=0, Y_{2 n}=0 ; B_{n}\right) \\
& p_{n, 2}=\mathbb{P}\left(X_{2 n}=0, Y_{2 n}=0 ; A_{n} \backslash B_{n}\right) \\
& p_{n, 3}=\mathbb{P}\left(X_{2 n}=0, Y_{2 n}=0 ; A_{n}^{c}\right) .
\end{aligned}
$$

- Establish that $\sum_{n} p_{n, 1}<\infty ; \sum_{n} p_{n, 3}<\infty$ and for $\beta<1$ also $\sum_{n} p_{n, 2}<\infty$.

Randomly horizontally directed lattices

Proof of recurrence $(\beta>1)$

- $\tau_{0} \equiv 0$ and $\tau_{n+1}=\inf \left\{k: k>\tau_{n},\left|Y_{k}-Y_{\tau_{n}}\right|=Q\right\}$ for $n \geq 0$.

- Periodise the lattice $\mathbb{Z}_{Q}=\mathbb{Z} / Q \mathbb{Z}=\{0,1, \ldots, Q-1\}$ and define $N_{n}(\bar{y}):=\bar{\eta}_{\tau_{n-1}, \tau_{n}-1}(\bar{y})=\sum_{k=\tau_{n-1}}^{\tau_{n}-1} 1_{\bar{y}}\left(\bar{Y}_{k}\right)$.
- $\mathbb{E}_{0} N_{1}(\bar{y})=\mathbb{E}_{0}\left(N_{1}(\bar{y}) \mid Y_{\tau_{1}}=Q\right)=\mathbb{E}_{0}\left(N_{1}(\bar{y}) \mid Y_{\tau_{1}}=-Q\right)=\frac{\mathbb{E}_{0} \tau_{1}}{Q}$.

Randomly horizontally directed lattices

Proof of recurrence $(\beta>1)$ cont'd

- If $\beta>1$ then $\sum_{y} \mathbb{P}\left(\lambda_{y}=1\right)<\infty$.
- Hence $\exists L:=L(\omega)<\infty$ s.t. $\lambda_{y}=0$ for $|y| \geq L$.

$$
\begin{aligned}
& F_{L, 2 n}(\omega)=\left\{k: 0 \leq k \leq 2 n-1 ;\left|Y_{\tau_{k}(\omega)}(\omega)\right| \leq L(\omega) Q ;\left|Y_{\tau_{k+1}(\omega)}(\omega)\right| \leq L(\omega)\right. \\
& G_{L, 2 n}(\omega)=\left\{k: 0 \leq k \leq 2 n-1 ;\left|Y_{\tau_{k}(\omega)}(\omega)\right| \geq L(\omega) Q ;\left|Y_{\tau_{k+1}(\omega)}(\omega)\right| \geq L(\omega)\right.
\end{aligned}
$$

- Write $\theta_{k}=X_{\tau_{k+1}}-X_{\tau_{k}}$ and observe that

$$
X_{\tau_{2 n}}=\sum_{k=0}^{2 n-1} \theta_{k}=\sum_{k \in F_{L, 2 n}} \theta_{k}+\sum_{k \in G_{L, 2 n}} \theta_{k},
$$

- Finally prove $\sum_{k \in \mathbb{N}} \mathbb{P}_{0}\left(X_{\sigma_{k}}=0, Y_{\sigma_{k}}=0 \mid \mathcal{G}\right)=\infty$ a.s.

[^0]: ${ }^{1}$ Introduced as mathematical curiosities by Sir Roger Penrose (1974-1976), observed in nature as crystalline structures of Al-Mn alloys by Shechtman (1982) Nobel Prize in Chemistry 2011, obtained by an algorithmically much more efficienRWay NES by Duneau-Katz (1985).

