Tail behaviour of stationary distribution for Markov chains with asymptotically zero drift

D. Denisov<br>University of Manchester<br>(jointly with D. Korshunov and V.Wachtel)

April, 2014

## Outline

(1) Statement of problem
(2) Examples, main results and known results
(3) General approach - random walk example

44 Harmonic functions and change of measure
(5) Renewal Theorem
(6) Further developments

## Object of study

One-dimensional homogenous Markov chain on $R^{+}$.

$$
X_{n}, n=0,1,2, \ldots
$$

Let $\xi(x)$ be a random variable corresponding to a jump at point $x$, i.e.

$$
\mathbf{P}(\xi(x) \in B)=\mathbf{P}\left(X_{n+1}-X_{n} \in B \mid X_{n}=x\right)
$$

Let

$$
m_{k}(x):=\mathbf{E}\left[\xi(x)^{k}\right] .
$$

## Object of study

One-dimensional homogenous Markov chain on $R^{+}$.

$$
X_{n}, n=0,1,2, \ldots
$$

Let $\xi(x)$ be a random variable corresponding to a jump at point $x$, i.e.

$$
\mathbf{P}(\xi(x) \in B)=\mathbf{P}\left(X_{n+1}-X_{n} \in B \mid X_{n}=x\right)
$$

Let

$$
m_{k}(x):=\mathbf{E}\left[\xi(x)^{k}\right] .
$$

Main assumptions

- Small drift:

$$
m_{1}(x) \sim \frac{-\mu}{x}, \quad x \rightarrow \infty
$$

- Finite variance:

$$
m_{2}(x) \rightarrow b, \quad x \rightarrow \infty
$$

## Questions

(1) If

$$
2 x m_{1}(x)+m_{2}(x) \leq-\varepsilon
$$

then $X_{n}$ is ergodic (Lamperti)

## Questions

(1) If

$$
2 x m_{1}(x)+m_{2}(x) \leq-\varepsilon
$$

then $X_{n}$ is ergodic (Lamperti)
What can one say about the stationary distribution?

## Questions

(1) If

$$
2 x m_{1}(x)+m_{2}(x) \leq-\varepsilon
$$

then $X_{n}$ is ergodic (Lamperti)
What can one say about the stationary distribution?
(2) If

$$
2 x m_{1}(x)-m_{2}(x) \geq \varepsilon
$$

then $X_{n}$ is transient .

## Questions

(1) If

$$
2 x m_{1}(x)+m_{2}(x) \leq-\varepsilon
$$

then $X_{n}$ is ergodic (Lamperti)
What can one say about the stationary distribution?
(2) If

$$
2 x m_{1}(x)-m_{2}(x) \geq \varepsilon
$$

then $X_{n}$ is transient .
What can one say about the renewal (Green) function

$$
H(x)=\sum_{n=0}^{\infty} \mathbf{P}\left(X_{n} \leq x\right), \quad x \rightarrow \infty ?
$$

## Continuous time - Bessel-like diffusions

Let $X_{t}$ be the solution to SDE

$$
d X_{t}=\frac{-\mu\left(X_{t}\right)}{X_{t}} d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x>0
$$

where $\mu(x) \rightarrow \mu$ and $\sigma(x) \rightarrow \sigma$.
For Bessel processes $\mu(x)=$ const and $\sigma(x)=$ const.

## Continuous time - Bessel-like diffusions

Let $X_{t}$ be the solution to SDE

$$
d X_{t}=\frac{-\mu\left(X_{t}\right)}{X_{t}} d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x>0
$$

where $\mu(x) \rightarrow \mu$ and $\sigma(x) \rightarrow \sigma$.
For Bessel processes $\mu(x)=$ const and $\sigma(x)=$ const.
We can use forward Kolmogorov equations to find exact stationary density

$$
0=\frac{d}{d x}\left(\frac{\mu(x)}{x} p(x)\right)+\frac{1}{2} \frac{d^{2}}{d x^{2}}\left(\sigma^{2}(x) p(x)\right)
$$

to obtain

$$
p(x)=\frac{2 c}{\sigma^{2}(x)} \exp \left\{-\int_{0}^{x} \frac{2 \mu(y)}{y \sigma^{2}(y)} d y\right\}, \quad c>0
$$

## Continuous time - Bessel-like diffusions

Let $X_{t}$ be the solution to SDE

$$
d X_{t}=\frac{-\mu\left(X_{t}\right)}{X_{t}} d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x>0
$$

where $\mu(x) \rightarrow \mu$ and $\sigma(x) \rightarrow \sigma$.
For Bessel processes $\mu(x)=$ const and $\sigma(x)=$ const.
We can use forward Kolmogorov equations to find exact stationary density

$$
0=\frac{d}{d x}\left(\frac{\mu(x)}{x} p(x)\right)+\frac{1}{2} \frac{d^{2}}{d x^{2}}\left(\sigma^{2}(x) p(x)\right)
$$

to obtain

$$
p(x)=\frac{2 c}{\sigma^{2}(x)} \exp \left\{-\int_{0}^{x} \frac{2 \mu(y)}{y \sigma^{2}(y)} d y\right\}, \quad c>0
$$

Then,

$$
p(x) \approx C \exp \left\{-\int_{1}^{x} \frac{2 \mu}{b} \frac{d y}{y}\right\} \sim C x^{-2 \mu / b}
$$

and

$$
\pi(x,+\infty)=\int_{x}^{\infty} p(y) d y \approx C x^{-2 \mu / b+1}
$$

## Simple Markov chain

Markov chain on Z

$$
\begin{aligned}
& \mathbf{P}_{x}\left(X_{1}=x+1\right)=p_{+}(x) \\
& \mathbf{P}_{x}\left(X_{1}=x-1\right)=p_{-}(x)
\end{aligned}
$$

## Simple Markov chain

Markov chain on $\mathbf{Z}$

$$
\begin{aligned}
& \mathbf{P}_{x}\left(X_{1}=x+1\right)=p_{+}(x) \\
& \mathbf{P}_{x}\left(X_{1}=x-1\right)=p_{-}(x)
\end{aligned}
$$

Then the stationary probabilities $\pi(x)$ satisfy

$$
\pi(x)=\pi(x-1) p_{+}(x-1)+\pi(x+1) p_{-}(x+1)
$$

## Simple Markov chain

Markov chain on $\mathbf{Z}$

$$
\begin{aligned}
& \mathbf{P}_{x}\left(X_{1}=x+1\right)=p_{+}(x) \\
& \mathbf{P}_{x}\left(X_{1}=x-1\right)=p_{-}(x)
\end{aligned}
$$

Then the stationary probabilities $\pi(x)$ satisfy

$$
\pi(x)=\pi(x-1) p_{+}(x-1)+\pi(x+1) p_{-}(x+1)
$$

with solution
$\pi(x)=\pi(0) \prod_{k=1}^{x} \frac{p_{+}(k-1)}{p_{-}(k)}=\pi(0) \exp \left\{\sum_{k=1}^{x}\left(\log p_{+}(k-1)-\log p_{-}(k)\right)\right\}$,

## Asymptotics for the tail of the stationary measure

Theorem
Suppose that, as $x \rightarrow \infty$,

$$
\begin{equation*}
m_{1}(x) \sim-\frac{\mu}{x}, \quad m_{2}(x) \rightarrow b \quad \text { and } \quad 2 \mu>b \tag{1}
\end{equation*}
$$

Suppose some technical conditions and

$$
\begin{equation*}
m_{3}(x) \rightarrow m_{3} \in(-\infty, \infty) \quad \text { as } x \rightarrow \infty \tag{2}
\end{equation*}
$$

and, for some $A<\infty$,

$$
\begin{equation*}
\mathbf{E}\left\{\xi^{2 \mu / b+3+\delta}(x) ; \xi(x)>A x\right\}=O\left(x^{2 \mu / b}\right) \tag{3}
\end{equation*}
$$

Then there exist a constant $c>0$ such that

$$
\pi(x, \infty) \sim c x e^{-\int_{0}^{x} r(y) d y}=c x^{-2 \mu / b+1} \ell(x) \quad \text { as } x \rightarrow \infty .
$$

## Known results

- Menshikov and Popov (1995) investigated Markov Chains on $\mathbb{Z}^{+}$with bounded jumps and showed that

$$
c_{-} x^{-2 \mu / b-\varepsilon} \leq \pi(\{x\}) \leq c_{+} x^{-2 \mu / b+\varepsilon} .
$$

## Known results

- Menshikov and Popov (1995) investigated Markov Chains on $\mathbb{Z}^{+}$with bounded jumps and showed that

$$
c_{-} x^{-2 \mu / b-\varepsilon} \leq \pi(\{x\}) \leq c_{+} x^{-2 \mu / b+\varepsilon}
$$

- Korshunov (2011) obtained the following estimate

$$
\pi(x, \infty) \leq c(\varepsilon) x^{-2 \mu / b+1+\varepsilon}
$$

## General approach - random walk example

Consider a classical example, of Lindley recursion

$$
W_{n+1}=\left(W_{n}+\xi_{n}\right)^{+}, n=0,2, \ldots, W_{0}=0,
$$

assuming that $\mathbf{E} \xi=-a<0$.

## General approach - random walk example

Consider a classical example, of Lindley recursion

$$
W_{n+1}=\left(W_{n}+\xi_{n}\right)^{+}, n=0,2, \ldots, W_{0}=0
$$

assuming that $\mathbf{E} \xi=-a<0$.
This is an ergodic Markov chain (Note drift is not small).

## General approach - random walk example

Consider a classical example, of Lindley recursion

$$
W_{n+1}=\left(W_{n}+\xi_{n}\right)^{+}, n=0,2, \ldots, W_{0}=0
$$

assuming that $\mathbf{E} \xi=-a<0$.
This is an ergodic Markov chain (Note drift is not small).
A classical approach consists of three key steps
Step 1: Reverse time and consider a random walk

$$
S_{n}=\xi_{1}+\cdots+\xi_{n}, n=1,2 \ldots, S_{0}=0
$$

Then,

$$
W_{n} \xrightarrow{d} W=\sup _{n \geq 0} S_{n} .
$$

## Random walks ctd.

Step 2: Exponential change of measure. Assuming that there exists $\varkappa>0$ such that

$$
\mathbf{E}\left[e^{\varkappa \xi}\right]=1, \quad \mathbf{E}\left[\xi e^{\varkappa \xi}\right]<\infty 1
$$

## Random walks ctd.

Step 2: Exponential change of measure.
Assuming that there exists $\varkappa>0$ such that

$$
\mathbf{E}\left[e^{\varkappa \xi}\right]=1, \quad \mathbf{E}\left[\xi e^{\nu \xi \xi}\right]<\infty 1
$$

one can perform change of measure

$$
\mathbf{P}\left(\widehat{\xi}_{n} \in d x\right)=e^{\varkappa x} \mathbf{P}\left(\xi_{n} \in d x\right), \quad n=1,2, \ldots
$$

## Random walks ctd.

Step 2: Exponential change of measure.
Assuming that there exists $\varkappa>0$ such that

$$
\mathbf{E}\left[e^{\varkappa \xi}\right]=1, \quad \mathbf{E}\left[\xi e^{\varkappa \xi}\right]<\infty 1
$$

one can perform change of measure

$$
\mathbf{P}\left(\widehat{\xi}_{n} \in d x\right)=e^{\varkappa x} \mathbf{P}\left(\xi_{n} \in d x\right), \quad n=1,2, \ldots
$$

Under new measure $\widehat{S}_{n}=\widehat{\xi}_{1}+\cdots+\widehat{\xi}_{n}$ and $\mathbf{E} \widehat{\xi}^{1}>0$

$$
\widehat{S}_{n} \rightarrow+\infty, \quad \text { and } \quad S_{n} \rightarrow-\infty
$$

## Random walks ctd.

Step 3: Use renewal theorem for $\widehat{S}_{n}$.

## Random walks ctd.

Step 3: Use renewal theorem for $\widehat{S}_{n}$.
This step uses ladder heights construction and represents

$$
\mathbf{P}(M \in d x)=C H(d x)=C e^{-\varkappa x} \widehat{H}(d x)
$$

Now one can apply standard renewal theorem to $\widehat{H}(d y) \sim d y / c$ to obtain

$$
\mathbf{P}(M \in d x) \sim c e^{-\varkappa x}, \quad x \rightarrow \infty
$$

## Asymptotically homogeneous Markov chains

One can repeat this programme for asymptotically homogenous Markov chains. Namely, assume

$$
\xi(x) \xrightarrow{d} \xi, \quad x \rightarrow \infty,
$$

where

$$
\mathbf{E}\left[e^{\varkappa \xi}\right]=1, \text { and } \mathbf{E}\left[\xi e^{\varkappa \xi}\right]<\infty
$$

## Asymptotically homogeneous Markov chains

One can repeat this programme for asymptotically homogenous Markov chains. Namely, assume

$$
\xi(x) \xrightarrow{d} \xi, \quad x \rightarrow \infty,
$$

where

$$
\mathbf{E}\left[e^{\nu \xi \xi}\right]=1, \text { and } \mathbf{E}\left[\xi e^{\varkappa \xi \xi}\right]<\infty
$$

Borovkov and Korshunov (1996) showed that if

$$
\sup _{x} \mathbf{E} e^{\varkappa \xi(x)}<\infty, \int_{0}^{\infty}\left(\int_{\mathbf{R}} e^{\varkappa t}|\mathbf{P}(\xi(x)<t)-\mathbf{P}(\xi<t)| d t\right) d x
$$

then

$$
\pi(x, \infty) \sim C e^{-\varkappa x}, \quad x \rightarrow \infty, \quad x \rightarrow \infty
$$

## Problems in our case

Problem 1 (easier) In our case drift

$$
\mathbf{E} \xi(x) \rightarrow 0, \quad x \rightarrow \infty
$$

Hence, for

$$
1=\mathbf{E} \exp \{\varkappa \xi(x)\} \approx 1+\varkappa \mathbf{E} \xi(x), \quad x \rightarrow \infty
$$

to hold we need

## Problems in our case

Problem 1 (easier) In our case drift

$$
\mathbf{E} \xi(x) \rightarrow 0, \quad x \rightarrow \infty
$$

Hence, for

$$
1=\mathbf{E} \exp \{\varkappa \xi(x)\} \approx 1+\varkappa \mathbf{E} \xi(x), \quad x \rightarrow \infty
$$

to hold we need

$$
\varkappa=\varkappa(x) \rightarrow \infty, \quad x \rightarrow \infty .
$$

## Problems in our case

Problem 1 (easier) In our case drift

$$
\mathbf{E} \xi(x) \rightarrow 0, \quad x \rightarrow \infty
$$

Hence, for

$$
1=\mathbf{E} \exp \{\varkappa \xi(x)\} \approx 1+\varkappa \mathbf{E} \xi(x), \quad x \rightarrow \infty
$$

to hold we need

$$
\varkappa=\varkappa(x) \rightarrow \infty, \quad x \rightarrow \infty .
$$

Hence, exponential change of measure does not work.

## Problems in our case

Problem 2 Suppose we managed to make a change of measure. As a result

$$
\widehat{X}_{n} \xrightarrow{\text { a.s }}+\infty
$$

and

$$
\mathbf{E} \widehat{\xi}(x) \rightarrow 0
$$

## Problems in our case

Problem 2 Suppose we managed to make a change of measure. As a result

$$
\widehat{X}_{n} \xrightarrow{\text { a.s }}+\infty
$$

and

$$
\mathbf{E} \widehat{\xi}(x) \rightarrow 0
$$

Then, there is no renewal theorem about

$$
\widehat{H}(x)=\sum_{n=0}^{\infty} \mathbf{P}\left(X_{n} \leq x\right)
$$

Main reason for that

$$
\frac{\widehat{X}_{n}}{n^{c}} \xrightarrow{d} \operatorname{Gamma}(\alpha, \beta)
$$

which makes the problem difficult.

## Harmonic function

## Step 1 Change of measure via a harmonic function.

## Harmonic function

Step 1 Change of measure via a harmonic function.
Let $B$ be a Borel set in $\mathbf{R}^{+}$with $\pi(B)>0$, in our case $B=\left[0, x_{0}\right]$. Let

$$
\tau_{B}:=\min \left\{n \geq 1: X_{n} \in B\right\}
$$

Note $\mathbf{E}_{x} \tau_{B}<\infty$ for every $x$.
$V(x)$ is a harmonic function for $X_{n}$ killed at the time of the first visit to $B$, if

$$
V(x)=\mathbf{E}_{x}\left\{V\left(X_{1}\right) ; \tau_{B}>1\right\}=\mathbf{E}_{x}\left\{V\left(X_{1}\right) ; X_{1} \notin B\right\}
$$

If $V$ is harmonic then

$$
\begin{equation*}
V(x)=\mathbf{E}_{x}\left\{V\left(X_{n}\right) ; \tau_{B}>n\right\} \text { for every } n \tag{4}
\end{equation*}
$$

## Harmonic function

Step 1 Change of measure via a harmonic function.
Let $B$ be a Borel set in $\mathbf{R}^{+}$with $\pi(B)>0$, in our case $B=\left[0, x_{0}\right]$. Let

$$
\tau_{B}:=\min \left\{n \geq 1: X_{n} \in B\right\}
$$

Note $\mathbf{E}_{x} \tau_{B}<\infty$ for every $x$.
$V(x)$ is a harmonic function for $X_{n}$ killed at the time of the first visit to $B$, if

$$
V(x)=\mathbf{E}_{x}\left\{V\left(X_{1}\right) ; \tau_{B}>1\right\}=\mathbf{E}_{x}\left\{V\left(X_{1}\right) ; X_{1} \notin B\right\}
$$

If $V$ is harmonic then

$$
\begin{equation*}
V(x)=\mathbf{E}_{x}\left\{V\left(X_{n}\right) ; \tau_{B}>n\right\} \text { for every } n \tag{4}
\end{equation*}
$$

If $V(x)$ is harmonic for every $x \notin B$ then $X_{n \wedge \tau_{B}}$ is a martingale.

## Harmonic function

Step 1 Change of measure via a harmonic function.
Let $B$ be a Borel set in $\mathbf{R}^{+}$with $\pi(B)>0$, in our case $B=\left[0, x_{0}\right]$. Let

$$
\tau_{B}:=\min \left\{n \geq 1: X_{n} \in B\right\}
$$

Note $\mathbf{E}_{x} \tau_{B}<\infty$ for every $x$.
$V(x)$ is a harmonic function for $X_{n}$ killed at the time of the first visit to $B$, if

$$
V(x)=\mathbf{E}_{x}\left\{V\left(X_{1}\right) ; \tau_{B}>1\right\}=\mathbf{E}_{x}\left\{V\left(X_{1}\right) ; X_{1} \notin B\right\}
$$

If $V$ is harmonic then

$$
\begin{equation*}
V(x)=\mathbf{E}_{x}\left\{V\left(X_{n}\right) ; \tau_{B}>n\right\} \text { for every } n \tag{4}
\end{equation*}
$$

If $V(x)$ is harmonic for every $x \notin B$ then $X_{n \wedge \tau_{B}}$ is a martingale.
(1) It is not clear that such a (positive) function $V(x)$ exists
(2) Some estimates on $V(x)$ are required for further analysis.

## Construction of the harmonic function

We start with a harmonic function (scale function) for the corresponding diffusion.

$$
d X_{t}=\frac{-\mu\left(X_{t}\right)}{X_{t}} d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x>0
$$

For the diffusion this function solves

$$
\begin{aligned}
& 0=\frac{-\mu(x)}{x} \frac{d}{d x} U(x)+\frac{\sigma(x)^{2}}{2} \frac{d^{2}}{d x^{2}} U(x), \quad x \notin B \\
& 0=U(x), \quad x \in B=\left[0, x_{0}\right] .
\end{aligned}
$$

## Construction of the harmonic function

We start with a harmonic function (scale function) for the corresponding diffusion.

$$
d X_{t}=\frac{-\mu\left(X_{t}\right)}{X_{t}} d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x>0
$$

For the diffusion this function solves

$$
\begin{aligned}
& 0=\frac{-\mu(x)}{x} \frac{d}{d x} U(x)+\frac{\sigma(x)^{2}}{2} \frac{d^{2}}{d x^{2}} U(x), \quad x \notin B \\
& 0=U(x), \quad x \in B=\left[0, x_{0}\right] .
\end{aligned}
$$

Namely the corresponding stopped process $X_{t \wedge \tau_{B}}$ is a martingale.

## Construction of the harmonic function

We start with a harmonic function (scale function) for the corresponding diffusion.

$$
d X_{t}=\frac{-\mu\left(X_{t}\right)}{X_{t}} d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x>0
$$

For the diffusion this function solves

$$
\begin{aligned}
& 0=\frac{-\mu(x)}{x} \frac{d}{d x} U(x)+\frac{\sigma(x)^{2}}{2} \frac{d^{2}}{d x^{2}} U(x), \quad x \notin B \\
& 0=U(x), \quad x \in B=\left[0, x_{0}\right] .
\end{aligned}
$$

Namely the corresponding stopped process $X_{t \wedge \tau_{B}}$ is a martingale.
The solution is given by
$U(x):=\int_{x_{0}}^{x} e^{R(y)} d y$ for $x \geq x_{0}$, where $R(y)=\int_{x_{0}}^{y} r(z) d z, r(z)=\frac{2 \mu(z)}{\sigma^{2}(z)}$.

## Construction of the harmonic function ctd.

Note that

$$
r(z)=\frac{2 \mu}{b} \frac{1}{z}+\frac{\varepsilon(z)}{z} .
$$

Hence

$$
U(x) \sim x^{2 \mu / b+1} /(x), \quad x \rightarrow \infty, I(x) \text { - slowly varying. }
$$

## Construction of the harmonic function ctd.

Note that

$$
r(z)=\frac{2 \mu}{b} \frac{1}{z}+\frac{\varepsilon(z)}{z}
$$

Hence

$$
U(x) \sim x^{2 \mu / b+1} I(x), \quad x \rightarrow \infty, I(x) \text { - slowly varying. }
$$

$U$ is not harmonic for the initial Markov chain $X_{n}$. However if the correction

$$
u(x)=\mathbf{E} U\left(X_{1}\right)-u(x), \quad \text { is small } x \rightarrow \infty,
$$

then

$$
V(x):=U(x)+\mathbf{E}_{x} \sum_{n=0}^{\tau_{B}-1} u\left(X_{n}\right)
$$

is well-defined, non-negative and harmonic for $X_{n}$.

## Construction of the harmonic function ctd.

Function $u(x)$ by the Taylor expansion

$$
\begin{aligned}
u(x)= & \mathbf{E} U\left(X_{1}\right)-u(x) \\
= & U^{\prime}(x) \mathbf{E}_{X}\left(X_{1}-x\right)+\frac{1}{2} U^{\prime \prime}(x) \mathbf{E}_{X}\left(X_{1}-x\right)^{2} \\
& +\frac{1}{6} U^{\prime \prime \prime}(x+\theta(x)) \mathbf{E}_{X}\left(X_{1}-x\right)^{3} .
\end{aligned}
$$

## Construction of the harmonic function ctd.

Function $u(x)$ by the Taylor expansion

$$
\begin{aligned}
u(x)= & \mathbf{E} U\left(X_{1}\right)-u(x) \\
= & U^{\prime}(x) \mathbf{E}_{X}\left(X_{1}-x\right)+\frac{1}{2} U^{\prime \prime}(x) \mathbf{E}_{X}\left(X_{1}-x\right)^{2} \\
& +\frac{1}{6} U^{\prime \prime \prime}(x+\theta(x)) \mathbf{E}_{X}\left(X_{1}-x\right)^{3} .
\end{aligned}
$$

Now the first 2 terms disappear since $U(x)$ is harmonic for the diffusion. Hence,

$$
u(x) \sim C U^{\prime \prime \prime}(x) \sim C \frac{U(x)}{x^{3}}
$$

## Construction of the harmonic function ctd.

Function $u(x)$ by the Taylor expansion

$$
\begin{aligned}
u(x)= & \mathbf{E} U\left(X_{1}\right)-u(x) \\
= & U^{\prime}(x) \mathbf{E}_{X}\left(X_{1}-x\right)+\frac{1}{2} U^{\prime \prime}(x) \mathbf{E}_{X}\left(X_{1}-x\right)^{2} \\
& +\frac{1}{6} U^{\prime \prime \prime}(x+\theta(x)) \mathbf{E}_{X}\left(X_{1}-x\right)^{3} .
\end{aligned}
$$

Now the first 2 terms disappear since $U(x)$ is harmonic for the diffusion. Hence,

$$
u(x) \sim C U^{\prime \prime \prime}(x) \sim C \frac{U(x)}{x^{3}}
$$

This is sufficient to ensure the finiteness

$$
\mathbf{E}_{x} \sum_{n=0}^{\tau_{B}-1}\left|u\left(X_{n}\right)\right|<\infty
$$

## Change of measure

As $V$ is well-defined we can perform the change of measure (Doob's h-transform).
Let $\widehat{X}_{n}$ be a Markov Chain with the following transition kernel

$$
\mathbf{P}_{z}\left\{\widehat{X}_{1} \in d y\right\}=\frac{V(y)}{V(z)} \mathbf{P}_{z}\left\{X_{1} \in d y ; \tau_{B}>1\right\}
$$

Since $V$ is harmonic, then we also have

$$
\mathbf{P}_{z}\left\{\widehat{X}_{n} \in d y\right\}=\frac{V(y)}{V(z)} \mathbf{P}_{z}\left\{X_{n} \in d y ; \tau_{B}>n\right\} \text { for all } n
$$

## Change of measure

As $V$ is well-defined we can perform the change of measure (Doob's h-transform).
Let $\widehat{X}_{n}$ be a Markov Chain with the following transition kernel

$$
\mathbf{P}_{z}\left\{\widehat{X}_{1} \in d y\right\}=\frac{V(y)}{V(z)} \mathbf{P}_{z}\left\{X_{1} \in d y ; \tau_{B}>1\right\}
$$

Since $V$ is harmonic, then we also have

$$
\mathbf{P}_{z}\left\{\widehat{X}_{n} \in d y\right\}=\frac{V(y)}{V(z)} \mathbf{P}_{z}\left\{X_{n} \in d y ; \tau_{B}>n\right\} \text { for all } n
$$

Note $V(x) \sim U(x) \sim x^{2 \mu / b+1}$. Hence, this change of measure is non-exponential.

## Change of measure for stationary distribution

Balance equation for $\pi$

$$
\pi(d y)=\int_{B} \pi(d z) \sum_{n=0}^{\infty} \mathbf{P}_{z}\left\{X_{n} \in d y ; \tau_{B}>n\right\}
$$

Changing the measure

$$
\begin{aligned}
\pi(d y) & =\frac{1}{V(y)} \int_{B} \pi(d z) V(z) \sum_{n=0}^{\infty} \mathbf{P}_{z}\left\{\widehat{X}_{n} \in d y\right\} \\
& =\frac{\widehat{H}(d y)}{V(y)} \int_{B} \pi(d z) V(z)
\end{aligned}
$$

where $\widehat{H}$ is the renewal measure generated by the chain $\widehat{X}_{n}$ with initial distribution

$$
\mathbf{P}\left\{\widehat{X}_{0} \in d z\right\}=\widehat{c} \pi(d z) V(z), z \in B \quad \text { and } \widehat{c}:=\left(\int_{B} \pi(d z) V(z)\right)^{-1}
$$

## Renewal theorem

Therefore,

$$
\begin{aligned}
\pi(x, \infty) & =\widehat{c} \int_{x}^{\infty} \frac{1}{V(y)} d \widehat{H}(y) \\
& \sim \widehat{c} \int_{x}^{\infty} \frac{1}{U(y)} d \widehat{H}(y) \text { as } x \rightarrow \infty
\end{aligned}
$$

as $V(x) \sim U(x)$.

## Renewal theorem

Therefore,

$$
\begin{aligned}
\pi(x, \infty) & =\widehat{c} \int_{x}^{\infty} \frac{1}{V(y)} d \widehat{H}(y) \\
& \sim \widehat{c} \int_{x}^{\infty} \frac{1}{U(y)} d \widehat{H}(y) \text { as } x \rightarrow \infty
\end{aligned}
$$

as $V(x) \sim U(x)$.
We are facing second problem now - what is the asymptotics for

$$
\widehat{H}(x)=\sum_{n=1}^{\infty} \mathbf{P}\left(\widehat{X}_{n} \leq x\right), \quad x \rightarrow \infty
$$

## Renewal theorem

First, the change of measure gives $\widehat{X}_{n}$ of the same type, but now transient

- Small drift:

$$
\widehat{m}(x)=\mathbf{E}\left[\widehat{X}_{1}-\widehat{X}_{0} \mid \widehat{X}_{0}=x\right] \sim \frac{\mu}{x}, \quad x \rightarrow \infty
$$

- Finite variance:

$$
\widehat{\sigma}^{2}(x)=\mathbf{E}\left[\left(\widehat{X}_{1}-\widehat{X}_{0}\right)^{2} \mid \widehat{X}_{0}=x\right] \rightarrow b, \quad x \rightarrow \infty
$$

## Lower bound for the renewal theorem

Lower bound follows from weak convergence

$$
\frac{\widehat{X}_{n}^{2}}{n} \xrightarrow{d} \Gamma
$$

with mean $2 \mu+b$ and variance $(2 \mu+b) 2 b$.

## Lower bound for the renewal theorem

Lower bound follows from weak convergence

$$
\frac{\widehat{X}_{n}^{2}}{n} \xrightarrow{d} \Gamma
$$

with mean $2 \mu+b$ and variance $(2 \mu+b) 2 b$.
Then,

$$
\begin{aligned}
\widehat{H}(x) & \geq \sum_{n=0}^{\left[B x^{2}\right]} \mathbf{P}_{y}\left\{X_{n} \leq x\right\} \\
& =\sum_{n=0}^{\left[B x^{2}\right]}\left(\Gamma\left(x^{2} / n\right)+o(1)\right) \\
& =x^{2} \int_{0}^{B} \Gamma(1 / z) d z+o\left(x^{2}\right) .
\end{aligned}
$$

and

$$
\int_{0}^{B} \Gamma(1 / z) d z \rightarrow \frac{1}{2 \mu-b} \text { as } B \rightarrow \infty
$$

we conclude the lower hound

## Renewal theorem (Asymptotics for the Green function)

## Theorem

Consider a transient Markov chain $X_{n}$. If $m(x) \sim \mu / x$ and $\sigma^{2}(x) \rightarrow b>0$ as $x \rightarrow \infty$, and $2 \mu>b$, then, for any initial distribution of the chain $X$,

$$
H(x) \sim \frac{x^{2}}{2 \mu-b} \text { as } x \rightarrow \infty,
$$

where $H(x)=\sum_{n=0}^{\infty} \mathbf{P}\left(X_{n} \leq x\right)$.

## Stationary measure

We can continue with stationary measure

$$
\begin{aligned}
\pi(x, \infty) & \sim \widehat{c} \int_{x}^{\infty} \frac{1}{U(y)} d \widehat{H}(y) \\
& \sim \widehat{c} \int_{x}^{\infty} \frac{1}{y^{2 \mu / b+1}} I(y) d \frac{y^{2}}{(2 \mu-b)} \\
& \sim 2 \frac{\widehat{c}}{2 \mu-b} \int_{x}^{\infty} \frac{1}{y^{2 \mu / b+1}} I(y) d y \\
& \sim \frac{C}{x^{2 \mu / b+1}} I(x)
\end{aligned}
$$

To apply integral renewal theorem we integrate by parts

## Harmonic functions vs Lyapunov functions

- Lyapunov functions We choose an explicit function $x^{a}, e^{h x}$. Therefore, there are no problems with regularity properties. One can use Taylor expansion to obtain a submartingale ot supermartingale and hence bounds.
- Harmonic functions Explicit expressions are rarely known. Special properties should be derived. Harmonic functions lead to martingales and more accurate estimates.


## Further developments

We plan to consider a problem with the following decay of the drift

$$
m(x)=\mathbf{E}\left[X_{1}-X_{0} \mid X_{0}=x\right] \sim \frac{-\mu}{x^{a}}, \quad x \rightarrow \infty
$$

where $a \in(0,1)$.
One can expect the following decay

$$
\pi(x,+\infty) \sim \exp \left\{-x^{1-a}\right\}, \quad x \rightarrow \infty
$$

## References

## Main References

(1) D. Denisov, D. Korshunov and V. Wachtel (2012). Tail behaviour of stationary distribution for Markov chains with asymptotically zero drift . arXiv:1208.3066. To appear in Stoch. Proc. Appl.
(2) D. Denisov, D. Korshunov and V. Wachtel (2012). Harmonic functions and stationary distributions for asymptotically homogeneous transition kernels on $Z^{+}$. arXiv:1312.2201. Submitted.

Harmonic functions for random walks and Markov chains.

## Further references

(1) D. Denisov and V. Wachtel (2012). Exit times for integrated random walks Stoch. Proc. Appl. arXiv:1207. 2270
(2) D. Denisov and V. Wachtel (2011). Random Walks in Cones Ann. Probab.. arXiv:1110.1254.
(3) D. Denisov and V. Wachtel (2010). Conditional limit theorems for ordered random walks Elec. J. Probab. 10, 292-322. arXiv:0907.2854.

