Mixing time for a random walk on a ring

Stephen Connor

Joint work with Michael Bate

The University of York

Aspects of Random Walks
Durham, April 2014

Random walks on groups

Let G be a finite group and let P be a probability distribution on G; that is, a function $P: G \rightarrow[0,1]$ such that $\sum_{g \in G} P(g)=1$.

Random walks on groups

Let G be a finite group and let P be a probability distribution on G; that is, a function $P: G \rightarrow[0,1]$ such that $\sum_{g \in G} P(g)=1$.

For example, we could have $G=S_{n}$, the symmetric group on $\{1,2, \ldots, n\}$, and we could set

$$
P(g)= \begin{cases}\frac{1}{n} & \text { if } g=1 \text { is the identity } \\ \frac{2}{n^{2}} & \text { if } g=(i, j) \text { is a transposition } \\ 0 & \text { otherwise }\end{cases}
$$

Random walks on groups

Let G be a finite group and let P be a probability distribution on G; that is, a function $P: G \rightarrow[0,1]$ such that $\sum_{g \in G} P(g)=1$.

For example, we could have $G=S_{n}$, the symmetric group on $\{1,2, \ldots, n\}$, and we could set

$$
P(g)= \begin{cases}\frac{1}{n} & \text { if } g=1 \text { is the identity } \\ \frac{2}{n^{2}} & \text { if } g=(i, j) \text { is a transposition } \\ 0 & \text { otherwise }\end{cases}
$$

A random walk on G is then a Markov chain X with transitions governed by the distribution P. So we fix a starting point X_{0}, and then set

$$
\mathbb{P}\left(X_{t+1}=h g \mid X_{t}=g\right)=P(h)
$$

Distribution after repeated steps is given by convolution:

$$
\mathbb{P}\left(X_{2}=g \mid X_{0}=1\right)=P * P(g)=\sum_{h} P\left(g h^{-1}\right) P(h)
$$

As long as the probability distribution P isn't concentrated on a subgroup, the stationary distribution π for X is the uniform distribution; $\pi(g)=1 /|G|$ for all $g \in G$. When X is ergodic, we're interested in how long it takes for it to converge to equilibrium.

Distribution after repeated steps is given by convolution:

$$
\mathbb{P}\left(X_{2}=g \mid X_{0}=1\right)=P * P(g)=\sum_{h} P\left(g h^{-1}\right) P(h)
$$

As long as the probability distribution P isn't concentrated on a subgroup, the stationary distribution π for X is the uniform distribution; $\pi(g)=1 /|G|$ for all $g \in G$. When X is ergodic, we're interested in how long it takes for it to converge to equilibrium.

Definition

The mixing time of X is

$$
\tau(\varepsilon)=\min \left\{t:\left\|\mathbb{P}\left(X_{t} \in \cdot\right)-\pi(\cdot)\right\|_{\mathrm{TV}} \leq \varepsilon\right\}
$$

Cutoff phenomenon

We're often interested in a natural sequence of processes $X^{(n)}$ on groups $G^{(n)}$ of increasing size: how does the mixing time $\tau^{(n)}$ scale with n ?

Cutoff phenomenon

We're often interested in a natural sequence of processes $X^{(n)}$ on groups $G^{(n)}$ of increasing size: how does the mixing time $\tau^{(n)}$ scale with n ?

In lots of nice examples a cutoff phenomenon is exhibited:

$$
\text { for all } \varepsilon>0, \quad \lim _{n \rightarrow \infty} \frac{\tau^{(n)}(\varepsilon)}{\tau^{(n)}(1-\varepsilon)}=1
$$

Random walk on a ring

What if we add some additional structure, and try to move from a walk on a group to a walk on a ring?

Random walk on a ring

What if we add some additional structure, and try to move from a walk on a group to a walk on a ring?

For example: random walk on \mathbb{Z}_{n} (n odd) with

$$
x \rightarrow \begin{cases}x+1 & \text { w.p. } 1-p_{n} \\ 2 x & \text { w.p. } p_{n}\end{cases}
$$

Random walk on a ring

What if we add some additional structure, and try to move from a walk on a group to a walk on a ring?

For example: random walk on $\mathbb{Z}_{n}(n$ odd $)$ with

$$
x \rightarrow \begin{cases}x+1 & \text { w.p. } 1-p_{n} \\ 2 x & \text { w.p. } p_{n}\end{cases}
$$

Related results

Chung, Diaconis and Graham (1987) study the process (used in random number generation)

$$
x \rightarrow \begin{cases}a x-1 & \text { w.p. } \frac{1}{3} \\ a x & \text { w.p. } \frac{1}{3} \\ a x+1 & \text { w.p. } \frac{1}{3}\end{cases}
$$

Related results

Chung, Diaconis and Graham (1987) study the process (used in random number generation)

$$
x \rightarrow \begin{cases}a x-1 & \text { w.p. } \frac{1}{3} \\ a x & \text { w.p. } \frac{1}{3} \\ a x+1 & \text { w.p. } \frac{1}{3}\end{cases}
$$

- When $a=1$ there exist constants C and C^{\prime} such that:

$$
e^{-C t / n^{2}}<\left\|P_{t}^{(n)}-\pi^{(n)}\right\|_{\mathrm{TV}}<e^{-C^{\prime} t / n^{2}}
$$

Related results

Chung, Diaconis and Graham (1987) study the process (used in random number generation)

$$
x \rightarrow \begin{cases}a x-1 & \text { w.p. } \frac{1}{3} \\ a x & \text { w.p. } \frac{1}{3} \\ a x+1 & \text { w.p. } \frac{1}{3}\end{cases}
$$

- When $a=1$ there exist constants C and C^{\prime} such that:

$$
e^{-C t / n^{2}}<\left\|P_{t}^{(n)}-\pi^{(n)}\right\|_{\mathrm{TV}}<e^{-C^{\prime} t / n^{2}}
$$

- When $a=2$ and $n=2^{m}-1$ there exist constants c and c^{\prime} such that: for $t_{n} \geq c \log n \log \log n, \quad\left\|P_{t_{n}}^{(n)}-\pi^{(n)}\right\|_{\mathrm{TV}} \rightarrow 0$ as $n \rightarrow \infty$ for $t_{n} \leq c^{\prime} \log n \log \log n, \quad\left\|P_{t_{n}}^{(n)}-\pi^{(n)}\right\|_{\mathrm{TV}}>\varepsilon$ as $n \rightarrow \infty$

Back to our process...

General problem

The distribution of X_{t} isn't given by convolution.

$$
X_{t}=2 I_{t} X_{t-1}+\left(1-I_{t}\right)\left(X_{t-1}+1\right)
$$

where $I_{t} \sim \operatorname{Bern}\left(p_{n}\right)$.

Back to our process...

General problem

The distribution of X_{t} isn't given by convolution.

$$
X_{t}=2 I_{t} X_{t-1}+\left(1-I_{t}\right)\left(X_{t-1}+1\right)
$$

where $I_{t} \sim \operatorname{Bern}\left(p_{n}\right)$.
But for this relatively simple walk, we can get around this by looking at the process subsampled at jump times. (Here we call a +1 move a 'step' and a $\times 2$ move a 'jump'.)

Back to our process...

General problem

The distribution of X_{t} isn't given by convolution.

$$
X_{t}=2 I_{t} X_{t-1}+\left(1-I_{t}\right)\left(X_{t-1}+1\right)
$$

where $I_{t} \sim \operatorname{Bern}\left(p_{n}\right)$.
But for this relatively simple walk, we can get around this by looking at the process subsampled at jump times. (Here we call a +1 move a 'step' and a $\times 2$ move a 'jump'.)
So consider (with $X_{0}=Y_{0}=0$)

$$
Y_{k}=\sum_{j=1}^{k} 2^{k+1-j} S_{j}(\bmod n), \quad S_{j} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Geom}\left(p_{n}\right)(\bmod n)
$$

(i.e. Y_{k} is the position of X immediately following the $k^{t h}$ jump.)

Plan

- Find lower bound for mixing time of Y;
(2) Find upper bound for mixing time of Y;
(Try to relate these back to the mixing time for X.

Plan

(1) Find lower bound for mixing time of Y;
(2) Find upper bound for mixing time of Y;
(Try to relate these back to the mixing time for X.
Restrict attention to $p_{n}=\frac{1}{2 n^{\alpha}}, \alpha \in(0,1)$.
We expect things to happen (for Y) sometime around

$$
T_{n}:=\log _{2}\left(n p_{n}\right) \sim(1-\alpha) \log _{2} n
$$

In fact:

Theorem
Y exhibits a cutoff at time T_{n}, with window size $O(1)$.

In fact:

Theorem

Y exhibits a cutoff at time T_{n}, with window size $O(1)$.

To prove this, we need to show that (for n odd)

$$
\liminf _{n \rightarrow \infty}\left\|\mathbb{P}\left(X_{T_{n}-\theta}^{(n)} \in \cdot\right)-\frac{1}{n}\right\|_{\mathrm{TV}} \geq 1-\varepsilon(\theta)
$$

and

$$
\limsup _{n \rightarrow \infty}\left\|\mathbb{P}\left(X_{T_{n}+\theta}^{(n)} \in \cdot\right)-\frac{1}{n}\right\|_{\mathrm{TV}} \leq \varepsilon(\theta),
$$

where $\varepsilon(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$.

Lower bound

For a lower bound, we simply find a set $A_{n}(\theta)$ (of considerable size) that Y has very little chance of hitting before time $T_{n}-\theta$, for large $\theta \in \mathbb{N}$. (Recall the definition of total variation distance!)

- If $A_{n}(\theta)$ is chosen as above then $\pi\left(A_{n}(\theta)\right)=1 / 4+2 \beta$.
- If $A_{n}(\theta)$ is chosen as above then $\pi\left(A_{n}(\theta)\right)=1 / 4+2 \beta$.
- Using Chebychev's inequality:

$$
\mathbb{P}\left(Y_{T_{n}-\theta} \in A_{n}(\theta)\right) \leq \frac{4^{1-\theta}}{3(3 / 8-\beta)^{2}}
$$

- If $A_{n}(\theta)$ is chosen as above then $\pi\left(A_{n}(\theta)\right)=1 / 4+2 \beta$.
- Using Chebychev's inequality:

$$
\mathbb{P}\left(Y_{T_{n}-\theta} \in A_{n}(\theta)\right) \leq \frac{4^{1-\theta}}{3(3 / 8-\beta)^{2}}
$$

- Now choose $\beta=\beta(\theta)$ to make the difference between these large. . .
- If $A_{n}(\theta)$ is chosen as above then $\pi\left(A_{n}(\theta)\right)=1 / 4+2 \beta$.
- Using Chebychev's inequality:

$$
\mathbb{P}\left(Y_{T_{n}-\theta} \in A_{n}(\theta)\right) \leq \frac{4^{1-\theta}}{3(3 / 8-\beta)^{2}}
$$

- Now choose $\beta=\beta(\theta)$ to make the difference between these large. . .

Lemma (Lower bound for Y)

For $\theta \geq 3$,

$$
\left\|\mathbb{P}\left(Y_{T_{n}-\theta} \in \cdot\right)-\pi_{n}(\cdot)\right\|_{\mathrm{TV}} \geq 1-4^{1-\theta / 3}
$$

Upper bound

Let P be a probability on a group G. A (complex) representation ρ is a group homomorphism $\rho: G \rightarrow \mathrm{GL}_{d}(\mathbb{C})$, where $\mathrm{GL}_{d}(\mathbb{C})$ denotes the group of $d \times d$ invertible complex matrices. We write

$$
\hat{P}(\rho)=\sum_{g \in G} P(g) \rho(g)
$$

for the Fourier transform of P at ρ.

Upper bound

Let P be a probability on a group G. A (complex) representation ρ is a group homomorphism $\rho: G \rightarrow \mathrm{GL}_{d}(\mathbb{C})$, where $\mathrm{GL}_{d}(\mathbb{C})$ denotes the group of $d \times d$ invertible complex matrices. We write

$$
\hat{P}(\rho)=\sum_{g \in G} P(g) \rho(g)
$$

for the Fourier transform of P at ρ.
This behaves very nicely with respect to convolution:

$$
\widehat{P * P}(\rho)=\hat{P}(\rho) \hat{P}(\rho)
$$

A basic but extremely useful result is the following:

Lemma (Diaconis and Shahshahani, 1981)

$$
\|P-\pi\|_{\mathrm{TV}}^{2} \leq \frac{1}{4} \sum_{\substack{\text { non-triv } \\ \operatorname{irr} \rho}} d \rho \operatorname{tr}\left(\hat{P}(\rho) \hat{P}(\rho)^{*}\right)
$$

(Here $A^{*}=\left(\overline{a_{j i}}\right)$ denotes the complex conjugate transpose of the matrix $A=\left(a_{i j}\right)$, and tr denotes the trace function on square matrices)

A basic but extremely useful result is the following:

Lemma (Diaconis and Shahshahani, 1981)

$$
\|P-\pi\|_{\mathrm{TV}}^{2} \leq \frac{1}{4} \sum_{\substack{\text { non-triv } \\ \operatorname{irr} \rho}} d_{\rho} \operatorname{tr}\left(\hat{P}(\rho) \hat{P}(\rho)^{*}\right)
$$

(Here $A^{*}=\left(\overline{a_{j i}}\right)$ denotes the complex conjugate transpose of the matrix $A=\left(a_{i j}\right)$, and tr denotes the trace function on square matrices)

Our subsampled walk Y is a random walk on the group $\left(\mathbb{Z}_{n},+\right)$, whose n irreducible (one-dimensional) representations are determined by

$$
\rho_{s}(1):=e^{i \frac{2 \pi s}{n}} \quad \text { for } 0 \leq s \leq n-1
$$

The Upper Bound Lemma becomes

$$
\|P-\pi\|_{\mathrm{TV}}^{2} \leq \frac{1}{4} \sum_{s=1}^{n-1}\left|\hat{P}\left(\rho_{s}\right)\right|^{2}
$$

where $\hat{P}\left(\rho_{s}\right)$ is now just a complex number.

The Upper Bound Lemma becomes

$$
\|P-\pi\|_{\mathrm{TV}}^{2} \leq \frac{1}{4} \sum_{s=1}^{n-1}\left|\hat{P}\left(\rho_{s}\right)\right|^{2}
$$

where $\hat{P}\left(\rho_{s}\right)$ is now just a complex number.
Substituting the correct distribution for Y_{t} leads us to the following upper bound:

$$
\left\|\delta_{0} P_{t}-\pi\right\|_{\mathrm{TV}}^{2} \leq \frac{1}{4} \sum_{s=1}^{n-1} \prod_{k=1}^{t} \frac{p_{n}^{2}}{1-2\left(1-p_{n}\right) \cos \left(\frac{2 \pi}{n} 2^{k} s\right)+\left(1-p_{n}\right)^{2}}
$$

Lemma (Upper bound for Y)
Let $p_{n}=1 / 2 n^{\alpha}$, with $\alpha \in(0,1]$. For $\theta \in \mathbb{N}$,
$\lim \sup \left\|\mathbb{P}\left(Y_{T_{n}+\theta} \in \cdot\right)-\pi_{n}(\cdot)\right\|_{\mathrm{TV}}=O\left(4^{-\theta}\right)$.
$n \rightarrow \infty$

Lemma (Upper bound for Y)

Let $p_{n}=1 / 2 n^{\alpha}$, with $\alpha \in(0,1]$. For $\theta \in \mathbb{N}$,

$$
\limsup _{n \rightarrow \infty}\left\|\mathbb{P}\left(Y_{T_{n}+\theta} \in \cdot\right)-\pi_{n}(\cdot)\right\|_{\mathrm{TV}}=O\left(4^{-\theta}\right)
$$

Proof.

Careful analysis of the right-hand side!
(Identify which terms really contribute to the sum $(s=(n \pm 1) / 2$ accounts for nearly everything), deal with these, and show that nothing else really matters.)

This completes our proof of a cutoff for Y.

Moving from Y to X

We've seen that Y mixes in an interval of length $O(1)$ around $T_{n}=\log _{2}\left(n p_{n}\right)$: what does this tell us about the mixing time for X ?

Moving from Y to X

We've seen that Y mixes in an interval of length $O(1)$ around $T_{n}=\log _{2}\left(n p_{n}\right)$: what does this tell us about the mixing time for X ?

Corollary

For $p_{n}=1 / 2 n^{\alpha}$, with $\alpha \in(0,1), X$ exhibits a cutoff at time

$$
T_{n}^{X}=T_{n} / p_{n}=2(1-\alpha) n^{\alpha} \log _{2} n
$$

with window size $\sqrt{T_{n}} / p_{n}$.

Proof.

Essentially follows from the observation that the number of jumps by time $T_{n}^{X}+c \sqrt{T_{n}} / p_{n}$ concentrates (in an interval of order $\sqrt{T_{n}}$) around $T_{n}+c \sqrt{T_{n}}$.

And finally: open problems

(1) We can deal with more interesting steps in our walk, but not yet with more interesting jumps, e.g. consider

$$
x \rightarrow \begin{cases}x+1 & \text { w.p. } 1-p_{n} \\ 2 x & \text { w.p. } p_{n} / 2 \\ \left(\frac{n+1}{2}\right) x & \text { w.p. } p_{n} / 2\end{cases}
$$

or more general rules, such as $x \rightarrow x^{2} \ldots$

And finally: open problems

(1) We can deal with more interesting steps in our walk, but not yet with more interesting jumps, e.g. consider

$$
x \rightarrow \begin{cases}x+1 & \text { w.p. } 1-p_{n} \\ 2 x & \text { w.p. } p_{n} / 2 \\ \left(\frac{n+1}{2}\right) x & \text { w.p. } p_{n} / 2\end{cases}
$$

or more general rules, such as $x \rightarrow x^{2} \ldots$
(2) Or how about this process?

$$
x \rightarrow \begin{cases}x+1 & \text { w.p. } 1-p_{n} \\ a x & \text { w.p. } p_{n}\end{cases}
$$

where multiplication by a is not invertible? (Stationary distribution won't even be uniform...)

