
Non-homogeneous random walks on a
semi-infinite strip

Nicholas Georgiou

Joint work with Andrew Wade

Aspects of Random Walks
1st April 2014



Outline

Background
Lamperti’s problem

Non-homogeneous random walks on strips
Model assumptions
Recurrence classification of Xn

Proof ideas
Embedded process
Doob decomposition of Xn

Moment calculations

Example: persistent random walk



Simple random walk

Let Xn be symmetric simple random walk (SRW) on Zd , i.e., given
X1, . . . ,Xn, the new location Xn+1 is uniformly distributed on the
2d adjacent lattice sites to Xn.

Theorem (Pólya, 1921)

SRW is recurrent if d = 1 or d = 2, but transient if d ≥ 3.

Several proofs are available, typically using combinatorics or
electrical network theory, but these classical approaches are of
limited use if one wants to generalise or perturb the model slightly.

Lamperti (1960) gave a very robust approach, based on the
method of Lyapunov functions. Idea: reduce to a 1-dimensional
problem by taking Zn = ‖Xn‖.
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Lamperti’s problem

Xn = 0 if and only if Zn = 0.

But Zn is not homogeneous (and not even Markov). However, Zn

is a stochastic process with asymptotically zero drift.

Lamperti investigated the asymptotic behaviour of these
non-homogeneous random walks on Z+. He studied in detail how
the asymptotic behaviour of the random walk is determined by the
first two moment functions µ1(z) and µ2(z) of its increments.

Here, µk(z) = E[(Zn+1 − Zn)k | Zn = z ].



Lamperti’s problem

Theorem (Lamperti)

Let (Zn) be an irreducible time-homogeneous Markov chain on Z+.
Suppose that there exists ε > 0 such that

sup
z

E[|Zn+1 − Zn|2+ε | Zn = z ] <∞;

lim inf
z→∞

E[|Zn+1 − Zn|2 | Zn = z ] > 0.

If lim infz→∞(2zµ1(z)− µ2(z)) > 0, then Zn is transient.

If |2zµ1(z)| ≤ µ2(z) + O(z−δ), for some δ > 0, then Zn is
null-recurrent.

If lim supz→∞(2zµ1(z) + µ2(z)) < 0, then Zn is
positive-recurrent.
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Lamperti’s classification

Typically, the result is applied when the drift µ1(x) is
asymptotically zero, decaying as 1/z as z →∞ and µ2(z) is
asymptotically constant (and nonzero).
In particular, for µ1(z) = c/z + o(z−1) and µ2(z) = s2 + o(1), the
results tell us that

Zn is transient for 2c > s2,

Zn is null-recurrent for −s2 < 2c < s2,

Zn is positive-recurrent for 2c < −s2.



Non-homogeneous RW on semi-infinite strip

(Xn, ηn) — irreducible Markov chain on Z+ × S for S finite

Chain is time-homogeneous, non-homogeneous in space

Neither coordinate assumed to be Markov

We can view S as a set of internal states, influencing motion on
Z+. E.g.,

modulated queues (e.g., S = states of servers)

regime-switching processes (S contains market information)

physical processes with internal degrees of freedom
(S = energy/momentum states of particle)
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Model assumptions
Moments bound on jumps of Xn

(Bp) ∃ Cp <∞ s.t. E[|Xn+1 − Xn|p | Fn] ≤ Cp

|Xn+1 − Xn|

For this talk, we assume (Bp) holds for some p > 2.
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Model assumptions
ηn is “close to being Markov” when Xn is large

Define

p(x , i , y , j) = P[(Xn+1, ηn+1) = (y , j) | (Xn, ηn) = (x , i)]

qx(i , j) =
∑
y∈Z+

p(x , i , y , j)

(Q∞) q(i , j) = limx→∞ qx(i , j) exists for all i , j ∈ S and (q(i , j))
is irreducible

Markov chain with transition probabilities q(i , j) is irreducible on
finite state space S , so it has a stationary distribution π satisfying

π(j) =
∑
i∈S

π(i)q(i , j) for all j ∈ S .
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Model assumptions
Lamperti-type moment conditions

Define

µk(x , i) = E[(Xn+1 − Xn)k | (Xn, ηn) = (x , i)]

(ML) ∃ ci , si ∈ R for all i ∈ S (at least one si nonzero) such that

µ1(x , i) =
ci
x

+ o(x−1); µ2(x , i) = s2i + o(1).



Recurrence/transience of Xn

With these three assumptions (Bp), (Q∞), (ML), we can give
conditions that imply the recurrence or transience of Xn.

Note: Xn not assumed to be Markov — need to define what we
mean by recurrence/transience of Xn. Here, finiteness of S helps.

(Xn, ηn) is an irreducible Markov chain, so is either recurrent or
transient. Moreover,

Lemma

(i) If (Xn, ηn) is recurrent, then P[Xn = 0 i.o.] = 1.

(ii) If (Xn, ηn) is transient, then P[Xn = 0 i.o.] = 0, and Xn →∞
a.s.
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Null- vs. positive-recurrence of Xn

We can also define null- and positive-recurrence of Xn:

Lemma

There exists a (unique) measure ν on Z+ such that

lim
n→∞

1

n

n−1∑
k=0

1{Xk = x} = ν(x) a.s.,

for all x ∈ Z+.

(i) If (Xn, ηn) is null, then ν(x) = 0 for all x ∈ Z+.

(ii) If (Xn, ηn) is positive-recurrent, then ν(x) > 0 for all x ∈ Z+

and
∑

x∈Z+
ν(x) = 1.



Recurrence classification of Xn

Theorem (G., Wade, 2014)

Suppose that (Bp) holds for some p > 2 and conditions (Q∞) and
(ML) hold. The following sufficient conditions apply.

If
∑

i∈S(2ci − s2i )π(i) > 0, then Xn is transient.

If |
∑

i∈S 2ciπ(i)| <
∑

i∈S s2i π(i), then Xn is null-recurrent.

If
∑

i∈S(2ci + s2i )π(i) < 0, then Xn is positive-recurrent.

[With better error bounds in (Q∞) and (ML) we can also show
that the boundary cases are null-recurrent.]

This generalises Lamperti’s results for walks on Z+ (the case of S
a singleton).



Embedded process Yn

Label an arbitrary state 0 ∈ S .
Define τ0 = min{n ∈ Z+ : ηn = 0} and for m ≥ 0 set
τm+1 = min{n > τm : ηn = 0}.
(Conditions (Bp) and (Q∞) imply τm <∞ for all m.)

Embedded process: Yn = Xτn on state space Z+

0
Y0Y1 Y2



Properties of Yn and τn

Yn is an irreducible Markov chain.

τn+1 − τn conditional on Yn = x is independent of n.

Set τ = min{n > 0 : ηn = 0}.
Then τn+1 − τn conditional on Yn = x has the same distribution as
τ conditional on (X0, η0) = (x , 0).
This random variable is “well-behaved”: it has exponential tails
and all moments of τ are finite.

(Xn) recurrent if and only if (Yn) recurrent.
(Xn) positive-recurrent if and only if (Yn) positive-recurrent.



Properties of Yn and τn

Yn is an irreducible Markov chain.

τn+1 − τn conditional on Yn = x is independent of n.

Set τ = min{n > 0 : ηn = 0}.
Then τn+1 − τn conditional on Yn = x has the same distribution as
τ conditional on (X0, η0) = (x , 0).
This random variable is “well-behaved”: it has exponential tails
and all moments of τ are finite.

(Xn) recurrent if and only if (Yn) recurrent.
(Xn) positive-recurrent if and only if (Yn) positive-recurrent.



Properties of Yn and τn

Yn is an irreducible Markov chain.

τn+1 − τn conditional on Yn = x is independent of n.

Set τ = min{n > 0 : ηn = 0}.
Then τn+1 − τn conditional on Yn = x has the same distribution as
τ conditional on (X0, η0) = (x , 0).
This random variable is “well-behaved”: it has exponential tails
and all moments of τ are finite.

(Xn) recurrent if and only if (Yn) recurrent.
(Xn) positive-recurrent if and only if (Yn) positive-recurrent.



Excursion from line 0

Hence our recurrence classification will follow from an application
of Lamperti’s result to Yn.
We need to calculate E[(Yn+1 − Yn)k | Yn = x ], for k = 1, 2.

Enough to calculate E[(Xτ − X0)k | (X0, η0) = (x , 0)]. For this we
use the Doob decomposition of Xn.



Doob decomposition of Xn

Write

Xn − X0 = Mn +
n−1∑
k=0

E[Xk+1 − Xk | Xk , ηk ],

where Mn is a martingale with M0 = 0. Using the definition of
µ1(x , i),

Xn − X0 = Mn +
n−1∑
k=0

µ1(Xk , ηk)

= Mn +
∑
i∈S

n−1∑
k=0

µ1(Xk , i)1{ηk = i}



Moment calculations

So,

Xτ − X0 = Mτ +
∑
i∈S

τ−1∑
k=0

µ1(Xk , i)1{ηk = i}

Optional Stopping Theorem: E[Mτ | (X0, η0) = (x , 0)] = M0 = 0.

Then

Ex ,0[Xτ − X0] =
∑
i∈S

Ex ,0

[
τ−1∑
k=0

µ1(Xk , i)1{ηk = i}

]

=
∑
i∈S

Ex ,0

[
τ−1∑
k=0

µ1(x , i)1{ηk = i}

]
+ o(x−1),

where Ex ,0[ · ] is short for E[ · | (X0, η0) = (x , 0)].
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Moment calculations

We need one more approximation:

Ex ,0

[
τ−1∑
k=0

1{ηk = i}

]
=
π(i)

π(0)
+ o(1).

Combining these with µ1(x , i) = ci/x + o(x−1) we get

E[Xτ − X0 | (X0, η0) = (x , 0)] =
1

π(0)

∑
i∈S

ciπ(i)

x
+ o(x−1).

Similar reasoning using the Doob decomposition for X 2
n yields the

second moment:

E[(Xτ − X0)2 | (X0, η0) = (x , 0)] =
1

π(0)

∑
i∈S

s2i π(i) + o(1).
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Moments for Yn

In terms of Yn we have:

Lemma

E[Yn+1 − Yn | Yn = x ] =
1

π(0)

∑
i∈S

ciπ(i)

x
+ o(x−1);

E[(Yn+1 − Yn)2 | Yn = x ] =
1

π(0)

∑
i∈S

s2i π(i) + o(1).



Recurrence classification

Theorem (G., Wade, 2014)

Suppose that (Bp) holds for some p > 2 and conditions (Q∞) and
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The missing details

The proof relied on the following:

Random variable τ has exponential tails.

Control of Xk − X0 for k ≤ τ .

lim
x→∞

Ex ,0

τ−1∑
k=0

1{ηk = i} =
π(i)

π(0)

All these follow from a coupling of (Xn, ηn) with (η?n) the Markov
chain on S with transition matrix (q(i , j)).

E.g. if τ? = min{n > 0 : η?n = 0}, then conditional on ηn and η?n
remaining coupled up to time m we have τ ≤ m if and only if
τ? ≤ m.
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Example: persistent random walk on Z+

Nearest-neighbour random walk (Xn) on Z+ where the distribution
of Xn+1 depends on the current position Xn and the current
direction Xn − Xn−1. Setting ηn = Xn − Xn−1, we can model this
as a Markov chain (Xn, ηn) on Z+ × S , where S = {+1,−1}.

Nonzero transition probabilities are p(x , i , x + j , j) = qx(i , j) with

qx(i , j) =

{
1
2 + ic

2x + o(x−1) if j = i
1
2 −

ic
2x + o(x−1) if j 6= i

For c > 0 the walk has a marginal preference to continue in the
positive direction, and a marginal aversion to continuing in the
negative direction. (For large x the local behaviour is approx like
SRW on Z+.)
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Persistent random walk on Z+

We calculate the moments

µ1(x , i) =
c

x
+ o(x−1) and µ2(x , i) = 1 for i ∈ S .

Hence, our results tell us that

Xn is transient if c > 1/2,

Xn is null-recurrent if −1/2 < c < 1/2,

Xn is positive-recurrent if c < −1/2.
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