Non-homogeneous random walks on a semi-infinite strip

Nicholas Georgiou

Joint work with Andrew Wade

Aspects of Random Walks 1st April 2014

Outline

Background Lamperti's problem

Non-homogeneous random walks on strips Model assumptions Recurrence classification of X_n

Proof ideas

Embedded process Doob decomposition of X_n Moment calculations

Example: persistent random walk

Simple random walk

Let X_n be symmetric simple random walk (SRW) on \mathbb{Z}^d , i.e., given X_1, \ldots, X_n , the new location X_{n+1} is uniformly distributed on the 2*d* adjacent lattice sites to X_n .

Theorem (Pólya, 1921)

SRW is recurrent if d = 1 or d = 2, but transient if $d \ge 3$.

Several proofs are available, typically using combinatorics or electrical network theory, but these classical approaches are of limited use if one wants to generalise or perturb the model slightly.

Simple random walk

Let X_n be symmetric simple random walk (SRW) on \mathbb{Z}^d , i.e., given X_1, \ldots, X_n , the new location X_{n+1} is uniformly distributed on the 2*d* adjacent lattice sites to X_n .

Theorem (Pólya, 1921)

SRW is recurrent if d = 1 or d = 2, but transient if $d \ge 3$.

Several proofs are available, typically using combinatorics or electrical network theory, but these classical approaches are of limited use if one wants to generalise or perturb the model slightly.

Lamperti (1960) gave a very robust approach, based on the method of Lyapunov functions. Idea: reduce to a 1-dimensional problem by taking $Z_n = ||X_n||$.

 $X_n = 0$ if and only if $Z_n = 0$.

But Z_n is not homogeneous (and not even Markov). However, Z_n is a stochastic process with asymptotically zero drift.

Lamperti investigated the asymptotic behaviour of these non-homogeneous random walks on \mathbb{Z}_+ . He studied in detail how the asymptotic behaviour of the random walk is determined by the first two moment functions $\mu_1(z)$ and $\mu_2(z)$ of its increments.

Here,
$$\mu_k(z) = \mathbb{E}[(Z_{n+1} - Z_n)^k | Z_n = z].$$

Theorem (Lamperti)

Let (Z_n) be an irreducible time-homogeneous Markov chain on \mathbb{Z}_+ . Suppose that there exists $\varepsilon > 0$ such that

$$\sup_{z} \mathbb{E}[|Z_{n+1} - Z_n|^{2+\varepsilon} \mid Z_n = z] < \infty;$$
$$\liminf_{z \to \infty} \mathbb{E}[|Z_{n+1} - Z_n|^2 \mid Z_n = z] > 0.$$

Theorem (Lamperti)

Let (Z_n) be an irreducible time-homogeneous Markov chain on \mathbb{Z}_+ . Suppose that there exists $\varepsilon > 0$ such that

$$\sup_{z} \mathbb{E}[|Z_{n+1} - Z_n|^{2+\varepsilon} | Z_n = z] < \infty;$$
$$\liminf_{z \to \infty} \mathbb{E}[|Z_{n+1} - Z_n|^2 | Z_n = z] > 0.$$

• If $\liminf_{z\to\infty}(2z\mu_1(z)-\mu_2(z))>0$, then Z_n is transient.

Theorem (Lamperti)

Let (Z_n) be an irreducible time-homogeneous Markov chain on \mathbb{Z}_+ . Suppose that there exists $\varepsilon > 0$ such that

$$\sup_{z} \mathbb{E}[|Z_{n+1} - Z_n|^{2+\varepsilon} | Z_n = z] < \infty;$$
$$\liminf_{z \to \infty} \mathbb{E}[|Z_{n+1} - Z_n|^2 | Z_n = z] > 0.$$

- If $\liminf_{z\to\infty}(2z\mu_1(z)-\mu_2(z))>0$, then Z_n is transient.
- If $|2z\mu_1(z)| \le \mu_2(z) + O(z^{-\delta})$, for some $\delta > 0$, then Z_n is null-recurrent.

Theorem (Lamperti)

Let (Z_n) be an irreducible time-homogeneous Markov chain on \mathbb{Z}_+ . Suppose that there exists $\varepsilon > 0$ such that

$$\sup_{z} \mathbb{E}[|Z_{n+1} - Z_n|^{2+\varepsilon} | Z_n = z] < \infty;$$
$$\liminf_{z \to \infty} \mathbb{E}[|Z_{n+1} - Z_n|^2 | Z_n = z] > 0.$$

- If $\liminf_{z\to\infty}(2z\mu_1(z)-\mu_2(z))>0$, then Z_n is transient.
- If $|2z\mu_1(z)| \le \mu_2(z) + O(z^{-\delta})$, for some $\delta > 0$, then Z_n is null-recurrent.
- If $\limsup_{z\to\infty} (2z\mu_1(z) + \mu_2(z)) < 0$, then Z_n is positive-recurrent.

Typically, the result is applied when the drift $\mu_1(x)$ is asymptotically zero, decaying as 1/z as $z \to \infty$ and $\mu_2(z)$ is asymptotically constant (and nonzero). In particular, for $\mu_1(z) = c/z + o(z^{-1})$ and $\mu_2(z) = s^2 + o(1)$, the results tell us that

- Z_n is transient for $2c > s^2$,
- Z_n is null-recurrent for $-s^2 < 2c < s^2$,
- Z_n is positive-recurrent for $2c < -s^2$.

• (X_n, η_n) — irreducible Markov chain on $\mathbb{Z}_+ \times S$ for S finite

- (X_n, η_n) irreducible Markov chain on $\mathbb{Z}_+ \times S$ for S finite
- Chain is time-homogeneous, non-homogeneous in space

- (X_n, η_n) irreducible Markov chain on $\mathbb{Z}_+ imes S$ for S finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov

- (X_n, η_n) irreducible Markov chain on $\mathbb{Z}_+ imes S$ for S finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov

- (X_n, η_n) irreducible Markov chain on $\mathbb{Z}_+ imes S$ for S finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov

We can view S as a set of internal states, influencing motion on $\mathbb{Z}_+.$ E.g.,

- (X_n, η_n) irreducible Markov chain on $\mathbb{Z}_+ imes S$ for S finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov

We can view S as a set of internal states, influencing motion on $\mathbb{Z}_+.$ E.g.,

• modulated queues (e.g., S =states of servers)

- (X_n, η_n) irreducible Markov chain on $\mathbb{Z}_+ imes S$ for S finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov

We can view S as a set of internal states, influencing motion on $\mathbb{Z}_+.$ E.g.,

- modulated queues (e.g., S = states of servers)
- regime-switching processes (S contains market information)

- (X_n, η_n) irreducible Markov chain on $\mathbb{Z}_+ imes S$ for S finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov

We can view S as a set of internal states, influencing motion on $\mathbb{Z}_+.$ E.g.,

- modulated queues (e.g., S = states of servers)
- regime-switching processes (S contains market information)
- physical processes with internal degrees of freedom (S = energy/momentum states of particle)

Moments bound on jumps of X_n

$(\mathsf{B}_{p}) \quad \exists \ C_{p} < \infty \ \text{s.t.} \ \mathbb{E}[|X_{n+1} - X_{n}|^{p} \mid \mathcal{F}_{n}] \leq C_{p}$

Moments bound on jumps of X_n

$(\mathsf{B}_{p}) \quad \exists \ C_{p} < \infty \ \text{s.t.} \ \mathbb{E}[|X_{n+1} - X_{n}|^{p} \mid \mathcal{F}_{n}] \leq C_{p}$

For this talk, we assume (B_p) holds for some p > 2.

 η_n is "close to being Markov" when X_n is large

Define

$$p(x, i, y, j) = \mathbb{P}[(X_{n+1}, \eta_{n+1}) = (y, j) | (X_n, \eta_n) = (x, i)]$$
$$q_x(i, j) = \sum_{y \in \mathbb{Z}_+} p(x, i, y, j)$$

 η_n is "close to being Markov" when X_n is large

Define

$$p(x, i, y, j) = \mathbb{P}[(X_{n+1}, \eta_{n+1}) = (y, j) | (X_n, \eta_n) = (x, i)]$$
$$q_x(i, j) = \sum_{y \in \mathbb{Z}_+} p(x, i, y, j)$$

 (\mathbb{Q}_{∞}) $q(i,j) = \lim_{x \to \infty} q_x(i,j)$ exists for all $i,j \in S$ and (q(i,j)) is irreducible

Markov chain with transition probabilities q(i, j) is irreducible on finite state space S, so it has a stationary distribution π satisfying

$$\pi(j) = \sum_{i \in S} \pi(i)q(i,j)$$
 for all $j \in S$.

Lamperti-type moment conditions

Define

$$\mu_k(x,i) = \mathbb{E}[(X_{n+1} - X_n)^k \mid (X_n, \eta_n) = (x,i)]$$

$\begin{array}{ll} (\mathsf{M}_{\mathsf{L}}) & \exists \ c_i, s_i \in \mathbb{R} \ \text{for all} \ i \in S \ (\text{at least one} \ s_i \ \text{nonzero}) \ \text{such that} \\ \\ \mu_1(x,i) = \frac{c_i}{x} + o(x^{-1}); \quad \mu_2(x,i) = s_i^2 + o(1). \end{array}$

Recurrence/transience of X_n

With these three assumptions (B_p) , (Q_{∞}) , (M_L) , we can give conditions that imply the recurrence or transience of X_n .

Note: X_n not assumed to be Markov — need to define what we mean by recurrence/transience of X_n . Here, finiteness of S helps.

Recurrence/transience of X_n

With these three assumptions (B_p) , (Q_{∞}) , (M_L) , we can give conditions that imply the recurrence or transience of X_n .

Note: X_n not assumed to be Markov — need to define what we mean by recurrence/transience of X_n . Here, finiteness of S helps.

 (X_n, η_n) is an irreducible Markov chain, so is either recurrent or transient. Moreover,

Lemma

(i) If (X_n, η_n) is recurrent, then $\mathbb{P}[X_n = 0 \text{ i.o.}] = 1$.

(ii) If (X_n, η_n) is transient, then $\mathbb{P}[X_n = 0 \text{ i.o.}] = 0$, and $X_n \to \infty$ a.s.

Null- vs. positive-recurrence of X_n

We can also define null- and positive-recurrence of X_n :

Lemma

There exists a (unique) measure u on \mathbb{Z}_+ such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbf{1}\{X_k = x\} = \nu(x) \text{ a.s.},$$

for all $x \in \mathbb{Z}_+$. (i) If (X_n, η_n) is null, then $\nu(x) = 0$ for all $x \in \mathbb{Z}_+$. (ii) If (X_n, η_n) is positive-recurrent, then $\nu(x) > 0$ for all $x \in \mathbb{Z}_+$ and $\sum_{x \in \mathbb{Z}_+} \nu(x) = 1$.

Recurrence classification of X_n

Theorem (G., Wade, 2014)

Suppose that (B_p) holds for some p > 2 and conditions (Q_{∞}) and (M_L) hold. The following sufficient conditions apply.

- If $\sum_{i \in S} (2c_i s_i^2)\pi(i) > 0$, then X_n is transient.
- If $|\sum_{i\in S} 2c_i\pi(i)| < \sum_{i\in S} s_i^2\pi(i)$, then X_n is null-recurrent.
- If $\sum_{i \in S} (2c_i + s_i^2)\pi(i) < 0$, then X_n is positive-recurrent.

[With better error bounds in (Q_∞) and (M_L) we can also show that the boundary cases are null-recurrent.]

This generalises Lamperti's results for walks on \mathbb{Z}_+ (the case of S a singleton).

Embedded process Y_n

Label an arbitrary state $0 \in S$. Define $\tau_0 = \min\{n \in \mathbb{Z}_+ : \eta_n = 0\}$ and for $m \ge 0$ set $\tau_{m+1} = \min\{n > \tau_m : \eta_n = 0\}$. (Conditions (B_p) and (Q_∞) imply $\tau_m < \infty$ for all m.)

Embedded process: $Y_n = X_{ au_n}$ on state space \mathbb{Z}_+

Properties of Y_n and τ_n

 Y_n is an irreducible Markov chain.

 $\tau_{n+1} - \tau_n$ conditional on $Y_n = x$ is independent of n.

Properties of Y_n and τ_n

 Y_n is an irreducible Markov chain.

 $\tau_{n+1} - \tau_n$ conditional on $Y_n = x$ is independent of n.

Set $\tau = \min\{n > 0 : \eta_n = 0\}$. Then $\tau_{n+1} - \tau_n$ conditional on $Y_n = x$ has the same distribution as τ conditional on $(X_0, \eta_0) = (x, 0)$. This random variable is "well-behaved": it has exponential tails and all moments of τ are finite.

Properties of Y_n and τ_n

 Y_n is an irreducible Markov chain.

 $\tau_{n+1} - \tau_n$ conditional on $Y_n = x$ is independent of n.

Set $\tau = \min\{n > 0 : \eta_n = 0\}$. Then $\tau_{n+1} - \tau_n$ conditional on $Y_n = x$ has the same distribution as τ conditional on $(X_0, \eta_0) = (x, 0)$. This random variable is "well-behaved": it has exponential tails and all moments of τ are finite.

 (X_n) recurrent if and only if (Y_n) recurrent. (X_n) positive-recurrent if and only if (Y_n) positive-recurrent.

Hence our recurrence classification will follow from an application of Lamperti's result to Y_n . We need to calculate $\mathbb{E}[(Y_{n+1} - Y_n)^k | Y_n = x]$, for k = 1, 2.

Enough to calculate $\mathbb{E}[(X_{\tau} - X_0)^k | (X_0, \eta_0) = (x, 0)]$. For this we use the Doob decomposition of X_n .

Doob decomposition of X_n

Write

$$X_n - X_0 = M_n + \sum_{k=0}^{n-1} \mathbb{E}[X_{k+1} - X_k \mid X_k, \eta_k],$$

where M_n is a martingale with $M_0 = 0$. Using the definition of $\mu_1(x, i)$,

$$X_n - X_0 = M_n + \sum_{k=0}^{n-1} \mu_1(X_k, \eta_k)$$
$$= M_n + \sum_{i \in S} \sum_{k=0}^{n-1} \mu_1(X_k, i) \mathbf{1}\{\eta_k = i\}$$

So,

$$X_{\tau} - X_0 = M_{\tau} + \sum_{i \in S} \sum_{k=0}^{\tau-1} \mu_1(X_k, i) \mathbf{1}\{\eta_k = i\}$$

Optional Stopping Theorem: $\mathbb{E}[M_{\tau} \mid (X_0, \eta_0) = (x, 0)] = M_0 = 0.$

So,

$$X_{\tau} - X_0 = M_{\tau} + \sum_{i \in S} \sum_{k=0}^{\tau-1} \mu_1(X_k, i) \mathbf{1}\{\eta_k = i\}$$

Optional Stopping Theorem: $\mathbb{E}[M_{\tau} \mid (X_0, \eta_0) = (x, 0)] = M_0 = 0.$ Then

$$\mathbb{E}_{x,0}[X_{\tau} - X_0] = \sum_{i \in S} \mathbb{E}_{x,0} \left[\sum_{k=0}^{\tau-1} \mu_1(X_k, i) \mathbf{1}\{\eta_k = i\} \right]$$

where $\mathbb{E}_{x,0}[\cdot]$ is short for $\mathbb{E}[\cdot | (X_0, \eta_0) = (x, 0)]$.

So,

$$X_{\tau} - X_0 = M_{\tau} + \sum_{i \in S} \sum_{k=0}^{\tau-1} \mu_1(X_k, i) \mathbf{1}\{\eta_k = i\}$$

Optional Stopping Theorem: $\mathbb{E}[M_{\tau} \mid (X_0, \eta_0) = (x, 0)] = M_0 = 0.$ Then

$$\mathbb{E}_{x,0}[X_{\tau} - X_0] = \sum_{i \in S} \mathbb{E}_{x,0} \left[\sum_{k=0}^{\tau-1} \mu_1(X_k, i) \mathbf{1}\{\eta_k = i\} \right]$$
$$= \sum_{i \in S} \mathbb{E}_{x,0} \left[\sum_{k=0}^{\tau-1} \mu_1(x, i) \mathbf{1}\{\eta_k = i\} \right] + o(x^{-1}),$$

where $\mathbb{E}_{x,0}[\cdot]$ is short for $\mathbb{E}[\cdot \mid (X_0, \eta_0) = (x, 0)]$.

We need one more approximation:

$$\mathbb{E}_{x,0}\left[\sum_{k=0}^{\tau-1} \mathbf{1}\{\eta_k = i\}\right] = \frac{\pi(i)}{\pi(0)} + o(1).$$

We need one more approximation:

$$\mathbb{E}_{x,0}\left[\sum_{k=0}^{\tau-1} \mathbf{1}\{\eta_k = i\}\right] = \frac{\pi(i)}{\pi(0)} + o(1).$$

Combining these with $\mu_1(x,i) = c_i/x + o(x^{-1})$ we get

$$\mathbb{E}[X_{\tau} - X_0 \mid (X_0, \eta_0) = (x, 0)] = \frac{1}{\pi(0)} \sum_{i \in S} \frac{c_i \pi(i)}{x} + o(x^{-1}).$$

We need one more approximation:

$$\mathbb{E}_{x,0}\left[\sum_{k=0}^{\tau-1} \mathbf{1}\{\eta_k = i\}\right] = \frac{\pi(i)}{\pi(0)} + o(1).$$

Combining these with $\mu_1(x,i) = c_i/x + o(x^{-1})$ we get

$$\mathbb{E}[X_{\tau} - X_0 \mid (X_0, \eta_0) = (x, 0)] = \frac{1}{\pi(0)} \sum_{i \in S} \frac{c_i \pi(i)}{x} + o(x^{-1}).$$

Similar reasoning using the Doob decomposition for X_n^2 yields the second moment:

$$\mathbb{E}[(X_{\tau} - X_0)^2 \mid (X_0, \eta_0) = (x, 0)] = \frac{1}{\pi(0)} \sum_{i \in S} s_i^2 \pi(i) + o(1).$$

Moments for Y_n

In terms of Y_n we have:

Lemma

$$\mathbb{E}[Y_{n+1} - Y_n \mid Y_n = x] = \frac{1}{\pi(0)} \sum_{i \in S} \frac{c_i \pi(i)}{x} + o(x^{-1});$$
$$\mathbb{E}[(Y_{n+1} - Y_n)^2 \mid Y_n = x] = \frac{1}{\pi(0)} \sum_{i \in S} s_i^2 \pi(i) + o(1).$$

Recurrence classification

Theorem (G., Wade, 2014)

Suppose that (B_p) holds for some p > 2 and conditions (Q_{∞}) and (M_L) hold. The following sufficient conditions apply.

- If $\sum_{i \in S} (2c_i s_i^2)\pi(i) > 0$, then X_n is transient.
- If $|\sum_{i\in S} 2c_i\pi(i)| < \sum_{i\in S} s_i^2\pi(i)$, then X_n is null-recurrent.
- If $\sum_{i \in S} (2c_i + s_i^2)\pi(i) < 0$, then X_n is positive-recurrent.

The missing details

The proof relied on the following:

k=0

• Random variable τ has exponential tails.

• Control of
$$X_k - X_0$$
 for $k \le \tau$.
• $\lim_{x \to \infty} \mathbb{E}_{x,0} \sum_{k=0}^{\tau-1} \mathbf{1}\{\eta_k = i\} = \frac{\pi(i)}{\pi(0)}$

All these follow from a coupling of (X_n, η_n) with (η_n^*) the Markov chain on S with transition matrix (q(i, j)).

The missing details

The proof relied on the following:

• Random variable τ has exponential tails.

• Control of
$$X_k - X_0$$
 for $k \le \tau$.
• $\lim_{x \to \infty} \mathbb{E}_{x,0} \sum_{k=0}^{\tau-1} \mathbf{1}\{\eta_k = i\} = \frac{\pi(i)}{\pi(0)}$

All these follow from a coupling of (X_n, η_n) with (η_n^*) the Markov chain on S with transition matrix (q(i, j)).

E.g. if $\tau^* = \min\{n > 0 : \eta_n^* = 0\}$, then conditional on η_n and η_n^* remaining coupled up to time *m* we have $\tau \le m$ if and only if $\tau^* \le m$.

Example: persistent random walk on \mathbb{Z}_+

Nearest-neighbour random walk (X_n) on \mathbb{Z}_+ where the distribution of X_{n+1} depends on the current position X_n and the current direction $X_n - X_{n-1}$. Setting $\eta_n = X_n - X_{n-1}$, we can model this as a Markov chain (X_n, η_n) on $\mathbb{Z}_+ \times S$, where $S = \{+1, -1\}$.

Example: persistent random walk on \mathbb{Z}_+

Nearest-neighbour random walk (X_n) on \mathbb{Z}_+ where the distribution of X_{n+1} depends on the current position X_n and the current direction $X_n - X_{n-1}$. Setting $\eta_n = X_n - X_{n-1}$, we can model this as a Markov chain (X_n, η_n) on $\mathbb{Z}_+ \times S$, where $S = \{+1, -1\}$.

Nonzero transition probabilities are $p(x, i, x + j, j) = q_x(i, j)$ with

$$q_x(i,j) = \begin{cases} \frac{1}{2} + \frac{ic}{2x} + o(x^{-1}) & \text{if } j = i\\ \frac{1}{2} - \frac{ic}{2x} + o(x^{-1}) & \text{if } j \neq i \end{cases}$$

For c > 0 the walk has a marginal preference to continue in the positive direction, and a marginal aversion to continuing in the negative direction. (For large x the local behaviour is approx like SRW on \mathbb{Z}_{+} .)

We calculate the moments

$$\mu_1(x,i) = \frac{c}{x} + o(x^{-1}) \text{ and } \mu_2(x,i) = 1 \text{ for } i \in S.$$

Hence, our results tell us that

- X_n is transient if c > 1/2,
- X_n is null-recurrent if -1/2 < c < 1/2,
- X_n is positive-recurrent if c < -1/2.

