Non-homogeneous random walks on a semi-infinite strip

Nicholas Georgiou

Joint work with Andrew Wade

Aspects of Random Walks
1st April 2014
Outline

Background
Lamperti’s problem

Non-homogeneous random walks on strips
Model assumptions
Recurrence classification of X_n

Proof ideas
Embedded process
Doob decomposition of X_n
Moment calculations

Example: persistent random walk
Simple random walk

Let X_n be symmetric simple random walk (SRW) on \mathbb{Z}^d, i.e., given X_1, \ldots, X_n, the new location X_{n+1} is uniformly distributed on the $2d$ adjacent lattice sites to X_n.

Theorem (Pólya, 1921)

SRW is recurrent if $d = 1$ or $d = 2$, but transient if $d \geq 3$.

Several proofs are available, typically using combinatorics or electrical network theory, but these classical approaches are of limited use if one wants to generalise or perturb the model slightly.
Simple random walk

Let X_n be symmetric simple random walk (SRW) on \mathbb{Z}^d, i.e., given X_1, \ldots, X_n, the new location X_{n+1} is uniformly distributed on the $2d$ adjacent lattice sites to X_n.

Theorem (Pólya, 1921)

SRW is recurrent if $d = 1$ or $d = 2$, but transient if $d \geq 3$.

Several proofs are available, typically using combinatorics or electrical network theory, but these classical approaches are of limited use if one wants to generalise or perturb the model slightly.

Lamperti (1960) gave a very robust approach, based on the method of Lyapunov functions. Idea: reduce to a 1-dimensional problem by taking $Z_n = \|X_n\|$.
Lamperti’s problem

$X_n = 0$ if and only if $Z_n = 0$.

But Z_n is not homogeneous (and not even Markov). However, Z_n is a stochastic process with asymptotically zero drift.

Lamperti investigated the asymptotic behaviour of these non-homogeneous random walks on \mathbb{Z}_+. He studied in detail how the asymptotic behaviour of the random walk is determined by the first two moment functions $\mu_1(z)$ and $\mu_2(z)$ of its increments.

Here, $\mu_k(z) = \mathbb{E}[(Z_{n+1} - Z_n)^k \mid Z_n = z]$.
Lamperti’s problem

Theorem (Lamperti)

Let \((Z_n)\) be an irreducible time-homogeneous Markov chain on \(\mathbb{Z}_+\). Suppose that there exists \(\varepsilon > 0\) such that

\[
\sup_z \mathbb{E}[|Z_{n+1} - Z_n|^{2+\varepsilon} \mid Z_n = z] < \infty;
\]

\[
\liminf_{z \to \infty} \mathbb{E}[|Z_{n+1} - Z_n|^2 \mid Z_n = z] > 0.
\]
Lamperti’s problem

Theorem (Lamperti)

Let \((Z_n)\) be an irreducible time-homogeneous Markov chain on \(\mathbb{Z}_+\). Suppose that there exists \(\varepsilon > 0\) such that

\[
\sup_z \mathbb{E}[|Z_{n+1} - Z_n|^{2+\varepsilon} \mid Z_n = z] < \infty;
\]

\[
\liminf_{z \to \infty} \mathbb{E}[|Z_{n+1} - Z_n|^2 \mid Z_n = z] > 0.
\]

- If \(\liminf_{z \to \infty} (2z\mu_1(z) - \mu_2(z)) > 0\), then \(Z_n\) is transient.
Lamperti’s problem

Theorem (Lamperti)

Let \((Z_n)\) be an irreducible time-homogeneous Markov chain on \(\mathbb{Z}_+\). Suppose that there exists \(\varepsilon > 0\) such that

\[
\sup_z \mathbb{E}[|Z_{n+1} - Z_n|^{2+\varepsilon} \mid Z_n = z] < \infty;
\]

\[
\lim_{z \to \infty} \inf \mathbb{E}[|Z_{n+1} - Z_n|^2 \mid Z_n = z] > 0.
\]

- If \(\lim_{z \to \infty} \inf (2z\mu_1(z) - \mu_2(z)) > 0\), then \(Z_n\) is transient.
- If \(2z\mu_1(z) \leq \mu_2(z) + O(z^{-\delta})\), for some \(\delta > 0\), then \(Z_n\) is null-recurrent.
Lamperti’s problem

Theorem (Lamperti)

Let (Z_n) be an irreducible time-homogeneous Markov chain on \mathbb{Z}_+. Suppose that there exists $\varepsilon > 0$ such that

\[
\sup_z \mathbb{E}[|Z_{n+1} - Z_n|^{2+\varepsilon} \mid Z_n = z] < \infty;
\]

\[
\liminf_{z \to \infty} \mathbb{E}[|Z_{n+1} - Z_n|^2 \mid Z_n = z] > 0.
\]

- If $\liminf_{z \to \infty} \left(2z\mu_1(z) - \mu_2(z)\right) > 0$, then Z_n is transient.
- If $|2z\mu_1(z)| \leq \mu_2(z) + O(z^{-\delta})$, for some $\delta > 0$, then Z_n is null-recurrent.
- If $\limsup_{z \to \infty} \left(2z\mu_1(z) + \mu_2(z)\right) < 0$, then Z_n is positive-recurrent.
Lamperti’s classification

Typically, the result is applied when the drift \(\mu_1(x) \) is asymptotically zero, decaying as \(1/z \) as \(z \to \infty \) and \(\mu_2(z) \) is asymptotically constant (and nonzero).

In particular, for \(\mu_1(z) = c/z + o(z^{-1}) \) and \(\mu_2(z) = s^2 + o(1) \), the results tell us that

- \(Z_n \) is transient for \(2c > s^2 \),
- \(Z_n \) is null-recurrent for \(-s^2 < 2c < s^2 \),
- \(Z_n \) is positive-recurrent for \(2c < -s^2 \).
Non-homogeneous RW on semi-infinite strip

\((X_n, \eta_n)\) — irreducible Markov chain on \(\mathbb{Z}_+ \times S\) for \(S\) finite
Non-homogeneous RW on semi-infinite strip

- (X_n, η_n) — irreducible Markov chain on $\mathbb{Z}_+ \times S$ for S finite
- Chain is time-homogeneous, **non-homogeneous** in space
Non-homogeneous RW on semi-infinite strip

- \((X_n, \eta_n)\) — irreducible Markov chain on \(\mathbb{Z}_+ \times S\) for \(S\) finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov
Non-homogeneous RW on semi-infinite strip

- (X_n, η_n) — irreducible Markov chain on $\mathbb{Z}_+ \times S$ for S finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov
Non-homogeneous RW on semi-infinite strip

- \((X_n, \eta_n)\) — irreducible Markov chain on \(\mathbb{Z}_+ \times S\) for \(S\) finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov

We can view \(S\) as a set of internal states, influencing motion on \(\mathbb{Z}_+.\) E.g.,
Non-homogeneous RW on semi-infinite strip

- \((X_n, \eta_n)\) — irreducible Markov chain on \(\mathbb{Z}_+ \times S\) for \(S\) finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov

We can view \(S\) as a set of internal states, influencing motion on \(\mathbb{Z}_+\). E.g.,
 - modulated queues (e.g., \(S = \) states of servers)
Non-homogeneous RW on semi-infinite strip

- (X_n, η_n) — irreducible Markov chain on $\mathbb{Z}_+ \times S$ for S finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov

We can view S as a set of internal states, influencing motion on \mathbb{Z}_+. E.g.,
- modulated queues (e.g., $S =$ states of servers)
- regime-switching processes (S contains market information)
Non-homogeneous RW on semi-infinite strip

- \((X_n, \eta_n)\) — irreducible Markov chain on \(\mathbb{Z}_+ \times S\) for \(S\) finite
- Chain is time-homogeneous, non-homogeneous in space
- Neither coordinate assumed to be Markov

We can view \(S\) as a set of internal states, influencing motion on \(\mathbb{Z}_+.\) E.g.,
 - modulated queues (e.g., \(S =\) states of servers)
 - regime-switching processes (\(S\) contains market information)
 - physical processes with internal degrees of freedom (\(S =\) energy/momentum states of particle)
Model assumptions

Moments bound on jumps of X_n

$$(B_p) \quad \exists \ C_p < \infty \text{ s.t. } \mathbb{E}[|X_{n+1} - X_n|^p \mid \mathcal{F}_n] \leq C_p$$
Model assumptions

Moments bound on jumps of X_n

$$(B_p) \quad \exists \ C_p < \infty \ s.t. \ \mathbb{E}[|X_{n+1} - X_n|^p \mid \mathcal{F}_n] \leq C_p$$

For this talk, we assume (B_p) holds for some $p > 2$.
Model assumptions

η_n is “close to being Markov” when X_n is large

Define

\[p(x, i, y, j) = \mathbb{P}[(X_{n+1}, \eta_{n+1}) = (y, j) \mid (X_n, \eta_n) = (x, i)] \]

\[q_x(i, j) = \sum_{y \in \mathbb{Z}_+} p(x, i, y, j) \]
Model assumptions

η_n is “close to being Markov” when X_n is large

Define

$$p(x, i, y, j) = P[(X_{n+1}, \eta_{n+1}) = (y, j) \mid (X_n, \eta_n) = (x, i)]$$

$$q_x(i, j) = \sum_{y \in \mathbb{Z}_+} p(x, i, y, j)$$

$$(Q_{\infty}) \quad q(i, j) = \lim_{x \to \infty} q_x(i, j)$$

exists for all $i, j \in S$ and $(q(i, j))$ is irreducible

Markov chain with transition probabilities $q(i, j)$ is irreducible on finite state space S, so it has a stationary distribution π satisfying

$$\pi(j) = \sum_{i \in S} \pi(i)q(i, j)$$

for all $j \in S$.
Model assumptions

Lamperti-type moment conditions

Define

$$\mu_k(x, i) = \mathbb{E}[(X_{n+1} - X_n)^k \mid (X_n, \eta_n) = (x, i)]$$

(ML) \exists \ c_i, s_i \in \mathbb{R} \text{ for all } i \in S \text{ (at least one } s_i \text{ nonzero) such that}

$$\mu_1(x, i) = \frac{c_i}{x} + o(x^{-1}); \quad \mu_2(x, i) = s_i^2 + o(1).$$
Recurrence/transience of X_n

With these three assumptions (B_p), (Q_{∞}), (M_L), we can give conditions that imply the recurrence or transience of X_n.

Note: X_n not assumed to be Markov — need to define what we mean by recurrence/transience of X_n. Here, finiteness of S helps.
Recurrence/transience of X_n

With these three assumptions \((B_p), (Q_\infty), (M_L)\), we can give conditions that imply the recurrence or transience of X_n.

Note: X_n not assumed to be Markov — need to define what we mean by recurrence/transience of X_n. Here, finiteness of S helps.

\((X_n, \eta_n)\) is an irreducible Markov chain, so is either recurrent or transient. Moreover,

Lemma

(i) If \((X_n, \eta_n)\) is recurrent, then $\mathbb{P}[X_n = 0 \text{ i.o.}] = 1$.

(ii) If \((X_n, \eta_n)\) is transient, then $\mathbb{P}[X_n = 0 \text{ i.o.}] = 0$, and $X_n \rightarrow \infty$ a.s.
Null- vs. positive-recurrence of X_n

We can also define null- and positive-recurrence of X_n:

Lemma

There exists a (unique) measure ν on \mathbb{Z}_+ such that

$$
\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} 1\{X_k = x\} = \nu(x) \text{ a.s.,}
$$

for all $x \in \mathbb{Z}_+$.

(i) *If (X_n, η_n) is null, then $\nu(x) = 0$ for all $x \in \mathbb{Z}_+$.*

(ii) *If (X_n, η_n) is positive-recurrent, then $\nu(x) > 0$ for all $x \in \mathbb{Z}_+$ and $\sum_{x \in \mathbb{Z}_+} \nu(x) = 1$.***
Recurrence classification of X_n

Theorem (G., Wade, 2014)

Suppose that (B_p) holds for some $p > 2$ and conditions (Q_∞) and (M_L) hold. The following sufficient conditions apply.

- If $\sum_{i \in S} (2c_i - s_i^2)\pi(i) > 0$, then X_n is transient.
- If $|\sum_{i \in S} 2c_i\pi(i)| < \sum_{i \in S} s_i^2\pi(i)$, then X_n is null-recurrent.
- If $\sum_{i \in S} (2c_i + s_i^2)\pi(i) < 0$, then X_n is positive-recurrent.

[With better error bounds in (Q_∞) and (M_L) we can also show that the boundary cases are null-recurrent.]

This generalises Lamperti’s results for walks on \mathbb{Z}_+ (the case of S a singleton).
Label an arbitrary state $0 \in S$.
Define $\tau_0 = \min \{ n \in \mathbb{Z}_+ : \eta_n = 0 \}$ and for $m \geq 0$ set $\tau_{m+1} = \min \{ n > \tau_m : \eta_n = 0 \}$.
(Conditions (B_p) and (Q_∞) imply $\tau_m < \infty$ for all m.)

Embedded process: $Y_n = X_{\tau_n}$ on state space \mathbb{Z}_+
Properties of Y_n and τ_n

Y_n is an irreducible Markov chain.

$\tau_{n+1} - \tau_n$ conditional on $Y_n = x$ is independent of n.
Properties of Y_n and τ_n

Y_n is an irreducible Markov chain.

$\tau_{n+1} - \tau_n$ conditional on $Y_n = x$ is independent of n.

Set $\tau = \min\{n > 0 : \eta_n = 0\}$.
Then $\tau_{n+1} - \tau_n$ conditional on $Y_n = x$ has the same distribution as τ conditional on $(X_0, \eta_0) = (x, 0)$.
This random variable is “well-behaved”: it has exponential tails and all moments of τ are finite.
Properties of Y_n and τ_n

Y_n is an irreducible Markov chain.

$\tau_{n+1} - \tau_n$ conditional on $Y_n = x$ is independent of n.

Set $\tau = \min\{n > 0 : \eta_n = 0\}$.

Then $\tau_{n+1} - \tau_n$ conditional on $Y_n = x$ has the same distribution as τ conditional on $(X_0, \eta_0) = (x, 0)$.

This random variable is “well-behaved”: it has exponential tails and all moments of τ are finite.

(X_n) recurrent if and only if (Y_n) recurrent.

(X_n) positive-recurrent if and only if (Y_n) positive-recurrent.
Hence our recurrence classification will follow from an application of Lamperti’s result to \(Y_n \).

We need to calculate \(\mathbb{E}[(Y_{n+1} - Y_n)^k \mid Y_n = x] \), for \(k = 1, 2 \).

Enough to calculate \(\mathbb{E}[(X_\tau - X_0)^k \mid (X_0, \eta_0) = (x, 0)] \). For this we use the Doob decomposition of \(X_n \).
Doob decomposition of X_n

Write

$$X_n - X_0 = M_n + \sum_{k=0}^{n-1} \mathbb{E}[X_{k+1} - X_k \mid X_k, \eta_k],$$

where M_n is a martingale with $M_0 = 0$. Using the definition of $\mu_1(x, i)$,

$$X_n - X_0 = M_n + \sum_{k=0}^{n-1} \mu_1(X_k, \eta_k)$$

$$= M_n + \sum_{i \in S} \sum_{k=0}^{n-1} \mu_1(X_k, i) \mathbf{1}\{\eta_k = i\}$$
Moment calculations

So,

\[X_\tau - X_0 = M_\tau + \sum_{i \in S} \sum_{k=0}^{\tau-1} \mu_1(X_k, i) 1\{\eta_k = i\} \]

Optional Stopping Theorem: \(\mathbb{E}[M_\tau \mid (X_0, \eta_0) = (x, 0)] = M_0 = 0 \).
Moment calculations

So,

\[X_\tau - X_0 = M_\tau + \sum_{i \in S} \sum_{k=0}^{\tau-1} \mu_1(X_k, i)1\{\eta_k = i\} \]

Optional Stopping Theorem: \(\mathbb{E}[M_\tau \mid (X_0, \eta_0) = (x, 0)] = M_0 = 0. \) Then

\[\mathbb{E}_{x,0}[X_\tau - X_0] = \sum_{i \in S} \mathbb{E}_{x,0} \left[\sum_{k=0}^{\tau-1} \mu_1(X_k, i)1\{\eta_k = i\} \right] \]

where \(\mathbb{E}_{x,0}[\cdot] \) is short for \(\mathbb{E}[\cdot \mid (X_0, \eta_0) = (x, 0)] \).
Moment calculations

So,

\[X_\tau - X_0 = M_\tau + \sum_{i \in S} \sum_{k=0}^{\tau-1} \mu_1(X_k, i) 1\{\eta_k = i\} \]

Optional Stopping Theorem: \(\mathbb{E}[M_\tau \mid (X_0, \eta_0) = (x, 0)] = M_0 = 0. \)

Then

\[\mathbb{E}_{x,0}[X_\tau - X_0] = \sum_{i \in S} \mathbb{E}_{x,0} \left[\sum_{k=0}^{\tau-1} \mu_1(X_k, i) 1\{\eta_k = i\} \right] \]

\[= \sum_{i \in S} \mathbb{E}_{x,0} \left[\sum_{k=0}^{\tau-1} \mu_1(x, i) 1\{\eta_k = i\} \right] + o(x^{-1}), \]

where \(\mathbb{E}_{x,0}[\cdot] \) is short for \(\mathbb{E}[\cdot \mid (X_0, \eta_0) = (x, 0)] \).
Moment calculations

We need one more approximation:

\[\mathbb{E}_{x,0} \left[\sum_{k=0}^{\tau-1} 1\{\eta_k = i\} \right] = \frac{\pi(i)}{\pi(0)} + o(1). \]
Moment calculations

We need one more approximation:

\[
\mathbb{E}_{x,0} \left[\sum_{k=0}^{\tau-1} 1\{\eta_k = i\} \right] = \frac{\pi(i)}{\pi(0)} + o(1).
\]

Combining these with \(\mu_1(x, i) = c_i/x + o(x^{-1}) \) we get

\[
\mathbb{E}[X_\tau - X_0 \mid (X_0, \eta_0) = (x, 0)] = \frac{1}{\pi(0)} \sum_{i \in S} \frac{c_i \pi(i)}{x} + o(x^{-1}).
\]
Moment calculations

We need one more approximation:

$$
\mathbb{E}_{x,0} \left[\sum_{k=0}^{\tau-1} 1\{\eta_k = i\} \right] = \frac{\pi(i)}{\pi(0)} + o(1).
$$

Combining these with $\mu_1(x, i) = c_i/x + o(x^{-1})$ we get

$$
\mathbb{E}[X_{\tau} - X_0 \mid (X_0, \eta_0) = (x, 0)] = \frac{1}{\pi(0)} \sum_{i \in S} \frac{c_i \pi(i)}{x} + o(x^{-1}).
$$

Similar reasoning using the Doob decomposition for X_n^2 yields the second moment:

$$
\mathbb{E}[(X_{\tau} - X_0)^2 \mid (X_0, \eta_0) = (x, 0)] = \frac{1}{\pi(0)} \sum_{i \in S} s_i^2 \pi(i) + o(1).
$$
Moments for Y_n

In terms of Y_n we have:

Lemma

\[
\mathbb{E}[Y_{n+1} - Y_n \mid Y_n = x] = \frac{1}{\pi(0)} \sum_{i \in S} \frac{c_i \pi(i)}{x} + o(x^{-1});
\]

\[
\mathbb{E}[(Y_{n+1} - Y_n)^2 \mid Y_n = x] = \frac{1}{\pi(0)} \sum_{i \in S} s_i^2 \pi(i) + o(1).
\]
Recurrence classification

Theorem (G., Wade, 2014)

Suppose that \((B_p)\) holds for some \(p > 2\) and conditions \((Q_\infty)\) and \((M_L)\) hold. The following sufficient conditions apply.

- If \(\sum_{i \in S} (2c_i - s_i^2) \pi(i) > 0\), then \(X_n\) is transient.
- If \(\left| \sum_{i \in S} 2c_i \pi(i) \right| < \sum_{i \in S} s_i^2 \pi(i)\), then \(X_n\) is null-recurrent.
- If \(\sum_{i \in S} (2c_i + s_i^2) \pi(i) < 0\), then \(X_n\) is positive-recurrent.
The missing details

The proof relied on the following:

- Random variable τ has exponential tails.
- Control of $X_k - X_0$ for $k \leq \tau$.
- $\lim_{x \to \infty} E_{x,0} \sum_{k=0}^{\tau-1} 1\{\eta_k = i\} = \frac{\pi(i)}{\pi(0)}$

All these follow from a coupling of (X_n, η_n) with (η_n^*) the Markov chain on S with transition matrix $(q(i,j))$.
The missing details

The proof relied on the following:

- Random variable τ has exponential tails.
- Control of $X_k - X_0$ for $k \leq \tau$.

$$\lim_{x \to \infty} E_{x,0} \sum_{k=0}^{\tau-1} 1\{\eta_k = i\} = \frac{\pi(i)}{\pi(0)}$$

All these follow from a coupling of (X_n, η_n) with (η_n^*) the Markov chain on S with transition matrix $(q(i,j))$.

E.g. if $\tau^* = \min\{n > 0 : \eta_n^* = 0\}$, then conditional on η_n and η_n^* remaining coupled up to time m we have $\tau \leq m$ if and only if $\tau^* \leq m$.
Example: persistent random walk on \mathbb{Z}_+

Nearest-neighbour random walk (X_n) on \mathbb{Z}_+ where the distribution of X_{n+1} depends on the current position X_n and the current direction $X_n - X_{n-1}$. Setting $\eta_n = X_n - X_{n-1}$, we can model this as a Markov chain (X_n, η_n) on $\mathbb{Z}_+ \times S$, where $S = \{+1, -1\}$. For $c > 0$ the walk has a marginal preference to continue in the positive direction, and a marginal aversion to continuing in the negative direction. (For large x the local behaviour is approx like SRW on \mathbb{Z}_+.)
Example: persistent random walk on \mathbb{Z}_+

Nearest-neighbour random walk (X_n) on \mathbb{Z}_+ where the distribution of X_{n+1} depends on the current position X_n and the current direction $X_n - X_{n-1}$. Setting $\eta_n = X_n - X_{n-1}$, we can model this as a Markov chain (X_n, η_n) on $\mathbb{Z}_+ \times S$, where $S = \{+1, -1\}$.

Nonzero transition probabilities are $p(x, i, x + j, j) = q_x(i, j)$ with

$$q_x(i, j) = \begin{cases} \frac{1}{2} + \frac{ic}{2x} + o(x^{-1}) & \text{if } j = i \\ \frac{1}{2} - \frac{ic}{2x} + o(x^{-1}) & \text{if } j \neq i \end{cases}$$

For $c > 0$ the walk has a marginal preference to continue in the positive direction, and a marginal aversion to continuing in the negative direction. (For large x the local behaviour is approx like SRW on \mathbb{Z}_+.)
Persistent random walk on \mathbb{Z}_+

We calculate the moments

$$\mu_1(x, i) = \frac{c}{x} + o(x^{-1}) \text{ and } \mu_2(x, i) = 1 \text{ for } i \in S.$$

Hence, our results tell us that

- X_n is transient if $c > 1/2$,
- X_n is null-recurrent if $-1/2 < c < 1/2$,
- X_n is positive-recurrent if $c < -1/2$.

![Durham University logo]