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Introduction

Z+ := {0, 1, 2, 3, . . .}.

Consider Xt , t ∈ Z+ a nearest-neighbour random walk on Z+.

We are interested in random quantities such as

• τ = min{t > 0 : Xt = 0}, the first return time;

• M = max0≤s≤τ Xs , the excursion maximum;

• max0≤s≤t Xs , the running maximum process;

• 1
1+t

∑t
s=0 Xs , the centre of mass process;

• etc. . .

describing the process (Xt)t≥0 at large but finite times.



Introduction (cont.)

How do these quantities behave (tails, asymptotics, . . . ) for this
random walk?:
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Introduction (cont.)

What about this random walk?:
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Introduction (cont.)

Or this one?:
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Introduction (cont.)

Or this combination?:
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asymptotically zero drift 1
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Introduction (cont.)

I will describe answers to these questions. I will emphasize that the
answers depend not at all on the nearest-neighbour structure,
bounded jumps, or even the Markov property.
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All that really matters are the first two moment functions of the
increments, i.e.,

E[Xt+1 − Xt | Xt = x ] and E[(Xt+1 − Xt)
2 | Xt = x ]

and some regenerative structure for the process (so excursions are
well defined).



Introduction (cont.)

I will describe answers to these questions. I will emphasize that the
answers depend not at all on the nearest-neighbour structure,
bounded jumps, or even the Markov property.

All that really matters are the first two moment functions of the
increments, i.e.,

E[Xt+1 − Xt | Xt = x ] and E[(Xt+1 − Xt)
2 | Xt = x ]

and some regenerative structure for the process (so excursions are
well defined).

First I will give a general overview of non-homogeneous random
walks.
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Random walk origin

• Lord Rayleigh’s theory of sound (1880s)

• Louis Bachelier’s thesis on random models of stock prices
(1900)

• Karl Pearson’s theory of random migration (1905-06)

• Einstein’s theory of Brownian motion (1905-08)
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Simple random walk

Let Xt be symmetric simple random walk (SRW) on Z
d , i.e., given

X1, . . . ,Xt , the new location Xt+1 is uniformly distributed on the
2d adjacent lattice sites to Xt .

Theorem (Pólya 1921)

SRW is recurrent if d = 1 or d = 2, but transient if d ≥ 3.
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Let Xt be symmetric simple random walk (SRW) on Z
d , i.e., given

X1, . . . ,Xt , the new location Xt+1 is uniformly distributed on the
2d adjacent lattice sites to Xt .

Theorem (Pólya 1921)

SRW is recurrent if d = 1 or d = 2, but transient if d ≥ 3.

“A drunk man will find his way home, but a drunk bird may get lost
forever.” —Shizuo Kakutani



Lyapunov functions

• There are several proofs of Pólya’s theorem available, typically
using combinatorics or electrical network theory.

• These classical approaches are of limited use if one starts to
generalize or perturb the model slightly.

• Lamperti (1960) gave a very robust approach, based on the
method of Lyapunov functions.

• Reduce the d-dimensional problem to a 1-dimensional one by
taking Zt := ‖Xt‖.

• Zt = 0 if and only if Xt = 0, but the reduction of
dimensionality comes at a (modest) price: Zt is not in general
a Markov process.
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Lyapunov functions (cont.)

E.g. in d = 2, consider the two events {Xt = (3, 4)} and
{Xt = (5, 0)}. Both imply Zt = 5, but in only one case there is
positive probability of Zt+1 = 6.
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So our methods cannot rely on the Markov property.



Lyapunov functions (cont.)

• Elementary calculations based on Taylor’s theorem and
properties of the increments ∆n = Xn+1 − Xn show that

E
[

Zt+1 − Zt | X1, . . . ,Xt

]

=
1

2Zt

(

1−
1

d

)

+ O(Z−2
t ) ,

E
[

(Zt+1 − Zt)
2 | X1, . . . ,Xt

]

=
1

d
+ O(Z−1

t ) .
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• In particular, Zt is a stochastic process on [0,∞) with
asymptotically zero drift.



Lyapunov functions (cont.)

• Elementary calculations based on Taylor’s theorem and
properties of the increments ∆n = Xn+1 − Xn show that

E
[

Zt+1 − Zt | X1, . . . ,Xt

]

=
1

2Zt

(

1−
1

d

)

+ O(Z−2
t ) ,

E
[

(Zt+1 − Zt)
2 | X1, . . . ,Xt

]

=
1

d
+ O(Z−1

t ) .

• In particular, Zt is a stochastic process on [0,∞) with
asymptotically zero drift.

• Loosely speaking, if

µk(z) = E
[

(Zt+1 − Zt)
k | Zt = z

]

,

we have µ1(z) ∼
1
2z

(

1− 1
d

)

and µ2(z) ∼
1
d
.



Lamperti’s problem

In the early 1960s, Lamperti studied in detail how the asymptotics
of a stochastic process Zt ∈ [0,∞) are determined by the first two
moment functions of its increments, µ1 and µ2.

Theorem (Lamperti 1960–63)

Under mild regularity conditions, the following recurrence
classification holds.

• If 2zµ1(z)− µ2(z) > ε > 0, Zt is transient.

• If 2zµ1(z) + µ2(z) < −ε < 0, Zt is positive-recurrent.

• If |2zµ1(z)| ≤ µ2(z), Zt is null-recurrent.



Lamperti’s problem (cont.)

• In particular, for Zt = ‖Xt‖ the norm of SRW,

2zµ1(z) ∼ 1−
1

d
, and µ2(z) ∼

1

d
.

So 2zµ1(z)− µ2(z) > 0 if and only if d > 2.



Lamperti’s problem (cont.)

• In particular, for Zt = ‖Xt‖ the norm of SRW,

2zµ1(z) ∼ 1−
1

d
, and µ2(z) ∼

1

d
.

So 2zµ1(z)− µ2(z) > 0 if and only if d > 2.

• So Pólya’s theorem follows.



Lamperti’s problem (cont.)

• In particular, for Zt = ‖Xt‖ the norm of SRW,

2zµ1(z) ∼ 1−
1

d
, and µ2(z) ∼

1

d
.

So 2zµ1(z)− µ2(z) > 0 if and only if d > 2.

• So Pólya’s theorem follows.

• This approach allows one to study much more general random
walk models, including spatially non-homogeneous random
walks, and non-Markovian processes.



Lamperti’s problem (cont.)

• In particular, for Zt = ‖Xt‖ the norm of SRW,

2zµ1(z) ∼ 1−
1

d
, and µ2(z) ∼

1

d
.

So 2zµ1(z)− µ2(z) > 0 if and only if d > 2.

• So Pólya’s theorem follows.

• This approach allows one to study much more general random
walk models, including spatially non-homogeneous random
walks, and non-Markovian processes.

• More generally, many near-critical stochastic systems, if a
suitable Lyapunov function exists, can be analysed using
Lamperti’s theorem.



Conditions for recurrence?
Consider the more general non-homogeneous situation where Xt

is a Markov chain on R
d whose jump distribution may change from

place to place.

So now
µ(x) = E[Xt+1 − Xt | Xt = x]

is allowed to depend on x ∈ R
d .

Question: In the non-homogeneous case, is µ(x) = 0 sufficient for
recurrence in d = 2?



Conditions for recurrence?
Consider the more general non-homogeneous situation where Xt

is a Markov chain on R
d whose jump distribution may change from

place to place.

So now
µ(x) = E[Xt+1 − Xt | Xt = x]

is allowed to depend on x ∈ R
d .

Question: In the non-homogeneous case, is µ(x) = 0 sufficient for
recurrence in d = 2?

Answer: No.

Theorem
Let Xt be a non-homogeneous random walk with zero drift, i.e.,
µ(x) = 0 for all x ∈ R

d . There exist such walks that are

• transient in d = 2;

• recurrent in d ≥ 3.



Elliptical random walk

Here is an example of the previous theorem in d = 2.

Given Xt , suppose that Xt+1

is distributed (uniformly with
respect to the standard
parametrization) on an ellipse
centred at Xt and aligned so
that the minor axis is in the
direction of the vector Xt .

This zero-drift non-homogeneous random walk in R
2 is transient.



Elliptical random walk



Asymptotically zero drift

Lamperti published a series of pioneering papers in the early 1960s
investigating the asymptotically zero drift regime (µ(x) → 0 as
‖x‖ → ∞) which is the natural setting in which to probe the
recurrence-transience transition.

A zero drift non-homogeneous random walk on R
d can always be

made recurrent or transient (whichever is desired) by an
asymptotically small perturbation of the drift field.

More precisely, changing the drift µ(x) by O(‖x‖−1) is sufficient to
achieve this.

Now we return to the one-dimensional setting to address the
specific questions posed in the introduction.
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One-dimensional case

For simplicity of presentation, we take Xt to be Markov
(time-homogeneous and irreducible) and its state space S ⊆ [0,∞)
to be locally finite with 0 ∈ S.

The Markov assumption is not necessary, but we do need a
regenerative structure.

We assume the following moment conditions on the increments
∆t := Xt+1 − Xt : for some c ∈ R and s2 ∈ (0,∞),

E
[

∆t | Xt = x
]

≈
c

x
, E

[

∆2
t | Xt = x

]

≈ s2 ,

where ‘≈’ means that we are ignoring some higher order terms as
x → ∞.



Recurrence classification

Let c and s2 be defined as above,

E
[

∆t | Xt = x
]

≈
c

x
, E

[

∆2
t | Xt = x

]

≈ s2 .

The key quantity turns out to be

r := −
2c

s2
∈ R .

Theorem (Lamperti)

Under mild conditions, Xt is

• transient if r < −1,

• null-recurrent if −1 ≤ r ≤ 1,

• positive-recurrent if r > 1.



Excursions

For the rest of this talk we focus on the recurrent case r > −1,
and examine in detail the excursion structure of the process.

Start the process from X0 = 0 and consider

τ := min{t > 0 : Xt = 0} .

We study path properties of X0,X1, . . . ,Xt as t → ∞ via a study
of the excursions X0,X1, . . . ,Xτ .



Excursion maxima

To illustrate our approach, we first consider

M := max
0≤t≤τ

Xt ,

the maximum attained by the walk over an excursion.

Consider the Lyapunov function Yt := X γ
t , γ > 0.

A Taylor’s formula calculation shows that

Yt+1 − Yt = (Xt +∆t)
γ − X γ

t = X γ
t

[(

1 +
∆t

Xt

)γ

− 1

]

≈ γ∆tX
γ−1
t +

γ(γ − 1)

2
∆2

tX
γ−2
t ,

under suitable conditions (e.g. a 2 + ε moment bound on ∆t).



Excursion maxima (cont.)

As a result,

E
[

Yt+1 − Yt | Xt = x
]

≈ γ
c

x
xγ−1 +

γ(γ − 1)

2
s2xγ−2

=
γ

2
xγ−2

(

2c + (γ − 1)s2
)

.

The last expression is 0 if γ = 1− 2c
s2

= 1 + r .

In other words, for γ = 1 + r , X γ
t is almost a martingale. A small

perturbation in either direction will give a submartingale or a
supermartingale.

Then optional stopping ideas give

Pr
[

Xt hits x before returning to 0
]

≈ x−1−r .



Excursion maxima (cont.)

The relation

Pr
[

Xt hits x before returning to 0
]

≈ x−1−r

implies
Pr
[

M > x
]

≈ x−1−r .

So E[Mp] < ∞ if and only if p < 1 + r .



Excursion maxima (cont.)

The relation

Pr
[

Xt hits x before returning to 0
]

≈ x−1−r

implies
Pr
[

M > x
]

≈ x−1−r .

So E[Mp] < ∞ if and only if p < 1 + r .

For example: In the zero drift case, Pr[M > x ] ≈ 1/x and
E[M] = ∞.



Excursion duration

On the event that Xt reaches large x during the excursion,
semimartingale estimates can be used to show that with good
probability, the walk spends time of order x2 before it returns to 0.

So Pr[τ > x2] ≈ Pr[M > x ] ≈ x−1−r .

That is, Pr[τ > x ] ≈ x−
1+r
2 .

(Actually this sketched argument only gives a lower bound. The upper bound uses

semimartingale ideas of Aspandiiarov, Iasnogorodskii and Menshikov.)



Number of excursions

The duration of an excursion has tail Pr[τ > x ] ≈ x−
1+r
2 .

E.g. for the zero-drift case, this exponent is 1/2.

Let N(t) be the number of excursions (i.e., the number of visits
to 0) by time t.

An inversion of the law of large numbers shows that:

• If −1 < r ≤ 1 (the null-recurrent case), then

N(t) ≈ t
1+r
2 a.s.

• If r > 1 (the ergodic case), then

t−1N(t) → E[τ ]−1 a.s.,

which is a constant.



Running maximum

We have
max
0≤s≤t

Xs ≈ max of N(t) copies of M .

The tail bounds on M then give

max
0≤s≤t

Xs ≈ N(t)
1

1+r .



Running maximum

We have
max
0≤s≤t

Xs ≈ max of N(t) copies of M .

The tail bounds on M then give

max
0≤s≤t

Xs ≈ N(t)
1

1+r .

There are 2 cases:

• If −1 < r ≤ 1 (null-recurrent case), then

max
0≤s≤t

Xs ≈ t
1
2 .

• If r > 1 (ergodic case), then

max
0≤s≤t

Xs ≈ t
1

1+r .



Excursion sums

Now we are going to work towards an understanding of the path
integrals

S
(α)
t :=

t
∑

s=0

Xα
s , α > 0 .

Our particular motivation was initially to understand the behaviour

of the centre of mass Gt :=
1

1+t
S
(1)
t .

Again a first step is to examine a single excursion. Set

ξ(α) :=
τ−1
∑

s=0

Xα
s .



Excursion sums (cont.)

We use a similar argument to before. With probability about
x−1−r , the walk reaches x during the excursion.

On this event, with good probability, the walk then spends time of
order x2 at distance at least x/2, say.

This accumulates an excursion sum of order x2 · xα.



Excursion sums (cont.)

We use a similar argument to before. With probability about
x−1−r , the walk reaches x during the excursion.

On this event, with good probability, the walk then spends time of
order x2 at distance at least x/2, say.

This accumulates an excursion sum of order x2 · xα.

So Pr
[

ξ(α) > x2+α
]

≈ x−1−r . In other words,

Pr
[

ξ(α) > x
]

≈ x−
1+r
2+α .

In particular, E[ξ(α)] < ∞ if and only if r > 1 + α.



Path integrals

Again, the argument sketched gives the lower bound. The upper
bound is straightforward from the fact that

ξ(α) ≤ τMα .



Path integrals

Again, the argument sketched gives the lower bound. The upper
bound is straightforward from the fact that

ξ(α) ≤ τMα .

Now
S
(α)
t ≈

∑

of N(t) copies of ξ(α) .

The tail bounds for ξ(α) then give:

• If r ≤ 1 + α, then

S
(α)
t ≈ N(t)

1+r
2+α .

• If r > 1 + α, then
S
(α)
t ≈ N(t) .



Path integrals (cont.)

Combining this with our results for N(t) gives the following 3
cases:

• If −1 < r ≤ 1 (null-recurrent case) then

S
(α)
t ≈ t

2+α

2 .

• If 1 < r ≤ 1 + α (weakly ergodic case) then

S
(α)
t ≈ t

2+α

1+r .

• If r > 1 + α (strongly ergodic case) then

t−1S
(α)
t → να ∈ (0,∞) .



Centre of mass process

As a corollary, we obtain the following results for the centre of
mass process Gt .

• If −1 < r ≤ 1 then Gt ≈ t
1
2 .

• If 1 < r ≤ 2 then Gt ≈ t
2−r
1+r .

• If r > 2 then Gt → ν1.



Centre of mass process

As a corollary, we obtain the following results for the centre of
mass process Gt .

• If −1 < r ≤ 1 then Gt ≈ t
1
2 .

• If 1 < r ≤ 2 then Gt ≈ t
2−r
1+r .

• If r > 2 then Gt → ν1.

Comparing the exponents for Gt to those of the maximum
process max0≤s≤t Xs :

• They coincide (taking value 1
2) in the null-recurrent case.

• In the positive-recurrent case, 1
1+r

> 2−r
1+r

for r > 1. The
intuition here is that in the positive-recurrent case, the process
rarely visits the scale of the maximum, so Gt ≪ max0≤s≤t Xs .
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Some simple examples
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Symmetric (zero drift) walk with reflection at the origin. Here

• Pr[M > x ] ≈ x−1.

• Pr[τ > x ] ≈ x−
1
2 .

• Pr[ξ(α) > x ] ≈ x
− 1

2+α .

• max0≤s≤t Xs ≈ t
1
2 .

• Gt ≈ t
1
2 .



Some simple examples (cont.)
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Symmetric (zero drift) walk with reflection at the origin.
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Some simple examples (cont.)
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Non-homogeneous random walk with asymptotically zero drift
1
4x and r = −2c

s2
= −1

2 , so null-recurrent. Here

• Pr[M > x ] ≈ x−
1
2 .

• Pr[τ > x ] ≈ x−
1
4 .

• Pr[ξ(α) > x ] ≈ x
− 1

4+2α .

• max0≤s≤t Xs ≈ t
1
2 .

• Gt ≈ t
1
2



Some simple examples (cont.)
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Some simple examples (cont.)
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and r = −2c
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= 3
2 so positive-recurrent.



Some simple examples (cont.)

bc bc bc bc bc bc bc
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Non-homogeneous random walk with asymptotically zero drift − 3
4x

and r = −2c
s2

= 3
2 so positive-recurrent. Here

• Pr[M > x ] ≈ x−
5
2 .

• Pr[τ > x ] ≈ x−
5
4 .

• Pr[ξ(α) > x ] ≈ x
− 5

4+2α .

• max0≤s≤t Xs ≈ t
2
5 .

• Gt ≈ t
1
5 .



Some simple examples (cont.)
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and r = −2c
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Further illustration: A walk on Z
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0 xx − 1 x + 1
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Consider a nearest-neighbour random walk on Z.

• From x ≤ 0, the walk takes symmetric jumps (±1 with
probability 1

2 each).

• From x > 0, the walk jumps to x ± 1 with probabilities 1
2 ±

1
8x .



Further illustration: A walk on Z

bcbcbcbc bc bc bc bc bc bc bc bc

0 xx − 1 x + 1

1
2
− 1

8x
1
2
+ 1

8x
1
2

1
2

Consider a nearest-neighbour random walk on Z.

• From x ≤ 0, the walk takes symmetric jumps (±1 with
probability 1

2 each).

• From x > 0, the walk jumps to x ± 1 with probabilities 1
2 ±

1
8x .

Restricting the process to either half-line gives a null-recurrent
process with diffusive (t1/2) scaling.

What about the combined process?



Illustration: A walk on Z (cont.)

In fact, there is a separation of scales:

max
0≤s≤t

Xs ≈ t1/2 , min
0≤s≤t

Xs ≈ −t1/4 .

Moreover, Gt ≈ t1/2 (positive!).



Illustration: A walk on Z (cont.)

In fact, there is a separation of scales:

max
0≤s≤t

Xs ≈ t1/2 , min
0≤s≤t

Xs ≈ −t1/4 .

Moreover, Gt ≈ t1/2 (positive!).

The intuition here is that the walk makes a comparable number of
positive and negative excursions, but the positive ones have
heavier-tailed durations, and so occupy a dominant fraction of the
time.



Illustration: A walk on Z (cont.)
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Symmetric walk for non-positive sites, non-homogeneous walk with
asymptotically zero drift 1

4x for positive sites.
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Processes with non-integrable jumps

Random walks (adapted processes) with non-itegrable increments

Xn ∼
(

Fn

)

n∈Z+ adapted process with X0 = 0 ;

its increments ∆n = Xn+1 − Xn = ∆+
n −∆−

n , where ∆±
n ≥ 0 .

Key asumptions: fix α ∈ (0, 1) and β > α. Let, uniformly in n,
almost surely,

E
(

(∆−
n )

β | Fn

)

≤ C , (L)
and, for all x ≥ x0, almost surely,

E
(

∆+
n 1∆+

n ≤x | Fn

)

≥ cx1−α . (R1)

P(∆+
n > x | Fn) ∼ x−α . (R2)

Notice: (R1) implies E
(

(∆+
n )γ | Fn

)

= ∞ for every γ > α.

The regularity condition (R1) cannot be replaced by a moment condition even for random walks, [Chung].



Transience condition and the rate of escape

Theorem 1: Fix α ∈ (0, 1) and β > α. Then (L) & (R1) imply

Xn → +∞, almost surely, as n → ∞.

Corollary : Fix α ∈ (0, 1) and β > α. Then (L) & (R2) imply

lim
x→∞

logXn

log n
=

1

α
.



First-passage times

For x ∈ R, define the first-passage time for [x ,∞) via

τx = min
{

n ∈ Z
+ : Xn ≥ x

}

,
where min∅ = ∞.

Theorem 2: Let α ∈ (0, 1) and β > α. If (L) and (R1) hold, then
for every x ∈ R and every p ∈ [0, β/α), we have

E
(

(τx)
p
)

< ∞ .



First-passage times

For x ∈ R, define the first-passage time for [x ,∞) via

τx = min
{

n ∈ Z
+ : Xn ≥ x

}

,
where min∅ = ∞.

Theorem 2: Let α ∈ (0, 1) and β > α. If (L) and (R1) hold, then
for every x ∈ R and every p ∈ [0, β/α), we have

E
(

(τx)
p
)

< ∞ .

Theorem 3: Let α ∈ (0, 1] and β > α. Suppose that for some
C < ∞, we have, almost surely,

E
(

(∆+
n )

α | Fn

)

≤ C and E
(

(∆−
n )

β | Fn

)

= ∞ .

Then, for any x > 0,
E
(

(τx)
β/α

)

= ∞ .



Last-exit times

For x ∈ R, define the last-exit time from (−∞, x ] via

λx = max
{

n ∈ Z
+ : Xn ≤ x

}

.

Theorem 4: Let α ∈ (0, 1) and β > α. If (L) and (R1) hold, then
for every x ∈ R and every p ∈ [0, (β/α)− 1), we have

E
(

(λx)
p
)

< ∞ .



Last-exit times

For x ∈ R, define the last-exit time from (−∞, x ] via

λx = max
{

n ∈ Z
+ : Xn ≤ x

}

.

Theorem 4: Let α ∈ (0, 1) and β > α. If (L) and (R1) hold, then
for every x ∈ R and every p ∈ [0, (β/α)− 1), we have

E
(

(λx)
p
)

< ∞ .

Theorem 5: Let α ∈ (0, 1] and β > α. Suppose that for some
C < ∞, c > 0, and x0 < ∞, we have, almost surely,

E
(

(∆+
n )

α | Fn

)

≤ C and P
(

∆−
n > x | Fn

)

≥ cx−β ,

if only x ≥ x0. Then, for any x > 0 and any p > (β/α)− 1

E
(

(λx)
p
)

= ∞ .



Random walk with non-integrable increments
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Heavy-tailed random walk with α = 0.9 and β = 0.94



Application: Heavy-tailed walks on strips

Consider a Markov chain (Un,Vn) on Sk =
{

0, 1, . . . , k − 1
}

× Z

or S∞ = Z
+ × Z with jumps

P
(

(Un+1,Vn+1) = (ℓ′, x + d) | Un = ℓ,Vn = x
)

= φ(ℓ, ℓ′; d) .

[spatial homogeneity in the second coordinate!]

Induced Markov chain (Un)n≥0:

P
(

Un+1 = ℓ′ | Un = ℓ
)

=
∑

d∈Z

φ(ℓ, ℓ′; d) .

Assumption B: jumps as above, induced chain (Un)n≥0 is
irreducible and recurrent.



Positive recurrent case

Theorem 6: Assume that (B) holds and Un is positive-recurrent.
Suppose that for some α ∈ (0, 1), β > α and C < ∞, a.s.,

i) E
[(

(Vn+1 − Vn)
−
)β

| Un,Vn

]

≤ C ;

iia) on {Un = 0},

lim
x→∞

log P
(

(Vn+1 − Vn)
+ > x | Un,Vn

)

log x
= −α ;

iib) on {Un 6= 0}, E
[(

(Vn+1 − Vn)
+
)β

| Un,Vn

]

≤ C.

Then, a.s., Vn → +∞ as n → ∞; moreover, a.s.,

lim
n→∞

logVn

log n
=

1

α
.



Null recurrent case

Let ν = min
{

n > 0 : Un = 0
}

be the first return time to the 0-line.

Theorem 7: Assume that (B) holds, Un is null-recurrent such
that lim

n→∞
log P(ν > n)/log n = −γ , for some γ ∈ (0, 1].

Suppose that for some α ∈ (0, 1), β > 0 and C < ∞, a.s.,

i) E
[(

(Vn+1 − Vn)
−
)β

| Un,Vn

]

≤ C ;

iia) on {Un = 0},

lim
x→∞

log P
(

(Vn+1 − Vn)
+ > x | Un,Vn

)

log x
= −α ;

iib) on {Un 6= 0}, E
[(

(Vn+1 − Vn)
+
)β

| Un,Vn

]

≤ C.

If α < γ(β ∧ 1), then, a.s., Vn → +∞ as n → ∞; moreover, a.s.,

lim
n→∞

logVn

log n
=

γ

α
.



Null recurrent case (cont.)

Theorem 8: Assume that (B) holds, Un is null-recurrent and ν is
as in Theorem 7.

Suppose that for some α, β ∈ (0, 1), δ > 0 and C < ∞, a.s.,

i) on {Un = 0}, E
[

|Vn+1 − Vn|
α | Un,Vn

]

≤ C ;

ii) on {Un 6= 0},

lim
x→∞

log P
(

(Vn+1 − Vn)
− > x | Un,Vn

)

log x
= −β ;

iii) on {Un 6= 0}, E
[(

(Vn+1 − Vn)
+
)β+δ

| Un,Vn

]

≤ C.

If α > γβ, then, a.s., Vn → −∞ as n → ∞; moreover, a.s.,

lim
n→∞

log |Vn|

log n
=

1

β
.



Heuristics

If ξ has heavy tails, eg., P(|ξ| > x) ≍ x−α, then the sum
Sk = ξ1 + · · ·+ ξk of k independent copies of ξ is of order k1/α.
It thus takes about nα steps to travel distance of order n.

[Marcinkiewicz-Zygmund 1937]

In particular, if the return time ν = min
{

n > 0 : Un = 0
}

satisfies

lim
n→∞

log P(ν > n)/log n = −γ ,

by time T the Markov chain Un visits the boundary state 0
approximately T γ times.

By time T , the total boundary shift is of order
(

T γ)1/α = T γ/α,

the bulk shift is of order T 1/β .
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Concluding remarks

• Instead of working with random walks we could work with
continuous processes (diffusions) instead.

• Our methods use martingale ideas. An advantage of the
martingale approach is that the Markov property is not
essential to the proofs. The martingale approach gives an
“easy” proof of Pólya’s theorem that generalizes broadly.

• Similar methods can also be applied in the heavy-tailed
setting [HMMW 12].
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Concluding remarks (cont.)

• Non-homogeneous random walks can be viewed as
prototypical near-critical stochastic systems, in the sense that
small perturbations close to a phase boundary lead to rich
variations in behaviour. This study fits within a broad
programme of developing methods to study near-critical
systems, where classical methods usually fail.

• So the techniques that we developed in this work can be (and
have been) applied to other near critical systems with
applications in probability and beyond, such as queueing
systems, interacting particle systems, and processes in
random media.
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