Random bipartite geometric graphs

Mathew Penrose (University of Bath)

Aspects of Random Walks and Iain MacPhee Day Durham University April 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Geometric graphs

Let $d \in \mathbb{N}$ with $d \geq 2$. Let r > 0. Given disjoint, locally finite $\mathcal{X} \subset \mathbb{R}^d$, $\mathcal{Y} \subset \mathbb{R}^d$, define the geometric graph $G(\mathcal{X}, r)$ (G = (V, E)) by

$$G(\mathcal{X}, r): \quad V = \mathcal{X}, E = \{\{x, x'\} : |x - x'| \le r\}$$

and the bipartite geometric graph $G(\mathcal{X},\mathcal{Y},r)$ by

 $G(\mathcal{X},\mathcal{Y},r): \quad V=\mathcal{X}\cup\mathcal{Y}, E=\{\{x,y\}: x\in\mathcal{X}, y\in\mathcal{Y}, |x-y|\leq r\}.$

Given $\lambda, \mu > 0$, let \mathcal{P}_{λ} and \mathcal{Q}_{μ} be independent homogeneous Poisson point processes of intensity λ, μ resp. in \mathbb{R}^d . Let \mathcal{I} be the class of graphs which *percolate*, i.e. have an infinite component. By a standard zero-one law, given also r > 0 we have

$$\mathbb{P}[G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I}] \in \{0, 1\};$$

$$\mathbb{P}[G(\mathcal{P}_{\lambda}, r) \in \mathcal{I}] \in \{0, 1\}.$$

The graph $G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r)$ is a (loose) continuum analogue to AB percolation on a lattice (e.g. Halley (1980), Appel and Wierman (1987)), where each vertex is either type A or type B, and one is interested in infinite alternating paths.

Critical values

Given $\lambda > 0$ and r > 0, define

$$\mu_c(r,\lambda) := \inf \{ \mu : \mathbb{P}[(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I}] = 1 \}$$

with $\inf\{\} := +\infty$. Set

$$\lambda_c^{AB}(r) := \inf\{\lambda : \mu_c(r,\lambda) < \infty\};\$$

and

$$\lambda_c(r) := \inf \{ \lambda : \mathbb{P}[G(\mathcal{P}_{\lambda}, r) \in \mathcal{I}] = 1 \}.$$

THEOREM 1 (Iyer and Yogeshwaran (2012), Penrose (2013+)):

$$\lambda_c^{AB}(r) = \lambda_c(2r)$$

and

$$\mu_c(r,\lambda_c(2r)+\delta) = O(\delta^{-2d}|\log \delta|) \text{ as } \delta \downarrow 0.$$

Proving $\lambda_c^{AB}(r) \geq \lambda_c(2r)$ is trivial

If $\lambda > \lambda_c^{AB}(r)$ then $\exists \mu$ with $G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I}$ a.s.. Then also $G(\mathcal{P}_{\lambda}, 2r) \in \mathcal{I}$ a.s., so $\lambda \geq \lambda_c(2r)$.

Proving $\lambda_c^{AB}(r) \leq \overline{\lambda_c(2r)}$ is less trivial

Suppose $\lambda > \lambda_c(2r)$, so $G(\mathcal{P}_{\lambda}, 2r) \in \mathcal{I}$ a.s. We want to show: $\exists \mu \text{ (large) such that } G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I} \text{ a.s., so } \lambda \geq \lambda_c^{AB}(r).$

Discretization of $G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r)$.

Divide \mathbb{R}^d into cubes of side ε (small). Say each cube C is A-occupied if $\mathcal{P}_{\lambda}(C) > 0$ is and is B-occupied if $\mathcal{Q}_{\mu}(C) > 0$. Induces bipartite site-percolation on ε -grid.

Sketch proof of $\lambda_c^{AB}(r) \leq \overline{\lambda_c(2r)}$ (1): Discretization

Suppose $\lambda > \lambda_c(2r)$. Then $\exists s < r$ and $\nu < \lambda$ with $G(\mathcal{P}_{\nu}, 2s) \in \mathcal{I}$ a.s.

For $\varepsilon > 0$, $p, q \in [0, 1]$; under the measure $\mathbb{P}_{p,q,\varepsilon}$, suppose each site $z \in \varepsilon \mathbb{Z}^d$ is A-occupied with probability p and (independently) *B*-occupied with probability q (it could be both, or neither). Let \mathcal{A} be the set of A-occupied sites and \mathcal{B} the set of B-occupied sites. Set t = (r+s)/2 and $\varepsilon = (r-t)/(9d)$. Can show

$$\mathbb{P}_{p_{\nu},1,\varepsilon}[G(\mathcal{A},\mathcal{B},t)\in\mathcal{I}]=1$$

where $p_{\nu} = 1 - \exp(-\nu \varepsilon^d)$ (Prob that ε -box has at least one point of \mathcal{P}_{ν}). Next lemma will show $\exists q < 1$:

$$\mathbb{P}_{p_{\lambda},q,\varepsilon}[G(\mathcal{A},\mathcal{B},t)\in\mathcal{I}]=1,$$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

which implies $G(\mathcal{P}_{\lambda}, \mathcal{P}_{\mu}, r) \in \mathcal{I}$, where $q = q_{\mu}$.

Proving $\lambda_c^{AB}(r) \leq \lambda_c(2r)$ (2): Coupling Lemma

 $\text{If } \mathbb{P}_{p_{\nu},1,\varepsilon}[G(\mathcal{A},\mathcal{B},t)\in\mathcal{I}]=1 \text{ then } \exists q<1: \ \mathbb{P}_{p_{\lambda},q,\varepsilon}[G(\mathcal{A},\mathcal{B},t)\in\mathcal{I}]=1.$

Proof: Consider a Bernoulli random field of 'open' vertices and edges of the directed graph (V, E) with $V = \varepsilon \mathbb{Z}^d$ and $(u, v) \in E$ iff $|u - v| \leq t$.

Each vertex $v \in V$ is open with probability p_{λ} and each edge (u, v) is open with probability ϕ (chosen below). Deine the following subsets of V:

 $\mathcal{A}_1 := \{v : v \text{ is open and all edges out of } v \text{ are open}\}; \quad \mathcal{B}_1 = \varepsilon \mathbb{Z}^d; \\ \mathcal{A}_2 = \{v : v \text{ is open }\}; \quad \mathcal{B}_2 = \{v : \text{ at least one edge into } v \text{ is open}\}.$

If $G(\mathcal{A}_1, \mathcal{B}_1, t) \in \mathcal{I}$ then $G(\mathcal{A}_2, \mathcal{B}_2, t) \in \mathcal{I}$. Can choose ϕ so $\mathbb{P}[v \in \mathcal{A}_1] = p_{\nu}$. Then by our assumption, $G(\mathcal{A}_1, \mathcal{B}_1, t)$ percolates and hence so does $G(\mathcal{A}_2, \mathcal{B}_2, t)$. \Box

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Set
$$d=2$$
. Set $\mathcal{P}^F_{\lambda}=\mathcal{P}_{\lambda}\cap [0,1]^2$, $\mathcal{Q}^F_{\lambda}=\mathcal{Q}_{\lambda}\cap [0,1]^2$. Let $\tau>0$.

Let $G'(\lambda, \tau, r)$ be the graph on $V = \mathcal{P}^F_{\lambda}$ with X, X' connected iff they have a common neighbour in $G(\mathcal{P}^F_{\lambda}, \mathcal{Q}^F_{\tau\lambda}, r)$, i.e.

$$E(G'(\lambda,\tau,r)) = \{\{X,X'\}: \exists Y \in \mathcal{Q}^F_{\tau\lambda} \text{ with } |X-Y| \leq r, |X'-Y| \leq r\}$$

Let $\rho_{\lambda}(\tau) = \min\{r : G'(\lambda, \tau, r) \text{ is connected }\}$ (a random variable).

THEOREM 2 (MP 2013+). $\lambda \pi (\rho_{\lambda}(\tau))^2 / \log \lambda \xrightarrow{P} \frac{1}{\tau \wedge 4}$ as $\lambda \to \infty$. and with a suitable coupling this extends to a.s. convergence as λ runs through the integers.

Idea of proof. Isolated vertices determine connectivity.

Let a > 0. Suppose $\lambda \pi r_{\lambda}^2 / \log \lambda = a$.

Let N_{λ} be the number of isolated points in $G(\mathcal{P}_{\lambda}^{F}, \mathcal{Q}_{\tau\lambda}^{F}, r_{\lambda})$.

Let N'_{λ} be the number of isolated points in $G(\mathcal{P}^F_{\lambda}, 2r_{\lambda})$. On the torus,

$$\mathbb{E}[N_{\lambda}] = \lambda \exp(-\tau \lambda (\pi r_{\lambda}^2)) = \lambda^{1-a\tau}.$$
$$\mathbb{E}[N_{\lambda}'] = \lambda \exp(-\lambda (\pi (2r_{\lambda})^2)) = \lambda^{1-4a}.$$

Both expectations go to zero iff $a > 1/\tau$ and a > 1/4, i.e. $a > 1/(\tau \land 4)$.

(日) (同) (目) (日) (日) (0) (0)