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Geometric graphs

Let d ∈ N with d ≥ 2. Let r > 0. Given disjoint, locally finite X ⊂ Rd,
Y ⊂ Rd, define the geometric graph G(X , r) (G = (V,E)) by

G(X , r) : V = X , E = {{x, x′} : |x− x′| ≤ r}
and the bipartite geometric graph G(X ,Y, r) by

G(X ,Y, r) : V = X ∪ Y, E = {{x, y} : x ∈ X , y ∈ Y, |x− y| ≤ r}.
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Random geometric graphs

Given λ, µ > 0, let Pλ and Qµ be independent homogeneous Poisson point
processes of intensity λ, µ resp. in Rd. Let I be the class of graphs which
percolate, i.e. have an infinite component. By a standard zero-one law,
given also r > 0 we have

P[G(Pλ,Qµ, r) ∈ I] ∈ {0, 1};

P[G(Pλ, r) ∈ I] ∈ {0, 1}.

The graph G(Pλ,Qµ, r) is a (loose) continuum analogue to AB
percolation on a lattice (e.g. Halley (1980), Appel and Wierman (1987)),
where each vertex is either type A or type B, and one is interested in
infinite alternating paths.

Mathew Penrose (Bath), Iain MacPhee Day April 2014



Critical values

Given λ > 0 and r > 0, define

µc(r, λ) := inf{µ : P[(Pλ,Qµ, r) ∈ I] = 1}

with inf{} := +∞. Set

λABc (r) := inf{λ : µc(r, λ) <∞};

and
λc(r) := inf{λ : P[G(Pλ, r) ∈ I] = 1}.

THEOREM 1 (Iyer and Yogeshwaran (2012), Penrose (2013+)):

λABc (r) = λc(2r)

and
µc(r, λc(2r) + δ) = O(δ−2d| log δ|) as δ ↓ 0.
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Proving λABc (r) ≥ λc(2r) is trivial

If λ > λABc (r) then ∃µ with G(Pλ,Qµ, r) ∈ I a.s..
Then also G(Pλ, 2r) ∈ I a.s., so λ ≥ λc(2r).
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Proving λABc (r) ≤ λc(2r) is less trivial

Suppose λ > λc(2r), so G(Pλ, 2r) ∈ I a.s. We want to show:
∃µ (large) such that G(Pλ,Qµ, r) ∈ I a.s., so λ ≥ λABc (r).
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Discretization of G(Pλ,Qµ, r).

Divide Rd into cubes of side ε (small). Say each cube C is A-occupied if
Pλ(C) > 0 is and is B-occupied if Qµ(C) > 0. Induces bipartite
site-percolation on ε-grid.

Mathew Penrose (Bath), Iain MacPhee Day April 2014



Sketch proof of λABc (r) ≤ λc(2r) (1): Discretization

Suppose λ > λc(2r). Then ∃ s < r and ν < λ with G(Pν , 2s) ∈ I a.s.

For ε > 0, p, q ∈ [0, 1]; under the measure Pp,q,ε, suppose each site
z ∈ εZd is A-occupied with probability p and (independently) B-occupied
with probability q (it could be both, or neither). Let A be the set of
A-occupied sites and B the set of B-occupied sites. Set t = (r + s)/2 and
ε = (r − t)/(9d). Can show

Ppν ,1,ε[G(A,B, t) ∈ I] = 1

where pν = 1− exp(−νεd) (Prob that ε-box has at least one point of Pν).
Next lemma will show ∃q < 1:

Ppλ,q,ε[G(A,B, t) ∈ I] = 1,

which implies G(Pλ,Pµ, r) ∈ I, where q = qµ.
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Proving λABc (r) ≤ λc(2r) (2): Coupling Lemma

If Ppν ,1,ε[G(A,B, t) ∈ I] = 1 then ∃q < 1: Ppλ,q,ε[G(A,B, t) ∈ I] = 1.

Proof: Consider a Bernoulli random field of ‘open’ vertices and edges of
the directed graph (V,E) with V = εZd and (u, v) ∈ E iff |u− v| ≤ t.

Each vertex v ∈ V is open with probability pλ and each edge (u, v) is open
with probability φ (chosen below). Deine the following subsets of V :

A1 := {v : v is open and all edges out of v are open}; B1 = εZd;
A2 = {v : v is open }; B2 = {v : at least one edge into v is open}.

If G(A1,B1, t) ∈ I then G(A2,B2, t) ∈ I.
Can choose φ so P[v ∈ A1] = pν . Then by our assumption, G(A1,B1, t)
percolates and hence so does G(A2,B2, t).

Mathew Penrose (Bath), Iain MacPhee Day April 2014



A finite bipartite geometric graph

Set d = 2. Set PFλ = Pλ ∩ [0, 1]2, QFλ = Qλ ∩ [0, 1]2. Let τ > 0.

Let G′(λ, τ, r) be the graph on V = PFλ with X,X ′ connected iff they
have a common neighbour in G(PFλ ,QFτλ, r), i.e.

E(G′(λ, τ, r)) = {{X,X ′} : ∃Y ∈ QFτλ with |X − Y | ≤ r, |X ′ − Y | ≤ r}

Let ρλ(τ) = min{r : G′(λ, τ, r) is connected } (a random variable).

THEOREM 2 (MP 2013+). λπ(ρλ(τ))
2/ log λ

P−→ 1
τ∧4 as λ→∞.

and with a suitable coupling this extends to a.s. convergence as λ runs
through the integers.
Idea of proof. Isolated vertices determine connectivity.
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Partial sketch proof of Theorem 2

Let a > 0. Suppose λπr2λ/ log λ = a.

Let Nλ be the number of isolated points in G(PFλ ,QFτλ, rλ).

Let N ′λ be the number of isolated points in G(PFλ , 2rλ). On the torus,

E[Nλ] = λ exp(−τλ(πr2λ)) = λ1−aτ .

E[N ′λ] = λ exp(−λ(π(2rλ)2)) = λ1−4a.

Both expectations go to zero iff a > 1/τ and a > 1/4, i.e. a > 1/(τ ∧ 4).
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