Random bipartite geometric graphs

Mathew Penrose
(University of Bath)

Aspects of Random Walks and lain MacPhee Day
Durham University
April 2014

Geometric graphs

Let $d \in \mathbb{N}$ with $d \geq 2$. Let $r>0$. Given disjoint, locally finite $\mathcal{X} \subset \mathbb{R}^{d}$, $\mathcal{Y} \subset \mathbb{R}^{d}$, define the geometric graph $G(\mathcal{X}, r)(G=(V, E))$ by

$$
G(\mathcal{X}, r): \quad V=\mathcal{X}, E=\left\{\left\{x, x^{\prime}\right\}:\left|x-x^{\prime}\right| \leq r\right\}
$$

and the bipartite geometric graph $G(\mathcal{X}, \mathcal{Y}, r)$ by

$$
G(\mathcal{X}, \mathcal{Y}, r): \quad V=\mathcal{X} \cup \mathcal{Y}, E=\{\{x, y\}: x \in \mathcal{X}, y \in \mathcal{Y},|x-y| \leq r\}
$$

Random geometric graphs

Given $\lambda, \mu>0$, let \mathcal{P}_{λ} and \mathcal{Q}_{μ} be independent homogeneous Poisson point processes of intensity λ, μ resp. in \mathbb{R}^{d}. Let \mathcal{I} be the class of graphs which percolate, i.e. have an infinite component. By a standard zero-one law, given also $r>0$ we have

$$
\begin{gathered}
\mathbb{P}\left[G\left(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r\right) \in \mathcal{I}\right] \in\{0,1\} \\
\mathbb{P}\left[G\left(\mathcal{P}_{\lambda}, r\right) \in \mathcal{I}\right] \in\{0,1\}
\end{gathered}
$$

The graph $G\left(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r\right)$ is a (loose) continuum analogue to AB percolation on a lattice (e.g. Halley (1980), Appel and Wierman (1987)), where each vertex is either type A or type B, and one is interested in infinite alternating paths.

Critical values

Given $\lambda>0$ and $r>0$, define

$$
\mu_{c}(r, \lambda):=\inf \left\{\mu: \mathbb{P}\left[\left(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r\right) \in \mathcal{I}\right]=1\right\}
$$

with $\inf \}:=+\infty$. Set

$$
\lambda_{c}^{A B}(r):=\inf \left\{\lambda: \mu_{c}(r, \lambda)<\infty\right\}
$$

and

$$
\lambda_{c}(r):=\inf \left\{\lambda: \mathbb{P}\left[G\left(\mathcal{P}_{\lambda}, r\right) \in \mathcal{I}\right]=1\right\} .
$$

THEOREM 1 (lyer and Yogeshwaran (2012), Penrose (2013+)):

$$
\lambda_{c}^{A B}(r)=\lambda_{c}(2 r)
$$

and

$$
\mu_{c}\left(r, \lambda_{c}(2 r)+\delta\right)=O\left(\delta^{-2 d}|\log \delta|\right) \text { as } \delta \downarrow 0 \text {. }
$$

Proving $\lambda_{c}^{A B}(r) \geq \lambda_{c}(2 r)$ is trivial

If $\lambda>\lambda_{c}^{A B}(r)$ then $\exists \mu$ with $G\left(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r\right) \in \mathcal{I}$ a.s..
Then also $G\left(\mathcal{P}_{\lambda}, 2 r\right) \in \mathcal{I}$ a.s., so $\lambda \geq \lambda_{c}(2 r)$.

Proving $\lambda_{c}^{A B}(r) \leq \lambda_{c}(2 r)$ is less trivial

Suppose $\lambda>\lambda_{c}(2 r)$, so $G\left(\mathcal{P}_{\lambda}, 2 r\right) \in \mathcal{I}$ a.s. We want to show: $\exists \mu$ (large) such that $G\left(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r\right) \in \mathcal{I}$ a.s., so $\lambda \geq \lambda_{c}^{A B}(r)$.

Discretization of $G\left(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r\right)$.

Divide \mathbb{R}^{d} into cubes of side ε (small). Say each cube C is A-occupied if $\mathcal{P}_{\lambda}(C)>0$ is and is B-occupied if $\mathcal{Q}_{\mu}(C)>0$. Induces bipartite site-percolation on ε-grid.

Sketch proof of $\lambda_{c}^{A B}(r) \leq \lambda_{c}(2 r)$ (1): Discretization

Suppose $\lambda>\lambda_{c}(2 r)$. Then $\exists s<r$ and $\nu<\lambda$ with $G\left(\mathcal{P}_{\nu}, 2 s\right) \in \mathcal{I}$ a.s.

For $\varepsilon>0, p, q \in[0,1]$; under the measure $\mathbb{P}_{p, q, \varepsilon}$, suppose each site $z \in \varepsilon \mathbb{Z}^{d}$ is A-occupied with probability p and (independently) B-occupied with probability q (it could be both, or neither). Let \mathcal{A} be the set of A-occupied sites and \mathcal{B} the set of B-occupied sites. Set $t=(r+s) / 2$ and $\varepsilon=(r-t) /(9 d)$. Can show

$$
\mathbb{P}_{p_{\nu}, 1, \varepsilon}[G(\mathcal{A}, \mathcal{B}, t) \in \mathcal{I}]=1
$$

where $p_{\nu}=1-\exp \left(-\nu \varepsilon^{d}\right)$ (Prob that ε-box has at least one point of \mathcal{P}_{ν}). Next lemma will show $\exists q<1$:

$$
\mathbb{P}_{p_{\lambda}, q, \varepsilon}[G(\mathcal{A}, \mathcal{B}, t) \in \mathcal{I}]=1
$$

which implies $G\left(\mathcal{P}_{\lambda}, \mathcal{P}_{\mu}, r\right) \in \mathcal{I}$, where $q=q_{\mu}$.

Proving $\lambda_{c}^{A B}(r) \leq \lambda_{c}(2 r)$ (2): Coupling Lemma

If $\mathbb{P}_{p_{\nu}, 1, \varepsilon}[G(\mathcal{A}, \mathcal{B}, t) \in \mathcal{I}]=1$ then $\exists q<1: \mathbb{P}_{p_{\lambda}, q, \varepsilon}[G(\mathcal{A}, \mathcal{B}, t) \in \mathcal{I}]=1$.
Proof: Consider a Bernoulli random field of 'open' vertices and edges of the directed graph (V, E) with $V=\varepsilon \mathbb{Z}^{d}$ and $(u, v) \in E$ iff $|u-v| \leq t$.

Each vertex $v \in V$ is open with probability p_{λ} and each edge (u, v) is open with probability ϕ (chosen below). Deine the following subsets of V :
$\mathcal{A}_{1}:=\{v: v$ is open and all edges out of v are open $\} ; \quad \mathcal{B}_{1}=\varepsilon \mathbb{Z}^{d} ;$ $\mathcal{A}_{2}=\{v: v$ is open $\} ; \mathcal{B}_{2}=\{v:$ at least one edge into v is open $\}$.

If $G\left(\mathcal{A}_{1}, \mathcal{B}_{1}, t\right) \in \mathcal{I}$ then $G\left(\mathcal{A}_{2}, \mathcal{B}_{2}, t\right) \in \mathcal{I}$.
Can choose ϕ so $\mathbb{P}\left[v \in \mathcal{A}_{1}\right]=p_{\nu}$. Then by our assumption, $G\left(\mathcal{A}_{1}, \mathcal{B}_{1}, t\right)$ percolates and hence so does $G\left(\mathcal{A}_{2}, \mathcal{B}_{2}, t\right)$.

A finite bipartite geometric graph

Set $d=2$. Set $\mathcal{P}_{\lambda}^{F}=\mathcal{P}_{\lambda} \cap[0,1]^{2}, \mathcal{Q}_{\lambda}^{F}=\mathcal{Q}_{\lambda} \cap[0,1]^{2}$. Let $\tau>0$.
Let $G^{\prime}(\lambda, \tau, r)$ be the graph on $V=\mathcal{P}_{\lambda}^{F}$ with X, X^{\prime} connected iff they have a common neighbour in $G\left(\mathcal{P}_{\lambda}^{F}, \mathcal{Q}_{\tau \lambda}^{F}, r\right)$, i.e.

$$
E\left(G^{\prime}(\lambda, \tau, r)\right)=\left\{\left\{X, X^{\prime}\right\}: \exists Y \in \mathcal{Q}_{\tau \lambda}^{F} \text { with }|X-Y| \leq r,\left|X^{\prime}-Y\right| \leq r\right\}
$$

Let $\rho_{\lambda}(\tau)=\min \left\{r: G^{\prime}(\lambda, \tau, r)\right.$ is connected $\}$ (a random variable).
THEOREM $2\left(\right.$ MP 2013 +). $\lambda \pi\left(\rho_{\lambda}(\tau)\right)^{2} / \log \lambda \xrightarrow{P} \frac{1}{\tau \wedge 4}$ as $\lambda \rightarrow \infty$. and with a suitable coupling this extends to a.s. convergence as λ runs through the integers.
Idea of proof. Isolated vertices determine connectivity.

Partial sketch proof of Theorem 2

Let $a>0$. Suppose $\lambda \pi r_{\lambda}^{2} / \log \lambda=a$.
Let N_{λ} be the number of isolated points in $G\left(\mathcal{P}_{\lambda}^{F}, \mathcal{Q}_{\tau \lambda}^{F}, r_{\lambda}\right)$.
Let N_{λ}^{\prime} be the number of isolated points in $G\left(\mathcal{P}_{\lambda}^{F}, 2 r_{\lambda}\right)$. On the torus,

$$
\begin{gathered}
\mathbb{E}\left[N_{\lambda}\right]=\lambda \exp \left(-\tau \lambda\left(\pi r_{\lambda}^{2}\right)\right)=\lambda^{1-a \tau} \\
\mathbb{E}\left[N_{\lambda}^{\prime}\right]=\lambda \exp \left(-\lambda\left(\pi\left(2 r_{\lambda}\right)^{2}\right)\right)=\lambda^{1-4 a} .
\end{gathered}
$$

Both expectations go to zero iff $a>1 / \tau$ and $a>1 / 4$, i.e. $a>1 /(\tau \wedge 4)$.

