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Motivation 2/37

There might be an effective descripion of M5-branes.

Effective description of M2-branes proposed in 2007.
This created lots of interest:
BLG-model: >625 citations, ABJM-model: >917 citations

Question: Is there a similar description for M5-branes?

For cautious people:
Is there a a reasonably interesting superconformal field theory of a

non-abelian tensor multiplet in six dimensions?
(The mysterious, long-sought N = (2, 0) SCFT in six dimensions)

A possible way to approach the problem: Look at BPS subsector

This was how the M2-brane models were derived originally.
BPS subsector is interesting itself: Integrability
BPS subsector should be more accessible than full theory.
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Results so far/Outline 3/37

Things do look very promising.

Integrability found:
Nahm construction for self-dual strings using loop space

CS, S Palmer & CS
Use of loop space justified:
M-theory suggests this, e.g. Geometric quantization of S3

CS & R Szabo
Integrability reasonable:
Gauge structure of M2- and M5-brane models the same

S Palmer & CS
Integrability works even without loop space:
Twistor constructions of self-dual strings and non-abelian
tensor multiplets work CS & M Wolf
On the way to Geometry of Higher Yang-Mills Fields:
Explicit solutions to non-abelian tensor multiplet equations

F Sala, S Palmer & CS
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Monopoles and Self-Dual Strings 4/37

Lifting monopoles to M-theory yields self-dual strings.

0 1 2 3 4 5 6
D1 × ×
D3 × × × ×

BPS configuration

Perspective of D1:
Nahm eqn.

d
dx6

Xi + εijk[Xj , Xk] = 0

l Nahm transform l

Perspective of D3:
Bogomolny monopole eqn.

Fij = εijk∇kΦ

M 0 1 2 3 4 5 6
M2 × × ×
M5 × × × × × ×

BPS configuration

Perspective of M2:
Basu-Harvey eqn.
d

dx6
Xµ+εµνρσ[Xν , Xρ, Xσ] = 0

l generalized Nahm transform l

Perspective of M5:
Self-dual string eqn.

Hµνρ = εµνρσ∂σΦ
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3-Lie Algebras 5/37

In analogy with Lie algebras, we can introduce 3-Lie algebras.

BH:
d

ds
Xµ + [As, X

µ] + εµνρσ[Xν , Xρ, Xσ] = 0 , Xµ ∈ A

3-Lie algebra

Obviously: A is a vector space, [·, ·, ·] trilinear+antisymmetric.
Satisfies a “3-Jacobi identity,” the fundamental identity:

[A,B, [C,D,E]] = [[A,B,C], D,E] + [C, [A,B,D], E] + [C,D, [A,B,E]]

Filippov (1985)

Gauge transformations from Lie algebra of inner derivations:

D : A ∧A → Der(A) =: gA D(A,B) B C := [A,B,C]

Algebra of inner derivations closes due to fundamental identity.
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Brief Remarks on 3-Lie Algebras 6/37

In analogy with Lie algebras, we can introduce 3-Lie algebras.

Examples:

Lie algebra 3-Lie algebra

Heisenberg-algebra: Nambu-Heisenberg 3-Lie Algebra:
[τa, τb] = εab1, [1, ·] = 0 [τi, τj , τk] = εijk1, [1, ·, ·] = 0

SU(2) ' R3: A4 ' R4:
[τi, τj ] = εijkτk [τµ, τν , τκ] = εµνκλτλ

Generalizations:
Real 3-algebras: [·, ·, ·] antisymmetric only in first two slots

S. Cherkis & CS, 0807.0808
Hermitian 3-algebras: complex vector spaces, → ABJM

Bagger & Lambert, 0807.0163
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Generalizing the ADHMN construction to M-branes

That is, find solutions to H = ?dΦ
from solutions to the Basu-Harvey equation.

As M5-branes seem to require gerbes, let’s start with them.
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Dirac Monopoles and Principal U(1)-bundles 8/37

Dirac monopoles are described by principal U(1)-bundles over S2.

Manifold M with cover (Ui)i. Principal U(1)-bundle over M :

F ∈ Ω2(M, u(1)) with dF = 0

A(i) ∈ Ω1(Ui, u(1)) with F = dA(i)

gij ∈ Ω0(Ui ∩ Uj ,U(1)) with A(i) −A(j) = d log gij

Consider monopole in R3, but describe it on S2 around monopole:

S2 with patches U+, U−, U+ ∩ U− ∼ S1: g+− = e−ikφ, k ∈ Z

c1=
i

2π

∫
S2

F =
i

2π

∫
S1

A+ −A− =
1

2π

∫ 2π

0
dφk = k

Monopole charge: k
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Self-Dual Strings and Abelian Gerbes 9/37

Self-dual strings are described by abelian gerbes.

Manifold M with cover (Ui)i. Abelian (local) gerbe over M :

H ∈ Ω3(M, u(1)) with dH = 0

B(i) ∈ Ω2(Ui, u(1)) with H = dB(i)

A(ij) ∈ Ω1(Ui ∩ Uj , u(1)) with B(i) −B(j) = dAij

hijk ∈ Ω0(Ui ∩ Uj ∩ Uk, u(1)) with A(ij) −A(ik) +A(jk) = dhijk

Note: Local gerbe: principal U(1)-bundles on intersections Ui ∩Uj .

Consider S3, patches U+, U−, U+ ∩ U− ∼ S2: bundle over S2

Reflected in: H2(S2,Z) ∼= H3(S3,Z) ∼= Z

i

2π

∫
S3

H =
i

2π

∫
S2

B+ −B− = . . . = k

Charge of self-dual string: k

Describe p-gerbes + connective structure → Deligne cohomology.
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Gerbes are somewhat unfamiliar, difficult to work with.

Can we somehow avoid using gerbes?
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Abelian Gerbes and Loop Space 11/37

By going to loop space, one can reduce differential forms by one degree.

Consider the following double fibration:

M LM

LM × S1

ev pr�
�	

@
@R

Identify TLM = LTM , then: x ∈ LM ⇒ ẋ(τ)∈ TLM

Transgression

T : Ωk+1(M)→ Ωk(LM) , vi =

∮
dτ vµi (τ)

δ

δxµ(τ)
∈ TLM

(T ω)x(v1(τ), . . . , vk(τ)) :=

∮
S1

dτ ω(x(τ))(v1(τ), . . . , vk(τ), ẋ(τ))

Nice properties: reparameterization invariant, chain map, ...

An abelian local gerbe over M is a principal U(1)-bundle over LM .
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Transgressed Self-Dual Strings 12/37

By going to loop space, one can reduce differential forms by one degree.

Recall the self-dual string equation on R4: Hµνκ = εµνκλ
∂
∂xλ

Φ

Its transgressed form is an equation for a 2-form F on LR4:

F(µσ)(νρ) = δ(σ − ρ)εµνκλẋ
κ(τ)

∂

∂yλ
Φ(y)

∣∣∣∣
y=x(τ)

Extend to full non-abelian loop space curvature:

F±(µσ)(ντ) =
(
εµνκλẋ

κ(σ)∇(λτ)Φ
)
(στ)

∓
(
ẋµ(σ)∇(ντ)Φ + ẋν(σ)∇(µτ)Φ− δµν ẋκ(σ)∇(κτ)Φ

)
[στ ]

where ∇(µσ) :=

∮
dτ δxµ(τ) ∧

(
δ

δxµ(τ)
+A(µτ)

)
Goal: Construct solutions to this equation.
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The ADHMN Construction 13/37

The ADHMN construction nicely translates to self-dual strings on loop space.

Nahm transform: Instantons on T 4 7→ instantons on (T 4)∗

Roughly here:

T 4:
{

3 rad. 0
1 rad. ∞ : D1 WV

and (T 4)∗:
{

3 rad. ∞ : D3 WV
1 rad. 0

Dirac operators: Xi solve Nahm eqn., Xµ solve Basu-Harvey eqn.

IIB : ∇/ = −1 d

dx6
+ σi(iXi + xi1k)

M : ∇/ = −γ5
d

dx6
+ 1

2γ
µν

(
D(Xµ, Xν)− i

∮
dτ xµ(τ)ẋν(τ)

)
normalized zero modes: ∇̄/ψ = 0 and 1 =

∫
I

ds ψ̄ψ

Solution to Bogomolny/self-dual string equations:

A :=

∫
I

ds ψ̄ dψ and Φ := −i

∫
I

ds ψ̄ s ψ
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Remarks on The Construction 14/37

The construction is very natural and behaves as expected.

Nahm eqn. and Basu-Harvey eqn. play analogous roles.
Construction extends to general. Basu-Harvey eqn. (ABJM).
One can construct many examples explicitly.
It reduces nicely to ADHMN via the M2-Higgs mechanism.

CS, 1007.3301, S Palmer & CS, 1105.3904
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More Motivation for Loop Spaces
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Loop Space and the Non-Abelian Tensor Multiplet 16/37

A recently proposed 3-Lie algebra valued tensor-multiplet implies a transgression.

3-Lie algebra valued tensor multiplet equations:

∇2XI − i
2 [Ψ̄,ΓνΓIΨ, Cν ]− [XJ , Cν , [XJ , Cν , X

I ]] = 0

Γµ∇µΨ− [XI , Cν ,ΓνΓIΨ] = 0

∇[µHνλρ] + 1
4εµνλρστ [XI ,∇τXI , Cσ] + i

8εµνλρστ [Ψ̄,ΓτΨ, Cσ] = 0

Fµν −D(Cλ, Hµνλ)= 0

∇µCν = D(Cµ, Cν)= 0

D(Cρ,∇ρXI) = D(Cρ,∇ρΨ) = D(Cρ,∇ρHµνλ) = 0

N Lambert & C Papageorgakis, 1007.2982

Factorization of Cρ = Cẋρ. Here, 3-Lie algebra transgression:

(T ω)x(v1(τ), . . . , vk(τ)) :=

∫
S1

dτ D(ω(v1(τ), . . . , vk(τ), ẋ(τ)), C)

C Papageorgakis & CS, 1103.6192
Often: A vector short of happiness. Loop space has this vector.
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Side Remark: Quantization of R3
17/37

In the quantization problem, one is naturally led to loop space.

Geometric quantization prescription: (e.g. fuzzy sphere)

Special symplectic
manifold (M,ω)

→ line bundle L with
(h,∇) over M

→
Hilbert space H :
global holomorphic
sections of L

Quantization map: [f̂ , ĝ] = i~{̂f, g}+O(~2)

M-theory: 2-plectic manifold (M,$), $ ∈ Ω3(M)

hol. secs. of gerbe?, quantization of one-forms? Rogers, ...
Solution: ω on LM as ω := T $, then proceed as above
Example: R3 with 2-plectic form $ = εijkdx

i ∧ dxj ∧ dxk:

[xi(τ), xj(σ)] = εijk
ẋk(τ)

|ẋ(τ)|2
δ(τ − σ) +O(θ2)

CS & R Szabo, 1211.0395
Cf. Kawamoto & Sasakura, Bergshoeff, Berman et al. [2000]
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The duality D1 ↔ D3 is a duality between Yang-Mills theories.

Question: In what sense are M2- and M5-brane models related?

Start by looking at gauge structure
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Higher Gauge Theory 19/37

Higher gauge theory describe parallel transport of extended objects.

Parallel transport of particles in representation of gauge group G:
holonomy functor: hol : path p 7→ hol(p) ∈ G
hol(p) = P exp(

∫
pA), P : path ordering, trivial for U(1).

Parallel transport of strings with gauge group U(1):
2-holonomy functor: hol2 : surface s 7→ hol2(s) ∈ U(1)

hol2(s) = exp(
∫
sB), B: connective structure on gerbe.

Nonabelian case:
much more involved!
no straightforward definition of surface ordering
solution: Categorification!

see Baez, Huerta, 1003.4485
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Categorifying Gauge Groups 20/37

A Lie 2-group is a Lie groupoid with extra structure.

Warning: Categorification neither unique nor straightforward.

Lie 2-group
A Lie 2-group is a

monoidal category, morph. invertible, obj. weakly invertible.
Lie groupoid + product ⊗ obeying weakly the group axioms.

Simplification: use strict Lie 2-groups 1:1←→ Lie crossed modules

Lie crossed modules

Pair of Lie groups (G,H), written as (H
t−→ G) with:

left automorphism action B: G× H→ H

group homomorphism t : H→ G such that
t(g B h) = gt(h)g−1 and t(h1) B h2 = h1h2h

−1
1

Also: strict Lie 2-algebras 1:1←→ differential crossed modules
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Examples of Lie Crossed Modules 21/37

Lie crossed modules come in a large variety.

Lie crossed modules

Pair of Lie groups (G,H), written as (H
t−→ G) with:

left automorphism action B: G× H→ H

group homomorphism t : H→ G

t(g B h) = gt(h)g−1 and t(h1) B h2 = h1h2h
−1
1

Simplest examples:

Lie group G, Lie crossed module: (1
t−→ G).

Abelian Lie group G, Lie crossed module: BG = (G
t−→ 1).

More involved:
Automorphism 2-group of Lie group G: (G

t−→ Aut(G))

Christian Sämann Geometry of Higher Yang-Mills Fields



Principal 2-Bundles 22/37

Higher gauge theory is the dynamical theory of principal 2-bundles.

Consider a manifold M with cover (Ua)
Object Principal G-bundle Principal (H t−→ G)-bundle

Cochains (gab) valued in G (gab) valued in G, (habc) valued in H

Cocycle gabgbc = gac t(habc)gabgbc = gac
hacdhabc = habd(gab B hbcd)

Coboundary gag
′
ab = gabgb gag

′
ab = t(hab)gabgb

hachabc = (ga B h′abc)hab(gab B hbc)

gauge pot. Aa ∈ Ω1(Ua)⊗ g Aa ∈ Ω1(Ua)⊗ g, Ba ∈ Ω2(Ua)⊗ h

Curvature Fa = dAa +Aa ∧Aa Fa = dAa +Aa ∧Aa, Fa = t(Ba)
Ha = dBa +Aa B Ba

Gauge trafos Ãa := g−1a Aaga + g−1a dga Ãa := g−1a Aaga + g−1a dga + t(Λa)

B̃a := g−1a B Ba + Ãa B Λa + dΛa − Λa ∧ Λa

Remarks:
A principal (1

t−→ G)-bundle is a principal G-bundle.

A principal (U(1)
t−→ 1) = BU(1)-bundle is an abelian gerbe.

Gauge part of (2,0)-theory: H = ?H, F = t(B).
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Is all this machinery really useful/necessary?
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Differential Crossed Modules from 3-Algebras 24/37

3-algebras are merely special classes of differential crossed modules.

Recall the definition of a 3-algebra A:
[·, ·, ·] : A⊗3 → A
Fundamental identity says that [a, b, ·] ∈ Der(A), a, b ∈ A.

Theorem

3-algebras 1:1←→ metric Lie algebras g ∼= Der(A)
faithful orthog. representations V ∼= A

J Figueroa-O’Farrill et al., 0809.1086

Observations

g
t−→ V is a simple differential crossed modules

M2- and M5-brane models have the same gauge structure.
Via Faulkner construction, all DCMs come with [·, ·, ·]
Application of this to M2- and M5-models looks promising.

S Palmer & CS, 1203.5757
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Higher Gauge Theory and the Tensor Multiplet 25/37

The 3-Lie algebra valued tensor-multiplet as a higher gauge theory.

3-Lie algebra valued tensor multiplet equations:

∇2XI − i
2 [Ψ̄,ΓνΓIΨ, Cν ]− [XJ , Cν , [XJ , Cν , X

I ]] = 0

Γµ∇µΨ− [XI , Cν ,ΓνΓIΨ] = 0

∇[µHνλρ] + 1
4εµνλρστ [XI ,∇τXI , Cσ] + i

8εµνλρστ [Ψ̄,ΓτΨ, Cσ] = 0

Fµν −D(Cλ, Hµνλ)= 0

∇µCν = D(Cµ, Cν)= 0

D(Cρ,∇ρXI) = D(Cρ,∇ρΨ) = D(Cρ,∇ρHµνλ) = 0

N Lambert & C Papageorgakis, 1007.2982

Factorization of Cρ = Cẋρ. Here, fake curvature equation:

t : A → Der(A) , a 7→ D(C, a) , Fµν = t(Hµνλx
λ) =: t(B)

⇒ More natural interpretation as higher gauge theory.
S Palmer & CS, 1203.5757
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Numerogroupology 26/37

There is a striking sequence involving division/composition algebras in physics.

Division algebras, spheres and groups:

A AP 1 |a| = 1 Aut(A) Physics

R RP 1 ∼= S1 Z2
∼= S0 Aut(R) ∼= 1 Vortex?

C CP 1 ∼= S2 U(1) ∼= S1 Aut(U(1)) ∼= Z2 Monopole
H HP 1 ∼= S4 SU(2) ∼= S3 Aut(SU(2)) ∼= SU(2) Instanton
O OP 1 ∼= S8 S7 Aut(O) ∼= G2 ?

How should we regard the unit octonions?
By themselves, they form a Moufang loop /
Better: Use Faulkner construction to get a 3-algebra

Nambu, Yamazaki, Figueroa-O’Farrill et al.
Therefore, we have a DCM (g2

t−→ R8 ∼= O)

This suggests sequence: Z2, U(1), SU(2), a Lie 2-group ,
Not (yet) clear how useful this actually is.
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Drop loop spaces: Principal 2-bundles over Twistor Spaces

Now that we saw the power of non-abelian gerbes, let’s use them!
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Twistor Description of Higher Yang-Mills Fields 28/37

Using twistor spaces, one can map holomorphic data to solutions to field equations.

Recall the principle of the Penrose-Ward transform:
Interested in field equations that are equivalent to
integrability of connections along subspaces of spacetime M
Establish a double fibration

P M

F

�
�	

@
@R

P : twistor space, moduli space of subspaces in M
F : correspondence space

Hn(P,S) (e.g. vector bundles) 1:1←→ sols. to field equations.
Explicitly appearing: gauge transformations, moduli,
symmetries of the equations, etc.

BTW: here, 1:1←→ is actually a “holomorphic transgression”.
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Known Examples of Twistor Descriptions 29/37

For Yang-Mills theories and its BPS subsectors, there is a wealth of twistor descriptions.

CP 3
◦ C4

C4 ×CP 1

�
�	

@
@R

Instantons
hol. vector bundle

TCP 1
C3

C3 ×CP 1

�
�	

@
@R

Monopoles
hol. vector bundle

P 5|6 C4|12

C4|12 ×CP 1 ×CP 1

�
�	

@
@R

(Super) Yang-Mills
hol. vector bundle

P 6 C6

C6 ×CP 3

�
�	

@
@R

abelian H = ?H
hol. gerbe

Hughston, Murray, Eastwood, CS & M.Wolf, Mason et al.

Note: last twistor space reduces nicely to the above ones.
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New Results 30/37

New: Penrose-Ward transform for self-dual strings.

New twistor space parameterizing hyperplanes in C4:

P 3 C4

C4 ×CP 1 ×CP 1

�
�	

@
@R

self-dual strings
hol. principal 2-bundle

CS & M Wolf, 1111.2539, 1205.3108
Note:

The Hyperplane twistor space P 3 is the total space of
the line bundle O(1, 1)→ CP 1 ×CP 1.
The spheres CP 1 ×CP 1 parameterize an α- and a β-plane.
The span of both is a hyperplane.
Nonabelian self-dual string equations: H = ?dAΦ, F = t(B).
Reduces nicely to the monopole twistor space: O(2)→ CP 1.
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New Results 31/37

New: Penrose-Ward transform for self-dual tensor multiplet.

P 6|4 C6|16

C6|16 ×CP 3

�
�	

@
@R

non-abelian self-dual tensor multiplet
hol. principal 2-bundle

CS & M Wolf, 1205.3108
Note:

P 6|4 is a straightforward SUSY generalization of P 6

EOMs, abelian: H = ?H, F = t(B), ∇/ψ = 0, �φ = 0

N = (2, 0) SC non-abelian tensor multiplet EOMs!
EOMs on superspace, remain to be boiled down (expected).
Non-gerby Alternatives: Chu, Samtleben et al., ...
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Higher ADHM construction

Recall that the conventional ADHM and ADHMN constructions
exist due to a twistor construction in the background.

Thus, there should be a direct ADHM-like construction here, too.
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Towards the Geometry of Higher Yang-Mills Fields 33/37

Translate all notions/results surrounding ADHM to higher gauge theory.

Translate this to higher gauge theory:
Find elementary solutions
Identify moduli
Identify topological charges
Higher Serre-Swan theorem
Higher ADHM construction

Work in progress
F Sala & S Palmer & CS
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Elementary Solution: The Higher Instanton 34/37

The quaternionic form of Belavin et al.’s solution almost translates perfectly.

Recall the quaternionic form of the elementary instanton on S4:

Conformal geometry of S4

Describe S4 by H ∪ {∞}. Coordinates: x = x1 + ix2 + jx3 + kx4.
Conformal transformations:

x 7→ (ax+ b)(cx+ d)−1 , a, b, c, d ∈ H

SU(2)-Instanton:

A = im

(
x̄dx

1 + |x|2

)
⇒ F = im

(
dx̄ ∧ dx

(1 + |x|2)2

)
SU(2)-Anti-Instanton:

A = im

(
xdx̄

1 + |x|2

)
⇒ F = im

(
dx ∧ dx̄

(1 + |x|2)2

)
Belavin et al. 1975, Atiyah 1979
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Elementary Solution: The Higher Instanton 35/37

The quaternionic form of Belavin et al.’s solution almost translates perfectly.

Issue: H = ± ? H is sensible only on Minkowski space R1,5.

Recall:
conformally compactify R4, R1,3 yields S4, M c ∼= S1 × S3.
Both S4 and M c real slices of G2;4, a quadric in CP 5.

General pattern:

Conf. compact. of Ri,n−i → Cn: real slice of quadric in CPn+1

This illuminates also the conformal transformations:

x = xµγµ 7→ (ax+ b)(cx+ d)−1

For certain elements a, d ∈ C`even(Cn), b, c ∈ C`odd(Cn).

Solution: Quaternions have to be regarded as blocks of C`(C4)
Work with blocks of the Clifford algebra C`(C6).

Christian Sämann Geometry of Higher Yang-Mills Fields



Elementary Solution: The Higher Instanton 36/37

The quaternionic form of Belavin et al.’s solution almost translates perfectly.

Solution to the higher instanton equations H = ?H, F = t(B):
Gauge structure: (C3 ⊗ sl(4,C)

t−→ sl(4,C)⊕ sl(4,C))

t : h =

(
h1 h3
0 h2

)
7→
(
h1 0

0 h2

)
∈ sl(4,C)⊕ sl(4,C) ,

h1, h2, h3 ∈ sl(4,C), B: the usual commutator.
Solution in coordinates x = xMσM , x̂ = xM σ̄M

A =

(
x̂dx

1+|x|2 0

0 dx x̂
1+|x|2

)
B = F +

(
0 x̂ dx∧dx̂

(1+|x|2)2

0 0

)

F := dA+A ∧A =

(
dx̂∧dx

(1+|x|2)2 + 2 dx̂ x∧dx̂ x
(1+|x|2)2 0

0 − dx∧dx̂
(1+|x|2)2

)

H := dB +A B B =

(
0 dx̂∧dx∧dx̂

(1+|x|2)3

0 0

)
but: Peiffer violated

F Sala & S Palmer & CS
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Conclusions 37/37

Summary and Outlook.

Summary:
X Generalized ADHMN-like construction on loop space
X Geometric quantization using loop space
X Gauge structures in M2- and M5-brane models similar
X Twistor construction of self-dual tensor fields
X 6d superconformal tensor multiplet equations
X On our way to develop Geometry of Higher Yang-Mills Fields

Future directions:
� More general higher bundles and twistors with M Wolf
� Continue translation of ADHM with S Palmer, F Sala
� Geometric Quant. with higher Hilbert spaces with R Szabo
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