Geometry of Higher Yang-Mills Fields

Christian Sämann

School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh

Symmetries and Geometry of Branes in String/M-Theory, \$1.2.2013\$

Based on work with:

- S Palmer, D Harland, C Papageorgakis, F Sala (M-brane models)
- M Wolf (Twistor description)
- R Szabo (Geometric Quantization)

- Effective description of M2-branes proposed in 2007.
- This created lots of interest: BLG-model: >625 citations, ABJM-model: >917 citations

Question: Is there a similar description for M5-branes?

For cautious people:

Is there a a reasonably interesting superconformal field theory of a non-abelian tensor multiplet in six dimensions? (The mysterious, long-sought $\mathcal{N} = (2,0)$ SCFT in six dimensions)

A possible way to approach the problem: Look at BPS subsector

- This was how the M2-brane models were derived originally.
- BPS subsector is interesting itself: Integrability
- BPS subsector should be more accessible than full theory.

- Integrability found: Nahm construction for self-dual strings using loop space CS, S Palmer & CS
- Use of loop space justified:
 M-theory suggests this, e.g. Geometric quantization of S³
 CS & R Szabo
- Integrability reasonable:
 Gauge structure of M2- and M5-brane models the same
 S Palmer & CS
- On the way to Geometry of Higher Yang-Mills Fields: Explicit solutions to non-abelian tensor multiplet equations F Sala, S Palmer & CS

Monopoles and Self-Dual Strings Lifting monopoles to M-theory yields self-dual strings.

 \updownarrow Nahm transform \updownarrow

Perspective of D3:

Bogomolny monopole eqn.

 $F_{ij} = \varepsilon_{ijk} \nabla_k \Phi$

Christian Sämann

 \updownarrow generalized Nahm transform \updownarrow

Perspective of M5:

Self-dual string eqn.

$$H_{\mu\nu\rho} = \varepsilon_{\mu\nu\rho\sigma} \partial_{\sigma} \Phi$$

BH:
$$\frac{\mathrm{d}}{\mathrm{d}s}X^{\mu} + [A_s, X^{\mu}] + \varepsilon^{\mu\nu\rho\sigma}[X^{\nu}, X^{\rho}, X^{\sigma}] = 0$$
, $X^{\mu} \in \mathcal{A}$

3-Lie algebra

Obviously: A is a vector space, $[\cdot, \cdot, \cdot]$ trilinear+antisymmetric. Satisfies a "3-Jacobi identity," the fundamental identity: [A, B, [C, D, E]] = [[A, B, C], D, E] + [C, [A, B, D], E] + [C, D, [A, B, E]]Filippov (1985)

Gauge transformations from Lie algebra of inner derivations:

 $D: \mathcal{A} \land \mathcal{A} \to \mathsf{Der}(\mathcal{A}) =: \mathfrak{g}_{\mathcal{A}} \quad D(A, B) \rhd C := [A, B, C]$

Algebra of inner derivations closes due to fundamental identity.

Examples:

Lie algebra	3-Lie algebra		
Heisenberg-algebra:	Nambu-Heisenberg 3-Lie Algebra:		
$[\tau_a, \tau_b] = \varepsilon_{ab} \mathbb{1}, [\mathbb{1}, \cdot] = 0$	$[\tau_i, \tau_j, \tau_k] = \varepsilon_{ijk} \mathbb{1}, [\mathbb{1}, \cdot, \cdot] = 0$		
$SU(2) \simeq \mathbb{R}^3$:	$A_4 \simeq \mathbb{R}^4$:		
$[\tau_i, \tau_j] = \varepsilon_{ijk} \tau_k$	$[\tau_{\mu}, \tau_{\nu}, \tau_{\kappa}] = \varepsilon_{\mu\nu\kappa\lambda}\tau_{\lambda}$		

Generalizations:

- Real 3-algebras: $[\cdot, \cdot, \cdot]$ antisymmetric only in first two slots S. Cherkis & CS, 0807.0808
- Hermitian 3-algebras: complex vector spaces, \rightarrow ABJM Bagger & Lambert, 0807.0163

Generalizing the ADHMN construction to M-branes

That is, find solutions to $H = \star d\Phi$ from solutions to the Basu-Harvey equation.

As M5-branes seem to require gerbes, let's start with them.

Dirac Monopoles and Principal U(1)-bundles Dirac monopoles are described by principal U(1)-bundles over S^2 .

Manifold M with cover $(U_i)_i$. Principal U(1)-bundle over M:

 $F \in \Omega^2(M, \mathfrak{u}(1)) \text{ with } dF = 0$ $A_{(i)} \in \Omega^1(U_i, \mathfrak{u}(1)) \text{ with } F = dA_{(i)}$ $g_{ij} \in \Omega^0(U_i \cap U_j, \mathsf{U}(1)) \text{ with } A_{(i)} - A_{(j)} = d\log g_{ij}$

Consider monopole in \mathbb{R}^3 , but describe it on S^2 around monopole:

 S^2 with patches U_+, U_- , $U_+ \cap U_- \sim S^1$: $g_{+-} = \mathrm{e}^{-\mathrm{i}k\phi}, \; k \in \mathbb{Z}$

$$\mathbf{c_1} = \frac{i}{2\pi} \int_{S^2} F = \frac{i}{2\pi} \int_{S^1} A^+ - A^- = \frac{1}{2\pi} \int_0^{2\pi} d\phi \, k = k$$

Monopole charge: k

Self-Dual Strings and Abelian Gerbes Self-dual strings are described by abelian gerbes.

Manifold M with cover $(U_i)_i$. Abelian (local) gerbe over M:

$$\begin{split} H &\in \Omega^3(M,\mathfrak{u}(1)) \text{ with } dH = 0\\ B_{(i)} &\in \Omega^2(U_i,\mathfrak{u}(1)) \text{ with } H = dB_{(i)}\\ A_{(ij)} &\in \Omega^1(U_i \cap U_j,\mathfrak{u}(1)) \text{ with } B_{(i)} - B_{(j)} = dA_{ij}\\ h_{ijk} &\in \Omega^0(U_i \cap U_j \cap U_k,\mathfrak{u}(1)) \text{ with } A_{(ij)} - A_{(ik)} + A_{(jk)} = dh_{ijk} \end{split}$$

Note: Local gerbe: principal U(1)-bundles on intersections $U_i \cap U_j$.

Consider S^3 , patches U_+, U_- , $U_+ \cap U_- \sim S^2$: bundle over S^2 Reflected in: $H^2(S^2, \mathbb{Z}) \cong H^3(S^3, \mathbb{Z}) \cong \mathbb{Z}$

$$\frac{i}{2\pi} \int_{S^3} H = \frac{i}{2\pi} \int_{S^2} B_+ - B_- = \dots = k$$

Charge of self-dual string: k

Describe *p*-gerbes + connective structure \rightarrow Deligne cohomology.

Gerbes are somewhat unfamiliar, difficult to work with.

Can we somehow avoid using gerbes?

Consider the following double fibration:

Identify $T\mathcal{L}M = \mathcal{L}TM$, then: $x \in \mathcal{L}M \Rightarrow \dot{x}(\tau) \in T\mathcal{L}M$

Transgression

$$\mathcal{T}: \Omega^{k+1}(M) \to \Omega^k(\mathcal{L}M) , \quad v_i = \oint \mathrm{d}\tau \, v_i^\mu(\tau) \frac{\delta}{\delta x^\mu(\tau)} \in T\mathcal{L}M$$
$$(\mathcal{T}\omega)_x(v_1(\tau), \dots, v_k(\tau)) := \oint_{S^1} \mathrm{d}\tau \, \omega(x(\tau))(v_1(\tau), \dots, v_k(\tau), \dot{x}(\tau))$$

Nice properties: reparameterization invariant, chain map, ...

An abelian local gerbe over M is a principal U(1)-bundle over $\mathcal{L}M$.

Transgressed Self-Dual Strings By going to loop space, one can reduce differential forms by one degree.

Recall the self-dual string equation on \mathbb{R}^4 : $H_{\mu\nu\kappa} = \varepsilon_{\mu\nu\kappa\lambda} \frac{\partial}{\partial x^{\lambda}} \Phi$

Its transgressed form is an equation for a 2-form F on $\mathcal{L}\mathbb{R}^4$:

$$F_{(\mu\sigma)(\nu\rho)} = \delta(\sigma - \rho)\varepsilon_{\mu\nu\kappa\lambda}\dot{x}^{\kappa}(\tau) \left.\frac{\partial}{\partial y^{\lambda}}\Phi(y)\right|_{y=x(\tau)}$$

Extend to full non-abelian loop space curvature:

$$F^{\pm}_{(\mu\sigma)(\nu\tau)} = \left(\varepsilon_{\mu\nu\kappa\lambda}\dot{x}^{\kappa}(\sigma)\nabla_{(\lambda\tau)}\Phi\right)_{(\sigma\tau)} \\ \mp \left(\dot{x}_{\mu}(\sigma)\nabla_{(\nu\tau)}\Phi + \dot{x}_{\nu}(\sigma)\nabla_{(\mu\tau)}\Phi - \delta_{\mu\nu}\dot{x}^{\kappa}(\sigma)\nabla_{(\kappa\tau)}\Phi\right)_{[\sigma\tau]}$$

where
$$\nabla_{(\mu\sigma)} := \oint \mathrm{d}\tau \, \delta x^{\mu}(\tau) \wedge \left(\frac{\delta}{\delta x^{\mu}(\tau)} + A_{(\mu\tau)}\right)$$

Goal: Construct solutions to this equation.

The ADHMN Construction

The ADHMN construction nicely translates to self-dual strings on loop space.

Nahm transform: Instantons on $T^4 \mapsto$ instantons on $(T^4)^*$

Roughly here:

 $T^4: \left\{ \begin{array}{l} 3 \text{ rad. } 0 \\ 1 \text{ rad. } \infty : \text{ D1 WV} \end{array} \right. \text{ and } (T^4)^*: \left\{ \begin{array}{l} 3 \text{ rad. } \infty : \text{ D3 WV} \\ 1 \text{ rad. } 0 \end{array} \right.$

Dirac operators: X^i solve Nahm eqn., X^{μ} solve Basu-Harvey eqn.

$$\begin{aligned} \mathsf{IIB}: \quad \nabla &= -\mathbb{1}\frac{\mathrm{d}}{\mathrm{d}x^6} + \sigma^i(\mathrm{i}X^i + x^i\mathbb{1}_k) \\ \mathsf{M}: \quad \nabla &= -\gamma_5 \frac{\mathrm{d}}{\mathrm{d}x^6} + \frac{1}{2}\gamma^{\mu\nu} \left(D(X^{\mu}, X^{\nu}) - \mathrm{i}\oint \mathrm{d}\tau \, x^{\mu}(\tau)\dot{x}^{\nu}(\tau) \right) \\ &\text{normalized zero modes:} \quad \bar{\nabla}\psi = 0 \quad \text{and} \quad \mathbb{1} = \int_{\tau} \mathrm{d}s \, \bar{\psi}\psi \end{aligned}$$

Solution to Bogomolny/self-dual string equations:

$$\boldsymbol{A} := \int_{\mathcal{I}} \mathrm{d} s \, \bar{\psi} \, \mathrm{d} \, \psi \quad \text{and} \quad \boldsymbol{\Phi} := -\mathrm{i} \int_{\mathcal{I}} \mathrm{d} s \, \bar{\psi} \, s \, \psi$$

- Nahm eqn. and Basu-Harvey eqn. play analogous roles.
- Construction extends to general. Basu-Harvey eqn. (ABJM).
- One can construct many examples explicitly.
- It reduces nicely to ADHMN via the M2-Higgs mechanism.

CS, 1007.3301, S Palmer & CS, 1105.3904

More Motivation for Loop Spaces

Loop Space and the Non-Abelian Tensor Multiplet A recently proposed 3-Lie algebra valued tensor-multiplet implies a transgression.

3-Lie algebra valued tensor multiplet equations:

 $\nabla^2 X^I - \frac{i}{2} [\bar{\Psi}, \Gamma_{\nu} \Gamma^I \Psi, C^{\nu}] - [X^J, C^{\nu}, [X^J, C_{\nu}, X^I]] = 0$ $\Gamma^{\mu}\nabla_{\mu}\Psi - [X^{I}, C^{\nu}, \Gamma_{\nu}\Gamma^{I}\Psi] = 0$ $\nabla_{[\mu}H_{\nu\lambda\rho]} + \frac{1}{4}\varepsilon_{\mu\nu\lambda\rho\sigma\tau}[X^{I},\nabla^{\tau}X^{I},C^{\sigma}] + \frac{i}{8}\varepsilon_{\mu\nu\lambda\rho\sigma\tau}[\bar{\Psi},\Gamma^{\tau}\Psi,C^{\sigma}] = 0$ $F_{\mu\nu} - D(C^{\lambda}, H_{\mu\nu\lambda}) = 0$ $\nabla_{\mu}C^{\nu} = D(C^{\mu}, C^{\nu}) = 0$ $D(C^{\rho}, \nabla_{\rho} X^{I}) = D(C^{\rho}, \nabla_{\rho} \Psi) = D(C^{\rho}, \nabla_{\rho} H_{\mu\nu\lambda}) = 0$ N Lambert & C Papageorgakis, 1007.2982 Factorization of $C^{\rho} = C\dot{x}^{\rho}$. Here, 3-Lie algebra transgression:

$$(\mathcal{T}\omega)_x(v_1(\tau),\ldots,v_k(\tau)) := \int_{S^1} \mathrm{d}\tau \, D(\omega(v_1(\tau),\ldots,v_k(\tau),\dot{x}(\tau)),C)$$

Often: A vector short of happiness. Loop space has this vector.

Side Remark: Quantization of \mathbb{R}^3 In the quantization problem, one is naturally led to loop space.

Geometric quantization prescription: (e.g. fuzzy sphere)

M-theory: 2-plectic manifold (M, ϖ) , $\varpi \in \Omega^3(M)$

- hol. secs. of gerbe?, quantization of one-forms? Rogers, ...
- Solution: ω on $\mathcal{L}M$ as $\omega := \mathcal{T}\varpi$, then proceed as above
- Example: \mathbb{R}^3 with 2-plectic form $\varpi = \varepsilon_{ijk} dx^i \wedge dx^j \wedge dx^k$:

$$[x^{i}(\tau), x^{j}(\sigma)] = \varepsilon^{ijk} \frac{\dot{x}_{k}(\tau)}{|\dot{x}(\tau)|^{2}} \delta(\tau - \sigma) + \mathcal{O}(\theta^{2})$$

• Cf. Kawamoto & Sasakura, Bergshoeff, Berman et al. [2000]

The duality D1 \leftrightarrow D3 is a duality between Yang-Mills theories. Question: In what sense are M2- and M5-brane models related? Start by looking at gauge structure Parallel transport of particles in representation of gauge group G:

- holonomy functor: hol : path $p \mapsto hol(p) \in G$
- $hol(p) = P \exp(\int_p A)$, P: path ordering, trivial for U(1).

Parallel transport of strings with gauge group U(1):

- 2-holonomy functor: $\mathsf{hol}_2: \mathsf{surface} \ s \mapsto \mathsf{hol}_2(s) \in \mathsf{U}(1)$
- $hol_2(s) = exp(\int_s B)$, B: connective structure on gerbe.

Nonabelian case:

- much more involved!
- no straightforward definition of surface ordering
- solution: Categorification!

see Baez, Huerta, 1003.4485

Warning: Categorification neither unique nor straightforward.

Lie 2-group

- A Lie 2-group is a
 - monoidal category, morph. invertible, obj. weakly invertible.
 - Lie groupoid + product \otimes obeying weakly the group axioms.

Simplification: use strict Lie 2-groups $\stackrel{1:1}{\longleftrightarrow}$ Lie crossed modules

Lie crossed modules

- Pair of Lie groups (G, H), written as $(H \xrightarrow{t} G)$ with:
 - $\bullet~$ left automorphism action $\rhd\colon \mathsf{G}\times\mathsf{H}\to\mathsf{H}$
 - \bullet group homomorphism $t: \mathsf{H} \to \mathsf{G}$ such that

 $\mathsf{t}(g \rhd h) = g \mathsf{t}(h) g^{-1} \quad \text{and} \quad \mathsf{t}(h_1) \rhd h_2 = h_1 h_2 h_1^{-1}$

Also: strict Lie 2-algebras $\stackrel{1:1}{\longleftrightarrow}$ differential crossed modules

Lie crossed modules

Pair of Lie groups (G, H), written as $(H \xrightarrow{t} G)$ with:

- ${\circ}~$ left automorphism action ${\rhd} \colon \mathsf{G} \times \mathsf{H} \to \mathsf{H}$
- ${\ \circ \ }$ group homomorphism $t:H\rightarrow G$

 $t(g
ho h) = gt(h)g^{-1}$ and $t(h_1)
ho h_2 = h_1h_2h_1^{-1}$

Simplest examples:

• Lie group G, Lie crossed module: $(1 \stackrel{t}{\longrightarrow} G)$.

• Abelian Lie group G, Lie crossed module: $BG = (G \xrightarrow{t} 1)$. More involved:

• Automorphism 2-group of Lie group $G: (G \xrightarrow{t} Aut(G))$

Principal 2-Bundles

Higher gauge theory is the dynamical theory of principal 2-bundles.

Consider a manifold M with cover (U_a)					
Object	Principal G-bundle	$Principal\ (H \overset{t}{\longrightarrow} G)\text{-}bundle$			
Cochains	(g_{ab}) valued in G	$({\it g}_{ab})$ valued in G, $({\it h}_{abc})$ valued in H			
Cocycle	$g_{ab}g_{bc} = g_{ac}$	$\begin{aligned} t(h_{abc})g_{ab}g_{bc} &= g_{ac} \\ h_{acd}h_{abc} &= h_{abd}(g_{ab} \vartriangleright h_{bcd}) \end{aligned}$			
Coboundary	$g_a g_{ab}' = g_{ab} g_b$	$g_a g'_{ab} = t(h_{ab}) g_{ab} g_b$ $h_{ac} h_{abc} = (g_a \rhd h'_{abc}) h_{ab} (g_{ab} \rhd h_{bc})$			
gauge pot.	$A_a \in \Omega^1(U_a) \otimes \mathfrak{g}$	$A_{oldsymbol{a}}\in \Omega^1(U_a)\otimes \mathfrak{g}$, $B_{oldsymbol{a}}\in \Omega^2(U_a)\otimes \mathfrak{h}$			
Curvature	$F_a = \mathrm{d}A_a + A_a \wedge A_a$	$\begin{aligned} F_a &= \mathrm{d}A_a + A_a \wedge A_a, F_a &= t(B_a) \\ H_a &= \mathrm{d}B_a + A_a \rhd B_a \end{aligned}$			
Gauge trafos	$\tilde{A}_a := g_a^{-1} A_a g_a + g_a^{-1} \mathrm{d}g_a$	$\begin{split} \tilde{A}_a &:= g_a^{-1} A_a g_a + g_a^{-1} \mathrm{d} g_a + \mathrm{t}(\Lambda_a) \\ \tilde{B}_a &:= g_a^{-1} \rhd B_a + \tilde{A}_a \rhd \Lambda_a + \mathrm{d} \Lambda_a - \Lambda_a \wedge \Lambda_a \end{split}$			

Remarks:

- A principal $(1 \xrightarrow{t} G)$ -bundle is a principal G-bundle.
- A principal $(U(1) \xrightarrow{t} 1) = BU(1)$ -bundle is an abelian gerbe.
- Gauge part of (2,0)-theory: $H = \star H$, F = t(B).

Is all this machinery really useful/necessary?

Differential Crossed Modules from 3-Algebras 3-algebras are merely special classes of differential crossed modules.

Recall the definition of a 3-algebra \mathcal{A} :

- $[\cdot, \cdot, \cdot] : \mathcal{A}^{\otimes 3} \to \mathcal{A}$
- Fundamental identity says that $[a, b, \cdot] \in Der(\mathcal{A})$, $a, b \in \mathcal{A}$.

Theorem

 $\begin{array}{c} \text{3-algebras} & \stackrel{1:1}{\longleftrightarrow} & \text{metric Lie algebras } \mathfrak{g} \cong \mathsf{Der}(\mathcal{A}) \\ & \text{faithful orthog. representations } V \cong \mathcal{A} \\ & \mathsf{J Figueroa-O'Farrill et al., 0809.1086} \end{array}$

Observations

- $\mathfrak{g} \stackrel{\mathsf{t}}{\longrightarrow} V$ is a simple differential crossed modules
- M2- and M5-brane models have the same gauge structure.
- \bullet Via Faulkner construction, all DCMs come with $[\cdot,\cdot,\cdot]$
- Application of this to M2- and M5-models looks promising.

S Palmer & CS, 1203.5757

Higher Gauge Theory and the Tensor Multiplet The 3-Lie algebra valued tensor-multiplet as a higher gauge theory.

3-Lie algebra valued tensor multiplet equations:

$$\nabla^2 X^I - \frac{i}{2} [\bar{\Psi}, \Gamma_{\nu} \Gamma^I \Psi, C^{\nu}] - [X^J, C^{\nu}, [X^J, C_{\nu}, X^I]] = 0$$

$$\Gamma^{\mu} \nabla_{\mu} \Psi - [X^I, C^{\nu}, \Gamma_{\nu} \Gamma^I \Psi] = 0$$

$$\nabla_{[\mu} H_{\nu\lambda\rho]} + \frac{1}{4} \varepsilon_{\mu\nu\lambda\rho\sigma\tau} [X^I, \nabla^{\tau} X^I, C^{\sigma}] + \frac{i}{8} \varepsilon_{\mu\nu\lambda\rho\sigma\tau} [\bar{\Psi}, \Gamma^{\tau} \Psi, C^{\sigma}] = 0$$

$$F_{\mu\nu} - D(C^{\lambda}, H_{\mu\nu\lambda}) = 0$$

$$\nabla_{\mu} C^{\nu} = D(C^{\mu}, C^{\nu}) = 0$$

$$D(C^{\rho}, \nabla_{\rho} X^{I}) = D(C^{\rho}, \nabla_{\rho} \Psi) = D(C^{\rho}, \nabla_{\rho} H_{\mu\nu\lambda}) = 0$$

N Lambert & C Papageorgakis, 1007.2982

Factorization of $C^{\rho} = C\dot{x}^{\rho}$. Here, fake curvature equation:

$$t : \mathcal{A} \to \mathsf{Der}(\mathcal{A}) \ , \ a \mapsto D(C, a) \ , \quad F_{\mu\nu} = t(H_{\mu\nu\lambda}x^{\lambda}) =: t(B)$$

 \Rightarrow More natural interpretation as higher gauge theory.

S Palmer & CS, 1203.5757

Division algebras, spheres and groups:

\mathcal{A}	$\mathcal{A}P^1$	a = 1	$Aut(\mathcal{A})$	Physics
\mathbb{R}	$\mathbb{R}P^1\cong S^1$	$\mathbb{Z}_2 \cong S^0$	$\operatorname{Aut}(\mathbb{R})\cong 1$	Vortex?
\mathbb{C}	$\mathbb{C}P^1\cong S^2$	$U(1)\cong S^1$	$Aut(U(1))\cong\mathbb{Z}_2$	Monopole
\mathbb{H}	$\mathbb{H}P^1\cong S^4$	$SU(2)\cong S^3$	$Aut(SU(2)) \cong SU(2)$	Instanton
\mathbb{O}	$\mathbb{O}P^1\cong S^8$	S^7	$Aut(\mathbb{O})\congG_2$?

How should we regard the unit octonions?

- ullet By themselves, they form a Moufang loop igodot
- Better: Use Faulkner construction to get a 3-algebra Nambu, Yamazaki, Figueroa-O'Farrill et al.
- Therefore, we have a DCM $(\mathfrak{g}_2 \xrightarrow{\mathsf{t}} \mathbb{R}^8 \cong \mathbb{O})$
- This suggests sequence: \mathbb{Z}_2 , U(1), SU(2), a Lie 2-group \bigcirc
- Not (yet) clear how useful this actually is.

Drop loop spaces: Principal 2-bundles over Twistor Spaces

Now that we saw the power of non-abelian gerbes, let's use them!

Twistor Description of Higher Yang-Mills Fields Using twistor spaces, one can map holomorphic data to solutions to field equations.

Recall the principle of the Penrose-Ward transform:

- Interested in field equations that are equivalent to integrability of connections along subspaces of spacetime M
- Establish a double fibration

- P: twistor space, moduli space of subspaces in M
- F: correspondence space
- $H^n(P,\mathfrak{S})$ (e.g. vector bundles) $\stackrel{1:1}{\longleftrightarrow}$ sols. to field equations.
- Explicitly appearing: gauge transformations, moduli, symmetries of the equations, etc.

• BTW: here, $\stackrel{1:1}{\longleftrightarrow}$ is actually a "holomorphic transgression".

Known Examples of Twistor Descriptions 29/32 For Yang-Mills theories and its BPS subsectors, there is a wealth of twistor descriptions.

Note: last twistor space reduces nicely to the above ones.

New twistor space parameterizing hyperplanes in \mathbb{C}^4 :

self-dual strings hol. principal 2-bundle

CS & M Wolf, 1111.2539, 1205.3108

Note:

- The Hyperplane twistor space P^3 is the total space of the line bundle $\mathcal{O}(1,1) \to \mathbb{C}P^1 \times \mathbb{C}P^1$.
- The spheres $\mathbb{C}P^1 \times \mathbb{C}P^1$ parameterize an α and a β -plane.
- The span of both is a hyperplane.
- Nonabelian self-dual string equations: $H = \star d_A \Phi$, F = t(B).
- Reduces nicely to the monopole twistor space: $\mathcal{O}(2) \to \mathbb{C}P^1$.

Note:

- $P^{6|4}$ is a straightforward SUSY generalization of P^6
- EOMs, abelian: $H = \star H$, F = t(B), $\nabla \psi = 0$, $\Box \phi = 0$
- $\mathcal{N} = (2,0)$ SC non-abelian tensor multiplet EOMs!
- EOMs on superspace, remain to be boiled down (expected).
- Non-gerby Alternatives: Chu, Samtleben et al., ...

Higher ADHM construction

Recall that the conventional ADHM and ADHMN constructions exist due to a twistor construction in the background.

Thus, there should be a direct ADHM-like construction here, too.

Towards the Geometry of Higher Yang-Mills Fields Translate all notions/results surrounding ADHM to higher gauge theory.

片					H
ACCADEMIA NAZIONALE DEI LINCEI					
	SCUOLA NORMALE SUPERIORE				
		LEZIO	NI FERML	ANE	
	Μ.	F. AT	IYAH		
	0				
	Ge	ometr	у		
	_ f	Vana	N.C.11-	E: 14-	
	01	r ang	-IVIIIIS	Fleids	
		F	PISA - 1979		
Lп					
TH					7

Translate this to higher gauge theory:

- Find elementary solutions
- Identify moduli
- Identify topological charges
- Higher Serre-Swan theorem
- Higher ADHM construction

Work in progress

F Sala & S Palmer & CS

Elementary Solution: The Higher Instanton The quaternionic form of Belavin et al.'s solution almost translates perfectly.

Recall the quaternionic form of the elementary instanton on S^4 :

Conformal geometry of S^4

Describe S^4 by $\mathbb{H}\cup\{\infty\}.$ Coordinates: $x=x^1+\mathrm{i} x^2+\mathrm{j} x^3+\mathrm{k} x^4.$ Conformal transformations:

$$x \mapsto (ax+b)(cx+d)^{-1}$$
, $a, b, c, d \in \mathbb{H}$

SU(2)-Instanton:

$$\boldsymbol{A} = \operatorname{im}\left(\frac{\bar{x} \mathrm{d}x}{1+|x|^2}\right) \quad \Rightarrow \quad \boldsymbol{F} = \operatorname{im}\left(\frac{\mathrm{d}\bar{x} \wedge \mathrm{d}x}{(1+|x|^2)^2}\right)$$

SU(2)-Anti-Instanton:

$$\boldsymbol{A} = \operatorname{im}\left(\frac{x\mathrm{d}\bar{x}}{1+|x|^2}\right) \quad \Rightarrow \quad \boldsymbol{F} = \operatorname{im}\left(\frac{\mathrm{d}x\wedge\mathrm{d}\bar{x}}{(1+|x|^2)^2}\right)$$

Belavin et al. 1975, Ativah 1979

Elementary Solution: The Higher Instanton The quaternionic form of Belavin et al.'s solution almost translates perfectly.

Issue: $H = \pm \star H$ is sensible only on Minkowski space $\mathbb{R}^{1,5}$.

Recall:

- conformally compactify \mathbb{R}^4 , $\mathbb{R}^{1,3}$ yields S^4 , $M^c \cong S^1 \times S^3$.
- Both S^4 and M^c real slices of $G_{2;4}$, a quadric in $\mathbb{C}P^5$.

General pattern:

Conf. compact. of $\mathbb{R}^{i,n-i} \to \mathbb{C}^n$: real slice of quadric in $\mathbb{C}P^{n+1}$ This illuminates also the conformal transformations:

$$x = x^{\mu} \gamma_{\mu} \mapsto (ax+b)(cx+d)^{-1}$$

For certain elements $a, d \in \mathcal{C}\ell_{\text{even}}(\mathbb{C}^n)$, $b, c \in \mathcal{C}\ell_{\text{odd}}(\mathbb{C}^n)$.

Solution: Quaternions have to be regarded as blocks of $\mathcal{C}\ell(\mathbb{C}^4)$ Work with blocks of the Clifford algebra $\mathcal{C}\ell(\mathbb{C}^6)$.

Elementary Solution: The Higher Instanton The quaternionic form of Belavin et al.'s solution almost translates perfectly.

Solution to the higher instanton equations $H = \star H$, F = t(B):

• Gauge structure: $(\mathbb{C}^3 \otimes \mathfrak{sl}(4,\mathbb{C}) \xrightarrow{t} \mathfrak{sl}(4,\mathbb{C}) \oplus \mathfrak{sl}(4,\mathbb{C}))$

$$\mathsf{t}: h = \left(\begin{array}{c|c} h_1 & h_3 \\ \hline 0 & h_2 \end{array}\right) \mapsto \left(\begin{array}{c|c} h_1 & 0 \\ \hline 0 & h_2 \end{array}\right) \in \mathfrak{sl}(4, \mathbb{C}) \oplus \mathfrak{sl}(4, \mathbb{C}) \ ,$$

 $h_1, h_2, h_3 \in \mathfrak{sl}(4, \mathbb{C})$, \triangleright : the usual commutator.

• Solution in coordinates $x = x^M \sigma_M$, $\hat{x} = x^M \bar{\sigma}_M$

$$\begin{split} A &= \begin{pmatrix} \frac{\hat{x} \, \mathrm{d}x}{1+|x|^2} & 0\\ 0 & \frac{\mathrm{d}x \, \hat{x}}{1+|x|^2} \end{pmatrix} \quad B = F + \begin{pmatrix} 0 & \frac{\hat{x} \, \mathrm{d}x \wedge \mathrm{d}\hat{x}}{(1+|x|^2)^2}\\ 0 & 0 \end{pmatrix} \\ F &:= \mathrm{d}A + A \wedge A = \begin{pmatrix} \frac{\mathrm{d}\hat{x} \wedge \mathrm{d}x}{(1+|x|^2)^2} + \frac{2 \, \mathrm{d}\hat{x} \, x \wedge \mathrm{d}\hat{x} \, x}{(1+|x|^2)^2} & 0\\ 0 & -\frac{\mathrm{d}x \wedge \mathrm{d}\hat{x}}{(1+|x|^2)^2} \end{pmatrix} \\ H &:= \mathrm{d}B + A \rhd B = \begin{pmatrix} 0 & \frac{\mathrm{d}\hat{x} \wedge \mathrm{d}x \wedge \mathrm{d}\hat{x}}{(1+|x|^2)^3}\\ 0 & 0 \end{pmatrix} \quad \text{but: Peiffer violated} \\ F \text{ Sala \& S Palmer \& CS} \end{split}$$

Summary:

- $\checkmark\,$ Generalized ADHMN-like construction on loop space
- ✓ Geometric quantization using loop space
- \checkmark Gauge structures in M2- and M5-brane models similar
- ✓ Twistor construction of self-dual tensor fields
- ✓ 6d superconformal tensor multiplet equations
- ✓ On our way to develop Geometry of Higher Yang-Mills Fields Future directions:
 - More general higher bundles and twistors with M Wolf
 - ▷ Continue translation of ADHM with S Palmer, F Sala
 - ▷ Geometric Quant. with higher Hilbert spaces with R Szabo

Geometry of Higher Yang-Mills Fields

Christian Sämann

School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh

Symmetries and Geometry of Branes in String/M-Theory, 1.2.2013