## Geometry of Higher Yang-Mills Fields

Christian Sämann



School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh
Symmetries and Geometry of Branes in String/M-Theory, 1.2.2013

Based on work with:

- S Palmer, D Harland, C Papageorgakis, F Sala (M-brane models)
- M Wolf (Twistor description)
- R Szabo (Geometric Quantization)
- Effective description of M2-branes proposed in 2007.
- This created lots of interest: BLG-model: >625 citations, ABJM-model: >917 citations

Question: Is there a similar description for M5-branes?

## For cautious people:

Is there a a reasonably interesting superconformal field theory of a non-abelian tensor multiplet in six dimensions?
(The mysterious, long-sought $\mathcal{N}=(2,0)$ SCFT in six dimensions)
A possible way to approach the problem: Look at BPS subsector

- This was how the M2-brane models were derived originally.
- BPS subsector is interesting itself: Integrability
- BPS subsector should be more accessible than full theory.
- Integrability found:

Nahm construction for self-dual strings using loop space CS, S Palmer \& CS

- Use of loop space justified:

M-theory suggests this, e.g. Geometric quantization of $S^{3}$

- Integrability reasonable:

Gauge structure of M2- and M5-brane models the same S Palmer \& CS

- Integrability works even without loop space:

Twistor constructions of self-dual strings and non-abelian tensor multiplets work

- On the way to Geometry of Higher Yang-Mills Fields:

Explicit solutions to non-abelian tensor multiplet equations F Sala, S Palmer \& CS

## Monopoles and Self-Dual Strings

Lifting monopoles to M-theory yields self-dual strings.

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D1 | $\times$ |  |  |  |  |  | $\times$ |
| D3 | $\times$ | $\times$ | $\times$ | $\times$ |  |  |  |
| BPS configuration |  |  |  |  |  |  |  |

Perspective of D1:

## Nahm eqn.

$$
\frac{\mathrm{d}}{\mathrm{~d} x^{6}} X^{i}+\varepsilon^{i j k}\left[X^{j}, X^{k}\right]=0
$$

$\downarrow$ Nahm transform $\downarrow$
Perspective of D3:
Bogomolny monopole eqn.

$$
F_{i j}=\varepsilon_{i j k} \nabla_{k} \Phi
$$



Perspective of M2:
Basu-Harvey eqn.
$\frac{\mathrm{d}}{\mathrm{d} x^{6}} X^{\mu}+\varepsilon^{\mu \nu \rho \sigma}\left[X^{\nu}, X^{\rho}, X^{\sigma}\right]=0$
$\downarrow$ generalized Nahm transform $\mathfrak{\downarrow}$
Perspective of M5:
Self-dual string eqn.

$$
H_{\mu \nu \rho}=\varepsilon_{\mu \nu \rho \sigma} \partial_{\sigma} \Phi
$$

In analogy with Lie algebras, we can introduce 3-Lie algebras.

BH: $\quad \frac{\mathrm{d}}{\mathrm{d} s} X^{\mu}+\left[A_{s}, X^{\mu}\right]+\varepsilon^{\mu \nu \rho \sigma}\left[X^{\nu}, X^{\rho}, X^{\sigma}\right]=0, \quad X^{\mu} \in \mathcal{A}$

## 3-Lie algebra

Obviously: $\mathcal{A}$ is a vector space, $[,, \cdot, \cdot]$ trilinear+antisymmetric. Satisfies a "3-Jacobi identity," the fundamental identity:

$$
[A, B,[C, D, E]]=[[A, B, C], D, E]+[C,[A, B, D], E]+[C, D,[A, B, E]]
$$

Filippov (1985)
Gauge transformations from Lie algebra of inner derivations:

$$
D: \mathcal{A} \wedge \mathcal{A} \rightarrow \operatorname{Der}(\mathcal{A})=: \mathfrak{g}_{\mathcal{A}} \quad D(A, B) \triangleright C:=[A, B, C]
$$

Algebra of inner derivations closes due to fundamental identity.

## Brief Remarks on 3-Lie Algebras

In analogy with Lie algebras, we can introduce 3-Lie algebras.

## Examples:

## Lie algebra 3-Lie algebra

Heisenberg-algebra:
Nambu-Heisenberg 3-Lie Algebra:

$$
\begin{array}{lll}
{\left[\tau_{a}, \tau_{b}\right]=\varepsilon_{a b} \mathbb{1},} & {[\mathbb{1}, \cdot]=0} & {\left[\tau_{i}, \tau_{j}, \tau_{k}\right]=\varepsilon_{i j k} \mathbb{1}, \quad[\mathbb{1}, \cdot, \cdot]=0} \\
\hline \mathrm{SU}(2) \simeq \mathbb{R}^{3}: & A_{4} \simeq \mathbb{R}^{4}: \\
{\left[\tau_{i}, \tau_{j}\right]=\varepsilon_{i j k} \tau_{k}} & {\left[\tau_{\mu}, \tau_{\nu}, \tau_{\kappa}\right]=\varepsilon_{\mu \nu \kappa \lambda} \tau_{\lambda}}
\end{array}
$$

Generalizations:

- Real 3-algebras: $[\cdot, \cdot, \cdot]$ antisymmetric only in first two slots S. Cherkis \& CS, 0807.0808
- Hermitian 3-algebras: complex vector spaces, $\rightarrow$ ABJM Bagger \& Lambert, 0807.0163


## Generalizing the ADHMN construction to M-branes

That is, find solutions to $H=\star \mathrm{d} \Phi$ from solutions to the Basu-Harvey equation.

As M5-branes seem to require gerbes, let's start with them.

## Dirac Monopoles and Principal U(1)-bundles

## Dirac monopoles are described by principal U(1)-bundles over $S^{2}$.

Manifold $M$ with cover $\left(U_{i}\right)_{i}$. Principal $\mathrm{U}(1)$-bundle over $M$ :

$$
\begin{gathered}
F \in \Omega^{2}(M, \mathfrak{u}(1)) \text { with } \mathrm{d} F=0 \\
A_{(i)} \in \Omega^{1}\left(U_{i}, \mathfrak{u}(1)\right) \text { with } F=\mathrm{d} A_{(i)} \\
g_{i j} \in \Omega^{0}\left(U_{i} \cap U_{j}, \mathrm{U}(1)\right) \text { with } A_{(i)}-A_{(j)}=\mathrm{d} \log g_{i j}
\end{gathered}
$$

Consider monopole in $\mathbb{R}^{3}$, but describe it on $S^{2}$ around monopole:
$S^{2}$ with patches $U_{+}, U_{-}, U_{+} \cap U_{-} \sim S^{1}: g_{+-}=\mathrm{e}^{-\mathrm{i} k \phi}, k \in \mathbb{Z}$

$$
c_{1}=\frac{\mathrm{i}}{2 \pi} \int_{S^{2}} F=\frac{\mathrm{i}}{2 \pi} \int_{S^{1}} A^{+}-A^{-}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi k=k
$$

Monopole charge: $k$

Manifold $M$ with cover $\left(U_{i}\right)_{i}$. Abelian (local) gerbe over $M$ :

$$
\begin{gathered}
H \in \Omega^{3}(M, \mathfrak{u}(1)) \text { with } \mathrm{d} H=0 \\
B_{(i)} \in \Omega^{2}\left(U_{i}, \mathfrak{u}(1)\right) \text { with } H=\mathrm{d} B_{(i)} \\
A_{(i j)} \in \Omega^{1}\left(U_{i} \cap U_{j}, \mathfrak{u}(1)\right) \text { with } B_{(i)}-B_{(j)}=\mathrm{d} A_{i j} \\
h_{i j k} \in \Omega^{0}\left(U_{i} \cap U_{j} \cap U_{k}, \mathfrak{u}(1)\right) \text { with } A_{(i j)}-A_{(i k)}+A_{(j k)}=\mathrm{d} h_{i j k}
\end{gathered}
$$

Note: Local gerbe: principal $\mathrm{U}(1)$-bundles on intersections $U_{i} \cap U_{j}$.
Consider $S^{3}$, patches $U_{+}, U_{-}, U_{+} \cap U_{-} \sim S^{2}$ : bundle over $S^{2}$ Reflected in: $H^{2}\left(S^{2}, \mathbb{Z}\right) \cong H^{3}\left(S^{3}, \mathbb{Z}\right) \cong \mathbb{Z}$

$$
\frac{\mathrm{i}}{2 \pi} \int_{S^{3}} H=\frac{\mathrm{i}}{2 \pi} \int_{S^{2}} B_{+}-B_{-}=\ldots=k
$$

Charge of self-dual string: $k$
Describe $p$-gerbes + connective structure $\rightarrow$ Deligne cohomology.

Gerbes are somewhat unfamiliar, difficult to work with.
Can we somehow avoid using gerbes?

## Abelian Gerbes and Loop Space

By going to loop space, one can reduce differential forms by one degree.
Consider the following double fibration:


Identify $T \mathcal{L} M=\mathcal{L} T M$, then: $x \in \mathcal{L} M \Rightarrow \dot{x}(\tau) \in T \mathcal{L} M$

## Transgression

$$
\begin{gathered}
\mathcal{T}: \Omega^{k+1}(M) \rightarrow \Omega^{k}(\mathcal{L} M), \quad v_{i}=\oint \mathrm{d} \tau v_{i}^{\mu}(\tau) \frac{\delta}{\delta x^{\mu}(\tau)} \in T \mathcal{L} M \\
(\mathcal{T} \omega)_{x}\left(v_{1}(\tau), \ldots, v_{k}(\tau)\right):=\oint_{S^{1}} \mathrm{~d} \tau \omega(x(\tau))\left(v_{1}(\tau), \ldots, v_{k}(\tau), \dot{x}(\tau)\right)
\end{gathered}
$$

Nice properties: reparameterization invariant, chain map, ...

An abelian local gerbe over $M$ is a principal $\mathrm{U}(1)$-bundle over $\mathcal{L} M$.

Recall the self-dual string equation on $\mathbb{R}^{4}: H_{\mu \nu \kappa}=\varepsilon_{\mu \nu \kappa \lambda \lambda} \frac{\partial}{\partial x^{\lambda}} \Phi$
Its transgressed form is an equation for a 2-form $F$ on $\mathcal{L \mathbb { R } ^ { 4 } \text { : }}$

$$
F_{(\mu \sigma)(\nu \rho)}=\left.\delta(\sigma-\rho) \varepsilon_{\mu \nu \kappa \lambda} \dot{x}^{\kappa}(\tau) \frac{\partial}{\partial y^{\lambda}} \Phi(y)\right|_{y=x(\tau)}
$$

Extend to full non-abelian loop space curvature:

$$
\begin{aligned}
F_{(\mu \sigma)(\nu \tau)}^{ \pm}= & \left(\varepsilon_{\mu \nu \kappa \lambda} \dot{x}^{\kappa}(\sigma) \nabla_{(\lambda \tau)} \Phi\right)_{(\sigma \tau)} \\
& \mp\left(\dot{x}_{\mu}(\sigma) \nabla_{(\nu \tau)} \Phi+\dot{x}_{\nu}(\sigma) \nabla_{(\mu \tau)} \Phi-\delta_{\mu \nu} \dot{x}^{\kappa}(\sigma) \nabla_{(\kappa \tau)} \Phi\right)_{[\sigma \tau]} \\
\text { where } \nabla_{(\mu \sigma)}: & : \oint \mathrm{d} \tau \delta x^{\mu}(\tau) \wedge\left(\frac{\delta}{\delta x^{\mu}(\tau)}+A_{(\mu \tau)}\right)
\end{aligned}
$$

Goal: Construct solutions to this equation.

Nahm transform: Instantons on $T^{4} \mapsto$ instantons on $\left(T^{4}\right)^{*}$ Roughly here:

$$
T^{4}:\left\{\begin{array}{l}
3 \mathrm{rad.} 0 \\
1 \mathrm{rad.} . \infty
\end{array}: \mathrm{D} 1 \mathrm{WV} \text { and }\left(T^{4}\right)^{*}:\left\{\begin{array}{l}
3 \mathrm{rad.} \infty: \mathrm{D} 3 \mathrm{WV} \\
1 \mathrm{rad.} 0
\end{array}\right.\right.
$$

Dirac operators: $X^{i}$ solve Nahm eqn., $X^{\mu}$ solve Basu-Harvey eqn.

$$
\begin{aligned}
\text { IIB }: \not \nabla & =-\mathbb{1} \frac{\mathrm{d}}{\mathrm{~d} x^{6}}+\sigma^{i}\left(\mathrm{i} X^{i}+x^{i} \mathbb{1}_{k}\right) \\
\mathrm{M}: \not \nabla & =-\gamma_{5} \frac{\mathrm{~d}}{\mathrm{~d} x^{6}}+\frac{1}{2} \gamma^{\mu \nu}\left(D\left(X^{\mu}, X^{\nu}\right)-\mathrm{i} \oint \mathrm{~d} \tau x^{\mu}(\tau) \dot{x}^{\nu}(\tau)\right)
\end{aligned}
$$

normalized zero modes: $\quad \bar{\nabla} \psi=0 \quad$ and $\quad \mathbb{1}=\int_{\mathcal{I}} \mathrm{d} s \bar{\psi} \psi$

## Solution to Bogomolny/self-dual string equations:

$$
A:=\int_{\mathcal{I}} \mathrm{d} s \bar{\psi} \mathrm{~d} \psi \quad \text { and } \quad \Phi:=-\mathrm{i} \int_{\mathcal{I}} \mathrm{d} s \bar{\psi} s \psi
$$

- Nahm eqn. and Basu-Harvey eqn. play analogous roles.
- Construction extends to general. Basu-Harvey eqn. (ABJM).
- One can construct many examples explicitly.
- It reduces nicely to ADHMN via the M2-Higgs mechanism.
CS, 1007.3301, S Palmer \& CS, 1105.3904


## More Motivation for Loop Spaces

3-Lie algebra valued tensor multiplet equations:

$$
\begin{aligned}
\nabla^{2} X^{I}-\frac{\dot{i}}{2}\left[\bar{\Psi}, \Gamma_{\nu} \Gamma^{I} \Psi, C^{\nu}\right]-\left[X^{J}, C^{\nu},\left[X^{J}, C_{\nu}, X^{I}\right]\right] & =0 \\
\Gamma^{\mu} \nabla_{\mu} \Psi-\left[X^{I}, C^{\nu}, \Gamma_{\nu} \Gamma^{I} \Psi\right] & =0 \\
\nabla_{[\mu} H_{\nu \lambda \rho]}+\frac{1}{4} \varepsilon_{\mu \nu \lambda \rho \sigma \tau}\left[X^{I}, \nabla^{\tau} X^{I}, C^{\sigma}\right]+\frac{\mathrm{i}}{8} \varepsilon_{\mu \nu \lambda \rho \sigma \tau}\left[\bar{\Psi}, \Gamma^{\tau} \Psi, C^{\sigma}\right] & =0 \\
F_{\mu \nu}-D\left(C^{\lambda}, H_{\mu \nu \lambda}\right) & =0 \\
\nabla_{\mu} C^{\nu}=D\left(C^{\mu}, C^{\nu}\right) & =0 \\
D\left(C^{\rho}, \nabla_{\rho} X^{I}\right)=D\left(C^{\rho}, \nabla_{\rho} \Psi\right)=D\left(C^{\rho}, \nabla_{\rho} H_{\mu \nu \lambda}\right) & =0
\end{aligned}
$$

N Lambert \& C Papageorgakis, 1007.2982
Factorization of $C^{\rho}=C \dot{x}^{\rho}$. Here, 3-Lie algebra transgression:
$(\mathcal{T} \omega)_{x}\left(v_{1}(\tau), \ldots, v_{k}(\tau)\right):=\int_{S^{1}} \mathrm{~d} \tau D\left(\omega\left(v_{1}(\tau), \ldots, v_{k}(\tau), \dot{x}(\tau)\right), C\right)$
C Papageorgakis \& CS, 1103.6192
Often: A vector short of happiness. Loop space has this vector.

## Side Remark: Quantization of $\mathbb{R}^{3}$

In the quantization problem, one is naturally led to loop space.
Geometric quantization prescription: (e.g. fuzzy sphere)

Special symplectic manifold ( $M, \omega$ )

Quantization map: $[\hat{f}, \hat{g}]=\mathrm{i} \hbar \widehat{\{f, g\}}+\mathcal{O}\left(\hbar^{2}\right)$

Hilbert space $\mathscr{H}$ : global holomorphic sections of $L$

M-theory: 2-plectic manifold ( $M, \varpi$ ), $\varpi \in \Omega^{3}(M)$

- hol. secs. of gerbe?, quantization of one-forms? Rogers, ...
- Solution: $\omega$ on $\mathcal{L} M$ as $\omega:=\mathcal{T} \varpi$, then proceed as above
- Example: $\mathbb{R}^{3}$ with 2-plectic form $\varpi=\varepsilon_{i j k} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{k}$ :

$$
\left[x^{i}(\tau), x^{j}(\sigma)\right]=\varepsilon^{i j k} \frac{\dot{x}_{k}(\tau)}{|\dot{x}(\tau)|^{2}} \delta(\tau-\sigma)+\mathcal{O}\left(\theta^{2}\right)
$$

CS \& R Szabo, 1211.0395

- Cf. Kawamoto \& Sasakura, Bergshoeff, Berman et al. [2000]

The duality D1 $\leftrightarrow$ D3 is a duality between Yang-Mills theories.
Question: In what sense are M2- and M5-brane models related?

## Start by looking at gauge structure

Parallel transport of particles in representation of gauge group $G$ :

- holonomy functor: hol : path $p \mapsto \operatorname{hol}(p) \in G$
- hol $(p)=P \exp \left(\int_{p} A\right), P$ : path ordering, trivial for $U(1)$.

Parallel transport of strings with gauge group $\mathrm{U}(1)$ :

- 2-holonomy functor: hol $_{2}$ : surface $s \mapsto \operatorname{hol}_{2}(s) \in \mathrm{U}(1)$
- hol $_{2}(s)=\exp \left(\int_{s} B\right), B$ : connective structure on gerbe.

Nonabelian case:

- much more involved!
- no straightforward definition of surface ordering
- solution: Categorification!


## Categorifying Gauge Groups

A Lie 2-group is a Lie groupoid with extra structure.
Warning: Categorification neither unique nor straightforward.
Lie 2-group
A Lie 2-group is a

- monoidal category, morph. invertible, obj. weakly invertible.
- Lie groupoid + product $\otimes$ obeying weakly the group axioms.

Simplification: use strict Lie 2-groups $\stackrel{1: 1}{\longleftrightarrow}$ Lie crossed modules

## Lie crossed modules

Pair of Lie groups $(\mathrm{G}, \mathrm{H})$, written as $(\mathrm{H} \xrightarrow{\mathrm{t}} \mathrm{G})$ with:

- left automorphism action $\triangleright: \mathrm{G} \times \mathrm{H} \rightarrow \mathrm{H}$
- group homomorphism $\mathrm{t}: \mathrm{H} \rightarrow \mathrm{G}$ such that

$$
\mathrm{t}(g \triangleright h)=g \mathrm{t}(h) g^{-1} \quad \text { and } \quad \mathrm{t}\left(h_{1}\right) \triangleright h_{2}=h_{1} h_{2} h_{1}^{-1}
$$

Also: strict Lie 2-algebras $\stackrel{1: 1}{\longleftrightarrow}$ differential crossed modules

## Examples of Lie Crossed Modules

## Lie crossed modules

Pair of Lie groups $(\mathrm{G}, \mathrm{H})$, written as $(\mathrm{H} \xrightarrow{\mathrm{t}} \mathrm{G})$ with:

- left automorphism action $\triangleright: \mathrm{G} \times \mathrm{H} \rightarrow \mathrm{H}$
- group homomorphism $\mathrm{t}: \mathrm{H} \rightarrow \mathrm{G}$

$$
\mathrm{t}(g \triangleright h)=g \mathrm{t}(h) g^{-1} \quad \text { and } \quad \mathrm{t}\left(h_{1}\right) \triangleright h_{2}=h_{1} h_{2} h_{1}^{-1}
$$

Simplest examples:

- Lie group $G$, Lie crossed module: $(1 \xrightarrow{\mathrm{t}} G)$.
- Abelian Lie group $G$, Lie crossed module: $B G=(G \xrightarrow{\mathrm{t}} 1)$. More involved:
- Automorphism 2-group of Lie group $G:(G \xrightarrow{\mathrm{t}}$ Aut $(G))$

Higher gauge theory is the dynamical theory of principal 2-bundles.
Consider a manifold $M$ with cover $\left(U_{a}\right)$
Object Principal G-bundle $\quad$ Principal $\left(\mathrm{H}^{\mathrm{t}} \mathrm{G}\right)$-bundle

Cochains $\left(g_{a b}\right)$ valued in G
Cocycle $g_{a b} g_{b c}=g_{a c}$
Coboundary $g_{a} g_{a b}^{\prime}=g_{a b} g_{b}$
gauge pot. $A_{a} \in \Omega^{1}\left(U_{a}\right) \otimes \mathfrak{g} \quad A_{a} \in \Omega^{1}\left(U_{a}\right) \otimes \mathfrak{g}, B_{a} \in \Omega^{2}\left(U_{a}\right) \otimes \mathfrak{h}$
Curvature $\quad F_{a}=\mathrm{d} A_{a}+A_{a} \wedge A_{a}$

$$
F_{a}=\mathrm{d} A_{a}+A_{a} \wedge A_{a}, \quad F_{a}=\mathrm{t}\left(B_{a}\right)
$$

$$
H_{a}=\mathrm{d} B_{a}+A_{a} \triangleright B_{a}
$$

Gauge trafos $\quad \tilde{A}_{a}:=g_{a}^{-1} A_{a} g_{a}+g_{a}^{-1} \mathrm{~d} g_{a}$

$$
\begin{aligned}
& \tilde{A}_{a}:=g_{a}^{-1} A_{a} g_{a}+g_{a}^{-1} \mathrm{~d} g_{a}+\mathrm{t}\left(\Lambda_{a}\right) \\
& \tilde{B}_{a}:=g_{a}^{-1} \triangleright B_{a}+\tilde{A}_{a} \triangleright \Lambda_{a}+\mathrm{d} \Lambda_{a}-\Lambda_{a} \wedge \Lambda_{a}
\end{aligned}
$$

## Remarks:

- A principal $(1 \xrightarrow{\mathrm{t}} \mathrm{G})$-bundle is a principal G-bundle.
- A principal $(\mathrm{U}(1) \xrightarrow{\mathrm{t}} 1)=B \mathrm{U}(1)$-bundle is an abelian gerbe.
- Gauge part of $(2,0)$-theory: $H=\star H, F=\mathrm{t}(B)$.


## Is all this machinery really useful/necessary?

## Differential Crossed Modules from 3-Algebras

3-algebras are merely special classes of differential crossed modules.
Recall the definition of a 3-algebra $\mathcal{A}$ :

- $[\cdot, \cdot, \cdot]: \mathcal{A}^{\otimes 3} \rightarrow \mathcal{A}$
- Fundamental identity says that $[a, b, \cdot] \in \operatorname{Der}(\mathcal{A}), a, b \in \mathcal{A}$.


## Theorem

$$
\text { 3-algebras } \stackrel{1: 1}{\longleftrightarrow} \begin{aligned}
& \text { metric Lie algebras } \mathfrak{g} \cong \operatorname{Der}(\mathcal{A}) \\
& \\
& \text { faithful orthog. representations } V \cong \mathcal{A} \\
& \text { J Figueroa-O'Farrill et al., } 0809.1086
\end{aligned}
$$

## Observations

- $\mathfrak{g} \xrightarrow{\mathrm{t}} V$ is a simple differential crossed modules
- M2- and M5-brane models have the same gauge structure.
- Via Faulkner construction, all DCMs come with $[\cdot, \cdot, \cdot]$
- Application of this to M2- and M5-models looks promising.

3-Lie algebra valued tensor multiplet equations:

$$
\begin{aligned}
\nabla^{2} X^{I}-\frac{\mathrm{i}}{2}\left[\bar{\Psi}, \Gamma_{\nu} \Gamma^{I} \Psi, C^{\nu}\right]-\left[X^{J}, C^{\nu},\left[X^{J}, C_{\nu}, X^{I}\right]\right] & =0 \\
\Gamma^{\mu} \nabla_{\mu} \Psi-\left[X^{I}, C^{\nu}, \Gamma_{\nu} \Gamma^{I} \Psi\right] & =0 \\
\nabla_{[\mu} H_{\nu \lambda \rho]}+\frac{1}{4} \varepsilon_{\mu \nu \lambda \rho \sigma \tau}\left[X^{I}, \nabla^{\tau} X^{I}, C^{\sigma}\right]+\frac{\mathrm{i}}{8} \varepsilon_{\mu \nu \lambda \rho \sigma \tau}\left[\bar{\Psi}, \Gamma^{\tau} \Psi, C^{\sigma}\right] & =0 \\
F_{\mu \nu}-D\left(C^{\lambda}, H_{\mu \nu \lambda}\right) & =0 \\
\nabla_{\mu} C^{\nu}=D\left(C^{\mu}, C^{\nu}\right) & =0 \\
D\left(C^{\rho}, \nabla_{\rho} X^{I}\right)=D\left(C^{\rho}, \nabla_{\rho} \Psi\right)=D\left(C^{\rho}, \nabla_{\rho} H_{\mu \nu \lambda}\right) & =0
\end{aligned}
$$

N Lambert \& C Papageorgakis, 1007.2982
Factorization of $C^{\rho}=C \dot{x}^{\rho}$. Here, fake curvature equation:

$$
\mathrm{t}: \mathcal{A} \rightarrow \operatorname{Der}(\mathcal{A}), a \mapsto D(C, a), \quad F_{\mu \nu}=\mathrm{t}\left(H_{\mu \nu \lambda} x^{\lambda}\right)=: \mathrm{t}(B)
$$

$\Rightarrow$ More natural interpretation as higher gauge theory. S Palmer \& CS, 1203.5757

There is a striking sequence involving division/composition algebras in physics.
Division algebras, spheres and groups:

| $\mathcal{A}$ | $\mathcal{A} P^{1}$ | $\|a\|=1$ | $\operatorname{Aut}(\mathcal{A})$ | Physics |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbb{R}$ | $\mathbb{R} P^{1} \cong S^{1}$ | $\mathbb{Z}_{2} \cong S^{0}$ | $\operatorname{Aut}(\mathbb{R}) \cong 1$ | Vortex? |
| $\mathbb{C}$ | $\mathbb{C} P^{1} \cong S^{2}$ | $\cup(1) \cong S^{1}$ | $\operatorname{Aut}(\mathrm{U}(1)) \cong \mathbb{Z}_{2}$ | Monopole |
| $\mathbb{H}$ | $\mathbb{H} P^{1} \cong S^{4}$ | $\mathrm{SU}(2) \cong S^{3}$ | $\operatorname{Aut}(\mathrm{SU}(2)) \cong \mathrm{SU}(2)$ | Instanton |
| $\mathbb{O}$ | $\mathbb{O} P^{1} \cong S^{8}$ | $S^{7}$ | $\operatorname{Aut}(\mathbb{O}) \cong \mathrm{G}_{2}$ | ? |

How should we regard the unit octonions?

- By themselves, they form a Moufang loop $(:)$
- Better: Use Faulkner construction to get a 3-algebra Nambu, Yamazaki, Figueroa-O'Farrill et al.
- Therefore, we have a DCM $\left(\mathfrak{g}_{2} \xrightarrow{\mathrm{t}} \mathbb{R}^{8} \cong \mathbb{D}\right)$
- This suggests sequence: $\mathbb{Z}_{2}, \mathrm{U}(1), \mathrm{SU}(2)$, a Lie 2-group $)$
- Not (yet) clear how useful this actually is.


## Drop loop spaces: Principal 2-bundles over Twistor Spaces

Now that we saw the power of non-abelian gerbes, let's use them!

## Twistor Description of Higher Yang-Mills Fields

Recall the principle of the Penrose-Ward transform:

- Interested in field equations that are equivalent to integrability of connections along subspaces of spacetime $M$
- Establish a double fibration

$P$ : twistor space, moduli space of subspaces in $M$
$F$ : correspondence space
- $H^{n}(P, \mathfrak{S})$ (e.g. vector bundles) $\stackrel{1: 1}{\longleftrightarrow}$ sols. to field equations.
- Explicitly appearing: gauge transformations, moduli, symmetries of the equations, etc.
- BTW: here, $\stackrel{1: 1}{\longleftrightarrow}$ is actually a "holomorphic transgression".


## For Yang-Mills theories and its BPS subsectors, there is a wealth of twistor descriptions.



Hughston, Murray, Eastwood, CS \& M.Wolf, Mason et al.
Note: last twistor space reduces nicely to the above ones.

New: Penrose-Ward transform for self-dual strings.
New twistor space parameterizing hyperplanes in $\mathbb{C}^{4}$ :


Note:

- The Hyperplane twistor space $P^{3}$ is the total space of the line bundle $\mathcal{O}(1,1) \rightarrow \mathbb{C} P^{1} \times \mathbb{C} P^{1}$.
- The spheres $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$ parameterize an $\alpha$ - and a $\beta$-plane.
- The span of both is a hyperplane.
- Nonabelian self-dual string equations: $H=\star \mathrm{d}_{A} \Phi, F=\mathrm{t}(B)$.
- Reduces nicely to the monopole twistor space: $\mathcal{O}(2) \rightarrow \mathbb{C} P^{1}$.

non-abelian self-dual tensor multiplet hol. principal 2-bundle

$$
\text { CS \& M Wolf, } 1205.3108
$$

Note:

- $P^{6 \mid 4}$ is a straightforward SUSY generalization of $P^{6}$
- EOMs, abelian: $H=\star H, F=\mathrm{t}(B), \not \nabla \psi=0, \square \phi=0$
- $\mathcal{N}=(2,0)$ SC non-abelian tensor multiplet EOMs!
- EOMs on superspace, remain to be boiled down (expected).
- Non-gerby Alternatives: Chu, Samtleben et al., ...


## Higher ADHM construction

Recall that the conventional ADHM and ADHMN constructions exist due to a twistor construction in the background.

Thus, there should be a direct ADHM-like construction here, too.


Translate this to higher gauge theory:

- Find elementary solutions
- Identify moduli
- Identify topological charges
- Higher Serre-Swan theorem
- Higher ADHM construction

Work in progress
F Sala \& S Palmer \& CS

## Elementary Solution: The Higher Instanton

The quaternionic form of Belavin et al.'s solution almost translates perfectly.
Recall the quaternionic form of the elementary instanton on $S^{4}$ :
Conformal geometry of $S^{4}$
Describe $S^{4}$ by $\mathbb{H} \cup\{\infty\}$. Coordinates: $x=x^{1}+\mathrm{i} x^{2}+\mathrm{j} x^{3}+\mathrm{k} x^{4}$. Conformal transformations:

$$
x \mapsto(a x+b)(c x+d)^{-1}, \quad a, b, c, d \in \mathbb{H}
$$

SU(2)-Instanton:

$$
A=\operatorname{im}\left(\frac{\bar{x} \mathrm{~d} x}{1+|x|^{2}}\right) \Rightarrow F=\operatorname{im}\left(\frac{\mathrm{d} \bar{x} \wedge \mathrm{~d} x}{\left(1+|x|^{2}\right)^{2}}\right)
$$

SU(2)-Anti-Instanton:

$$
A=\operatorname{im}\left(\frac{x \mathrm{~d} \bar{x}}{1+|x|^{2}}\right) \Rightarrow F=\operatorname{im}\left(\frac{\mathrm{d} x \wedge \mathrm{~d} \bar{x}}{\left(1+|x|^{2}\right)^{2}}\right)
$$

Belavin et al. 1975, Atiyah 1979

Issue: $H= \pm \star H$ is sensible only on Minkowski space $\mathbb{R}^{1,5}$.
Recall:

- conformally compactify $\mathbb{R}^{4}, \mathbb{R}^{1,3}$ yields $S^{4}, M^{c} \cong S^{1} \times S^{3}$.
- Both $S^{4}$ and $M^{c}$ real slices of $G_{2 ; 4}$, a quadric in $\mathbb{C} P^{5}$.


## General pattern:

Conf. compact. of $\mathbb{R}^{i, n-i} \rightarrow \mathbb{C}^{n}$ : real slice of quadric in $\mathbb{C} P^{n+1}$ This illuminates also the conformal transformations:

$$
x=x^{\mu} \gamma_{\mu} \mapsto(a x+b)(c x+d)^{-1}
$$

For certain elements $a, d \in \mathcal{C} \ell_{\text {even }}\left(\mathbb{C}^{n}\right), b, c \in \mathcal{C} \ell_{\text {odd }}\left(\mathbb{C}^{n}\right)$.
Solution: Quaternions have to be regarded as blocks of $\mathcal{C} \ell\left(\mathbb{C}^{4}\right)$ Work with blocks of the Clifford algebra $\mathcal{C} \ell\left(\mathbb{C}^{6}\right)$.

## Elementary Solution: The Higher Instanton

The quaternionic form of Belavin et al.'s solution almost translates perfectly.
Solution to the higher instanton equations $H=\star H, F=\mathrm{t}(B)$ :

- Gauge structure: $\left(\mathbb{C}^{3} \otimes \mathfrak{s l}(4, \mathbb{C}) \xrightarrow{\mathrm{t}} \mathfrak{s l}(4, \mathbb{C}) \oplus \mathfrak{s l}(4, \mathbb{C})\right)$

$$
\mathrm{t}: h=\left(\begin{array}{c|c}
h_{1} & h_{3} \\
\hline 0 & h_{2}
\end{array}\right) \mapsto\left(\begin{array}{c|c}
h_{1} & 0 \\
\hline 0 & h_{2}
\end{array}\right) \in \mathfrak{s l}(4, \mathbb{C}) \oplus \mathfrak{s l}(4, \mathbb{C}),
$$

$h_{1}, h_{2}, h_{3} \in \mathfrak{s l}(4, \mathbb{C}), \triangleright$ the usual commutator.

- Solution in coordinates $x=x^{M} \sigma_{M}, \hat{x}=x^{M} \bar{\sigma}_{M}$

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
\frac{\hat{x} \mathrm{~d} x}{1+\mid x x^{2}} & 0 \\
0 & \frac{\mathrm{~d} x \hat{x}}{1+|x|^{2}}
\end{array}\right) B=F+\left(\begin{array}{cc}
0 & \frac{\hat{x} \mathrm{~d} x \wedge \mathrm{~d} \hat{x}}{\left(1+|x|^{2}\right)^{2}} \\
0 & 0
\end{array}\right) \\
& F:=\mathrm{d} A+A \wedge A=\left(\begin{array}{cc}
\frac{\mathrm{d} \hat{x} \wedge \mathrm{~d} x}{\left(1+|x|^{2}\right)^{2}}+\frac{2 \mathrm{~d} \hat{x} x \wedge \mathrm{~d} \hat{x} x}{\left(1+|x|^{2}\right)^{2}} & 0 \\
0 & -\frac{\mathrm{d} x \wedge \mathrm{~d} \hat{x}}{\left(1+|x|^{2}\right)^{2}}
\end{array}\right)
\end{aligned}
$$

$$
H:=\mathrm{d} B+A \triangleright B=\left(\begin{array}{cc}
0 & \frac{\mathrm{~d} \hat{x} \wedge \mathrm{~d} x \wedge \mathrm{~d} \hat{x}}{\left(1+|x|^{2}\right)^{3}} \\
0 & 0
\end{array}\right) \quad \text { but: Peiffer violated }
$$

F Sala \& S Palmer \& CS

## Summary:

$\checkmark$ Generalized ADHMN-like construction on loop space
$\checkmark$ Geometric quantization using loop space
$\checkmark$ Gauge structures in M2- and M5-brane models similar
$\checkmark$ Twistor construction of self-dual tensor fields
$\checkmark$ 6d superconformal tensor multiplet equations
$\checkmark$ On our way to develop Geometry of Higher Yang-Mills Fields
Future directions:
$\triangleright$ More general higher bundles and twistors with M Wolf
$\triangleright$ Continue translation of ADHM with S Palmer, F Sala
$\triangleright$ Geometric Quant. with higher Hilbert spaces with R Szabo

## Geometry of Higher Yang-Mills Fields

Christian Sämann


School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh
Symmetries and Geometry of Branes in String/M-Theory, 1.2.2013

