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Goal of the talk

Compute the large N spectrum of anomalous dimensions at one

loop, of a class of operators whose classical dimension is of order
N.

Interpret the results using AdS/CFT.

Take note: To capture the large N limit, we need to sum much
more than just the planar diagrams.



N = 4 SYM theory

We consider N' = 4 SYM theory on R x S3.

Consider the complex combinations X = ¢1 + i¢2, Y = ¢3 + ida,
Z = ¢5 + ide, built from the s-wave components of the 6 adjoint
scalars.

The free two point function is

(Z(ZM))) = sk

Consider operators built using n Z fields and m Y fields. Both n
and m are of order N. Can restrict to subspaces of definite n and
m.



m=0,n+#0- %—BPS sector

Correspond to the lowest weight states of half-BPS reps which
satisfy E = Jsg, where the J;; are generators of the SO(6) R
symmetry.

Z = Xs + iXp satisfies the E = Jsg condition. The independent
gauge-invariant BPS states correspond to traces and products of
traces.

n=1: Te(2)
n=2:Tr(Z?%); (TrZ2)?
n=3: Tr(Z3%); Tr(Z>)Tr(2); (TxZ)3



Large N factorization of correlators implies that distinct
multi-trace structures are orthogonal in the large N limit.
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Orthogonality breaks down at J; ~ N

(Balasubramanian, Berkooz, Naqvi, Strassler, hep-th/0107119)



Multitraces

At n = 2 we have two gauge invariant operators

TZTeZ =222  Tv(Z%) = Z",Z"
1

I

They differ in how the lower labels are permuted with respect to
the upper labels.

More generally

Te(oZ®") =2} ZP ...Z"
lo(1) lo(2) lo(n)
gives a convenient description for talking about the complete set of
multitrace operators. Permutations in the same conjugacy class
determine the same operator.



Schur Polynomials

XR(2) = 3 Xrlo)Te(o Z%")
" 0€eS,

R specifies an irrep of S,. xgr(0) is the character of o in irrep R.
1
X = ¢ [Tr(Z)? + 3Tx(Z2)Tx(Z?) + 2Tx(23)]
1 3 3
Xp =g [2Tr(Z)® — 2Tx(27)]
g é [Te(Z)? — 3Te(Z)Te(Z2) + 2Tr(Z°)]

(Corley, Jevicki, Ramgoolam, hep-th/0111222)



Schur Polynomials

Number of Schur polynomials agrees with finite N counting.

(Xr(Z)xs(Z)1) = frérs

Tr(0Z%") =Y xr(0)xr(Z)
R



Including Y: m#0

How much of the %—BPS story can be generalized?

Tr(UZ®” ® y®m) —gh oz 7 oyl yhi2 o ymin

lo(1) i(r(2) lo(n) io'(n+1) lo(n+2) io'(m+n)

again gives a convenient description for talking about the complete
set of multitrace operators.

Permutations related by
-1
o1y T =02 01,02 € 5n+m v E Sp X Sm

determine the same operator.



Restricted Schur Polynomials

R is an irrep of S,+m. We can subduce the S, x S, irrep (r,s)
from R. «, 3 keep track of which copy we subduce.

xm,on) = Tr(Z2)Te(Y) + Te(Z2Y)
XH( =Tr(Z2)Te(Y) — Tr(ZY)

(Berenstein, Balasubramanian, Feng, Huang, hep-th/0411205;
Bhattacharyya, Collins, dMK, arXiv:0801.2061)



Restricted schurs

Number of restricted Schur polynomials agrees with finite N
counting.

<XR,(r,s),u1/(Za Y)XS,(t,u)aﬁ(Zv Y)T> = N(R7 r75)5R55rt55u5u045V,6

Tr(cZ®"Y® ™M) = ZXR(’S)W T)XR,(r,5)8a(Z5 Y)

(Collins, arXiv:0810.4217; Bhattacharyya, Collins, dMK,
arXiv:0801.2061; Bhattacharyya, dMK, Stephanou,
arXiv:0805.3025)



Other bases

For operators built from Z and Z* using the Brauer algebra.
(Kimura, Ramgoolam, arXiv:0709.2158)

A basis will have good global quantum numbers. (Brown, Heslop,
Ramgoolam, arXiv:0711.0176, arXiv:0806.1911)

A restricted Schur basis for fermions. (dMK, Diaz, Nokwara,
arXiv:1212.5935)

A restricted Schur basis for ABJM. (dMK, Mohammed, Murugan,
Prinsloo, arXiv:1202.4925)

A basis for quiver gauge theories. (Pasukonis, Ramgoolam,
arXiv:1301.1980)



Dilatation Operator

D= —giyTr ([Z Y} [ddZ dci’D

(Beisert, Kristjansen, Staudacher, hep-th/0303060)

DXR (r,s)ji = Z MR (r,9)ji:5,(t,u)KIXS, (t,u)lk
S,(t,u)kl

M R,(r,s)jk; T (t,u)lq gYMZNRR/rSTtu
R/

XTr( [FR(l, m+1), PRv(hS)jk} Irr 1 [rT(lv m+1), PT,(t,u)qI:| I R’) .

Tr(r)as(*) = Trr(Pr (r,5)as*)
(De Comarmond, dMK, Jefferies, arXiv:1012.3884)



A Decoupled Sector

Focus on operators Xg (rs)ag for which R and r have p rows and s
has < p rows.

At large N the dilatation operator does not mix operators with
different values of p.

Sectors with long rows / columns decouple.

(dMK, Mashile, Park, arXiv:1004.1108)



The way forwards

Even though we have reduced problem of mixing dramatically by
giving decoupled subsectors of operators that don't mix, we are
still not able to diagonalize the one loop dilatation operator.

We will introduce another approximation - the displaced corners
approximation - defined precisely below.

It is not used when evaluating the action of D - but rather
simplifies the construction of Pg (; s)ag-

How do we justify this? Compute some exact answers (for
m = O(1)) and compare to results obtained in the displaced

corners approximation.

So now: describe the exact answers



m = 3 sector

XA(bo, b1) = (Z,Y) g(bo, b1) = X

xc(bo, b1) = x
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Explicit expression for

We find that Dx, (p,5,) is given by a VCF.



Explicit expression for

We find that Dy (b, is given by a VCF.

VCF = Very Complicated Formula



One term
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Results

m = 2; 4 operators mix; w =0 (x3) w = 8g,2/M (x1)
m = 3; 6 operators mix; w = 0 (x4) w = 8g%,, (x2)

m = 4; 9 operators mix; w = 0 (x5) w = 8g%,, (x3)
w = 16g2;, (x1)

m =5 12 operators mix; w = 0 (x6) w = 8g%,, (x4)
w = 16g2;, (x2)

These results are all recovered in the displaced corners
approximation.



The Displaced Corners Approximation
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b0

Figure: Example of a three row Young diagram.

In the displaced corners approximation we assume that by, b1, by
are all of order N.

This limit simplifies the action of the symmetric group which is
responsible for a new U(p) symmetry. (dMK, Dessein, Giataganas,
Mathwin, arXiv:1108.2761)



A New Symmetry

XR,(r,s)uv

[ [ [[¥

m=(3,1,2)

New symmetry leads to a further conservation law - the dilatation
operator does not mix operators with different m.



D in the Displaced Corners Approximation

DOR,(r,S)/LULz = _gs’l\/l Z Z Mgllﬁln?UVllQAijOR,(r,u)yle

uvivy <y

Aj; acts only on the Young diagrams R, r and Ms(,'{zm;wm acts
only on the labels spqpo.



Action of Aj;

Alzo(bo, bl, b2) = (2N + 2bg + 2b1 + b2)O(bo, b1, b2)
—/(N + by + b1)(N + bo + b1 + b2)(O(bo, b1 — 1, by +2) 4+ O(bo, b + 1, by — 2))
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Figure: Example of labeling for a three row Young diagram.



Aj; eigenproblem

The Ajj operator can be expressed as an element of the u(N) Lie
algebra.

Fundamental representation of u(/N) represents the elements of the
Lie algebra as N x N matrices (Ex)ap = 0ak0p- Introduce

Ei - E; :
Qij 2 ﬂ? QZ/L:E’J Qij:Ejia

[Qi, Q] = @QF, [Qi, Q] =—Qy, [Q;7Qﬂ:2Qij~
QiIMA) =ci A+ LAY, o =V(A+A+1)(A-N),

and

Qi IMA) =c []A=1,A), e =vVINENA=X+1).



Aj; eigenproblem

A120(bo, b, b2) = (2N + 2bg + 2b1 + b2) O(bo, b1, b2)
—/(N + by + b1)(N + bo + b1 + b2)(O(bo, b1 — 1, by +2) 4+ O(bo, b + 1, by — 2))

QNN =t A+ LAY, o =VA+A+DA-N),

o =vVANEX)NA=A+1).

1 _
Aj = —i(Eii + Ejj) + Q,-J- + Q,j_

c. =+/(N+bg+ b)(N+ bg+ by + by + 1),
c+:\/(N+bo+b1+1)(N+bo+b1+b2)

1
AN = pN + n, )\zib,-.



Aj; eigenproblem at large N

0 0 XiXj
8- (05 %)
ri—rn

VN + by
(dMK, Kemp, Smith, arXiv:1111.1058)

Xj =



D in the Displaced Corners Approximation

DOR,(r,S)/LULz = _gs’l\/l Z Z Mgllﬁln?UVllQAijOR,(r,u)yle

uvivy <y

Aj; acts only on the Young diagrams R, r and Ms(,'{zm;wm acts
only on the labels spqpo.



Y Eigenproblem

Example: (from Young diagrams with 4 rows and 8 labeled boxes)

3 d 4
Figure: Example of a pictorial labeling.

DO(bo, by, bo, b3) = —gyp (4212 + 2A13) O(bo, by, b2, bs)



Enumerate graphs with double coset

Figure: The graph determines an element of H \ Sy, 1 my+m,/H where
H = Sp, X Sm, X Sps.



Count Graphs

The cardinality of the double coset is
> (v,
skFm

where My is the number of times the one dimensional irrep of H
is subduced by irrep s of S;,. This equals the number of restricted
Schur polynomials that can be defined.

(dMK, Ramgoolam, arXiv:1204.2153)



Fourier transform applied to the double coset

Complete set of functions on the double coset

C(0) =Y Vds§(o
ij

T Z () = BiuBuy
"

yeH

ORr Z com XR(rs);w(Z Y)

S,V

DOg (0) = —gym Y _, nij(0)2iOr (o)

i<j

(dMK, Ramgoolam, arXiv:1204.2153)



Summary

Families of operators with a definite scaling dimension are labelled
by a graph.

The action of the dilatation operator on each family reduces to a
set of decoupled harmonic oscillators.

Z Z \/72 ru(a BjuBluwHO n( )XR (r, S)AW(Z Y)

S,V ij



Thanks for your attention!



