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1 Introduction

On Christmas day 1640, Pierre de Fermat announced in a letter to Marin Mersenne his theorem
on when a prime number can be written as the sum of two squares. He claimed that p = x2 + y2

if and only if p = 2, or p ≡ 1 (mod 4).
Fourteen year later, in a letter to Blaise Pascal he unveiled another two strikingly similar

criteria for when a prime can be written as other combinations of squares – as square and twice
a square, or as a square and three times a square. Of course, Fermat didn’t bother to prove any
of these claims.

Does anyone have a favourite prime they want to check? [Ask for primes, go to maple to
calculate]

This naturally raises many questions:

Q1) How can we prove these claims? How were they proven?

A1) That I’ll come to throughout the presentation.

Q2) Can we say anything about other cases? Generally?

A2) If we couldn’t, it would make a pretty silly fourth year project, and a very short talk.

Euler added n = 5 to the list. We’ve also got n = −2. [Check some primes again.]

Then to throw a spanner in the works, this is what condition we get for n = 17. Pretty
horrible, but we can still find criteria. And here’s the one for n = −142.

[Try out criteria with some primes]

Q3) You’ll notice each of these has a very distinctive form. In the first set: some congruence
holds, and in the second set something is a square mod p and some polynomial has a
solution mod p. Why?

A3) In fact the congruences can also be put in this form: p ≡ 1, 9 (mod 20) is the same as
(−5/p) = 1 and x2 + 1 ≡ 0 (mod p) has a solution – it’s just quadratic reciprocity. And
this is equivalent to x4 + 12x2 + 16 ≡ 0 (mod p) has a solution. This screams “WHY?”
even more, but also demands to know what’s so different about 3 and 17 that the condition
for 3 is a nice congruence, and for 17 involves a messy polynomial.
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2 Quadratic Forms

2.1 Binary Quadratic Forms

To lay the groundwork we need to introduce the notion of a binary quadratic form, and under-
stand some properties and results about them.

A binary quadratic form is a polynomial like:

ax2 + bxy + cy2

We’re interested in integral quadratic forms (the coefficients are integers) since this is number
theory. Also the form should be primitive, i.e. the coefficients are coprime otherwise we can look
at the quadratic form we get by dividing out the common factor.

The discriminant of the form is defined naturally as b2 − 4ac. Roughly speaking it tells us
what sort of values the form represent. If D < 0 then the form is positive definite (or negative
definite if a < 0) – the form only represents positive (or negative if a < 0) integers. If D > 0
then the form is indefinite so represents both positive and negative values.

For the quadratic forms we have before:

x2 + y2  D = −4

x2 + 2y2  D = −8

x2 + 3y2  D = −12

x2 + 5y2  D = −20

x2 + 17y2  D = −54

x2 − 2y2  D = 8

x2 − 142y2  D = 568

So the problem we have now is to determine which primes a given quadratic form f(x, y)
represents.

2.2 Equivalence

To this end, first we define an equivalence between quadratic forms. With every mathematical
object we want a notion of equivalence.

There are at least three different notions of equivalence between quadratic forms (SL, GL
and signed-GL equivalence). The most suitable notion here is the following:

Act on quadratic forms by SL(2,Z). This genuinely is a group action. This is most easily
seen by writing the quadratic form and the action in matrix form:

ax2 + bxy + cy2 =

(
x
y

)>(
a b/2
b/2 c

)
︸ ︷︷ ︸

=:M

(
x
y

)

Then the action of A := ( p qr s ) on f(x, y) is:

A · f(x, y) = A · (x>Mx) = x>A>MAx

From this we can see:
B ·A · f(x, y) = (BA) · f(x, y)
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and it was already that I · f(x, y) = f(x, y). So it’s a group action. This means the set of
quadratic forms breaks up into equivalence classes under this.

Also notice the discriminant of f(x, y) is just 4 detM . Since A ∈ SL(2,Z), the new discrimi-
nant is:

4 detA>MA = 4 detA> detM detA = 4 · 1 · detM · 1 = 4 detM

So the action preserves discriminants.
Since A is invertible, equivalent forms represent the same integers. If g = A·f and g represents

m, then write

m = g(x′0, y
′
0) = x′

0
>
A>MAx′

0 = x0
>Mx0 = f(x0, y0)

where x0 = Ax0
′

So f represents anything g represents. But we can also write f = A−1 · g, and so g represents
anything f represents. They represent the same.

So it suffices to look at equivalence classes of forms.
The next point is vitally important. For a given discriminant D there are only finitely many

equivalence classes. Using the matrices:

S =

(
0 1
−1 0

)
T k =

(
1 0
1 1

)k
=

(
1 0
k 1

)
we can ‘reduce’ the coefficients of an arbitrary form in a controlled way. We get down to a form
with coefficients satisfying:

abs b ≤ a ≤ c for positive definitne forms

abs b ≤ abs a ≤ abs c for indefinite forms

The relation D = b2 − 4ac then puts bounds on a such that only finitely many values for a are
possible.

In the positive definite case these forms are mutually different, so we get exactly a set of
representatives for the equivalence classes. In the indefinite case some of the reduced forms can
agree, and a more refined method is needed to determine the equivalence classes.

In either case it is possible to algorithmically determine the reduced forms and which ones are
equivalent. This gives an algorithmic way of listing the classes and determining their number.

2.3 Ideals in Quadratic Fields

Now we’re going to relate these quadratic forms to objects we know how to work with. We
already see a hint of the connection to number fields by noticing how the norm of an integer
a+ b

√
d give us a quadratic form a2 − db2. The way to extend this to get all quadratic forms is

to look at ideals rather than elements. We define the following map: . . . .
We need the ideal to have an oriented basis for some suitable definition of oriented, we won’t

worry about that. To ensure things work nicely for real quadratic fields / indefinite forms we
need the narrow ideal class. For imaginary quadratic fields the narrow class and the ordinary
class agree.

For example looking at: K = Q(
√
−5). The (narrow) class number is 2, we ideal classes are

represented by: OK = [1,−
√
−5] of norm 1, and p3 = [3, 1 +

√
−5] of norm 3. Let’s see what

quadratic forms we get:

OK 7→ x2 + 5y2

p3 7→ 3x2 + 2xy + 2y2
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These are in fact all the quadratic forms of discriminant −20, so the map is a 1:1 correspon-
dence in this case.

Also at K = Q(
√

10), with OK = [1,−
√

10] 7→ x2 − 10y2, and p2 = [2,−
√

10] 7→ 2x2 − 5y2.
Also a 1:1 correspondence.

This holds generally.

Proof of bijectivity: Well-defined: changing basis y = Ax have A ∈ GL(2,Z). By the
definition of oriented we get in fact A ∈ SL(2,Z). Explicitly writing out the map for each basis
shows that the two forms are equivalent.

Going to an equivalent ideal ab−1 = (λ) changes the basis and the norm by λ, so this cancels
in the computation.

Surjectivity comes from looking at [a, b−
√
D

2 ].
Injectivity is a little fiddlier/trickier, but overall is not too difficult. It’s a case of using the

quadratic form equivalence to explicitly construct a change of oriented bases for the ideals, so
they’re equal.

2.4 Representing Integers

I’m going to skip the proof of the lemma. Mostly it’s just a case a taking an ideal b of norm m,
relating it to a, and following the map through in one direction. And taking a representation of
m and using this to construct a norm m ideal out of a.

This gives us our first real criteria on primes being represented by quadratic forms.

Proof: 2 or primes dividing D are the primes which ramify. Exclude these. Then a prime is
represented by some form if and only if there is some ideal of norm p in the number field, which
is if and only if the ideal (p) splits (recall that an ideal divides its norm), and this is well known
to be if and only if (D/p) = 1

Actually this also holds for non-fundamental discriminants. This gives a criteria for quadratic
forms of any discriminant.

2.5 Class Number One

Well this is good, we can now completely solve the problem for class number one.
This gives a proof of Fermat’s three claims. Each discriminant has class number one. The

criteria comes from using quadratic reciprocity on (D/p) to find the congruences.
Show this for x2 + y2. (−4/p) = (4/p)(−1/p) = (−1/p), and this is 1 for p ≡ 1 (mod 4) by a

supplement to quadratic reciprocity.
There aren’t many negative discriminants with class number one, in fact there are only 9

fundamental discriminants / imaginary quadratic fields with class number one. There are 4
more non-fundamental discriminants with class number one which we can also tackle. D =
−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163.

For indefinite forms / real quadratic fields, it is unknown how many fields have (narrow)
class number one / fundamental discriminants have class number one. There are infinitely many
non-fundamental discriminants with class number one. Every discriminant D = 4 · 13 · 169n has
class number one, we can get criteria for families like:

p = x2 − 13 · 169n ⇐⇒ (13/p) = 1 ⇐⇒ p ≡ 1, 3, 4, 9, 10, 12 (mod 13)

4



But there are still plenty of cases with class number not-one. We want some way of dealing
with these, and it all comes down to finding when (p) splits into principal ideals, so in particular
telling when an ideal is principal. For this class field theory comes to the rescue.

3 Class Field Theory

3.1 Generalised Ideal Class Groups

The basic notion in class field theory is of a generalised ideal class group (leading to the notion
of a class field and hence class field theory). It takes a bit of work to set up the notions.

A modulus in a number field K is a formal product of valuations (both finite and infinite),
subject to some conditions on the exponents. Roughly speaking, finite primes are just prime
ideals, and infinite primes correspond to embeddings of K into C. In a modulus complex em-
beddings appear with exponent 0, and real embeddings with exponent at most 1. This means a
modulus is just a product of prime ideals and distinct real embeddings.

Then we define the group of fractional ideals for the modulus m as the fractional ideals of
K which are prime to m0, where m0 is just the product of prime ideals of the modulus (i.e. the
finite valuations bit). The subgroup of principal fractional ideals for the modulus m are those
whose generator is 1 (mod m0), and is strictly positive under any real embedding σ.

Then a congruence subgroup is one sitting between these two groups of ideals. And the
quotient of the fractional ideals by the subgroup gives us a generalised ideal class group.

We already (implicitly) know two generalised ideal class groups (which will also explain the
name).

• (Class Group) If we take the modulus m = 1, i.e. no prime ideals and no real embeddings,
we find that IK(1) = I(K) is just the group of all fractional ideals of K, since there are
no conditions to check: every ideal is prime to 1.

Similarly there are no conditions to check for the principal ideals: we don’t have any real
embeddings so that the image is strictly positive is vacuously true, as is the congruence.
So this just gives all principal fractional ideals P(K).

Then P(K) is a congruence subgroup since it satisfies the condition. The generalised ideal
subgroup then is I(K)/P(K) = C(K), the ordinary class group.

• (Narrow Class Group) If the modulus just consists of all real embeddings of K, then
IK(m) = I(K) is just all fractional ideals – there is no condition to check. And the
principal ideals are those generated by totally positive elements (i.e. positive under all real
embeddings (the definition of totally positive)). This gives the subgroup of totally positive
principal ideals P+(K).

The quotient is I(K)/P+(K) = C+(K), by definition the narrow class group.

There are many many other generalised ideal class groups, but these are the two important
ones for us.

3.2 The Artin Map

Now we’re going to relate these generalised ideal class groups to certain extensions of the number
field K. The basic idea is these generalised ideal class groups are exactly the Galois groups of
Abelian extensions of K. We do this with the artin map.
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We take a Galois extension L/K and an unramified prime p which has a prime P above it in
L. (We need unramified otherwise the isomorphism in the line below doesn’t work). The ring of
integers O is a Dedekind domain so the prime ideals are maximal (by definition) so the quotients
OL/P, etc, are fields. So this gives an extension of finite fields. This is Galois.

The group DP is called the decomposition group and its the stabiliser of P under the action
of the Galois group – the Galois groups action on elements becomes an action of prime ideals
of L above p, which elements act trivially? This is a subgroup of Gal(L/K). The isomorphism
in the middle is a standard result: the action of elements of DP descends to the residue field
extension, it is surjective with trivial kernel for an unramified prime, so FIT gives the result.

Now the Galois group on the left has a canonical generator, the Frobenius. Through this
isomorphism this picks out an element of Gal(L/K). We define this to be the Artin symbol of
the prime P.

When the extension is Abelian (i.e. has Abelian Galois group) then the Artin symbol doesn’t
depend on the prime P above p. It just depends on p. Picking any other prime above p we can
write it as Q = σP because the action of Gal(L/K) here is transitive. Then the following result
holds:

((L/K)/Q) = ((L/K)/σP) = σ((L/K)/P)σ−1 = ((L/K)/P)

After defining ramification index ei (exponent of Pi above p), and inertial degree fi (the

degree of OL/Pi

OK/p
as a field extension) the splitting completely result is pretty much a tautology.

In a Galois extension ei are the same for all primes Pi, as are fi. Splitting completely is e = f = 1.
But we assumed p is unramified so e = 1. The order of the Artin symbol is f since it generated
this field extension, hence if it is trivial f = 1 – splits completely. This is a useful fact we will
return to later.

Now the artin map extends this multiplicatively to a suitable subset of all ideals. In an
extension L/K only finitely many primes can ramify, so let m be a modulus divisible by all such
primes. Then the Artin symbol extends multiplicatively to IK(m) giving a group homomorphism:
. . . .

3.3 The Theorems of Class Field Theory

The theorem is pretty much as is stated here. We can relate Galois groups, congruence sub-
groups and Artin maps. It’s called the reciprocity theorem as it encodes/generalises the various
reciprocity laws: quadratic, cubic, biquadratic, etc. None of which I (except for its relation to
quadratic reciprocity which Jens strongly suggested I look at) investigated much.

The Galois group is a generalised ideal class group follows from the First Isomorphism The-
orem as we have:

Φ: IK(m)� Gal(L/K), with kernel a congruence subgroup

The existence theorem allows us to construct Abelian extensions with very strictly controlled
properties. We’ll make use of this to get an answer to our question.

Roughly speaking these two theorems tell us that Galois groups of abelian extensions of
generalised ideal class groups.

4 Hilbert Class Field

We define the Hilbert class field using the existence theorem. We apply it to the indicated data.
This gives a unique extension of K, which we call the Hilbert class field.
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An alternative characterisation of the Hilbert class is given by the following theorem. The
Hilbert class field is the maximal unramified abelian extension of K. Unramified follows since
the ramified prims divide the modulus. The maximality follows from another theorem of class
field theory.

So what does this get us?
Since there are no exponents in the modulus to change, the Artin map here must be surjective

and by construction it’s kernel is P1,K(m) = P(K). This means Gal(L/K) ∼= C(K). So we know
the degree of the Hilbert class field. Then we can check unramified and Abelian. If this has the
right degree then is must be the Hilbert class field as the Hilbert class field would be a degree
1 extension of this unramified Abelian extension. We can (in principal) prove things are the
Hilbert class field.

Now let’s pick a prime p of K, and see what happens to it in the Hilbert class field. We have
the following chain of equivalences:

p is principal ⇐⇒ ((L/K)/p) = 1 ⇐⇒ p splits completely in L

Bingo! We can determine when a prime ideal of K is principal by finding the Hilbert class
field. We’re within sight of our goal. Let’s apply this to quadratic forms.

4.1 Positive-Definite Forms

Field diagram L = K(α) ⊃ K ⊃ Q.
Let Q(x, y) be the quadratic form corresponding to the principal ideal class of K = Q(

√
−d),

so Q(x, y) ≈ x2 − dy2. Excluding p = 2, d | D, then Q(x, y) represents p if and only if (p) splits
into principals ideal in K. These principal ideals split completely in L/K, so (p) splits completely
in L/Q. Conversely if (p) splits completely in L/Q, then there is some prime R above P above
p with e = f = 1. This means R above P has e = f = 1, so this ideal splits completely in L/K
meaning it’s principal. This is a principal ideal of norm p. So p = Q(x, y) if and only if p splits
in L/Q.

Dedekind’s Theorem tells us how a prime decomposes in an extension by relating this decom-
position to the factorisation of the polynomial generating the extension. Excluding primes divid-
ing the discriminant of the generating polynomial of L/Q (where Dedekind’s Theorem doesn’t
work), splitting completely in L/Q means the generating polynomial f(t) splits into linear factors
(so f = 1, and e = 1 since we’re excluded ramified primes which divide the discriminant). Linear
factors correspond to roots. And we’re done.

The last equivalence one involves a little technical work, but roughly complete splitting L/Q
implies complete splitting Q(α)/Q, K/Q, which is fine. Going the other way the complete
splitting in Q(α)/Q is related by complete splitting in K(α)/K, and this means complete splitting
in L/Q.

Now we have this, we see why all the criteria before have their particular form, they are all
special cases of this theorem. With this we can churn out criteria once we know the appropri-
ate Hilbert class fields. Cohen has a table of Hilbert class fields in Appendix C of Advanced
Computational Number Theory. Also Magma can calculate Hilbert class fields.

Go through Q(
√
−5), x2+5y2 example, seeing how to get congruence conditions? The Hilbert

class field is Q(
√
−5,
√
−1) apparently. This gives the criteria I had before.

5 Narrow Class Field

Now comes déjà vu. We do most of this again but change Hilbert for narrow, and principal for
totally positive principal. And we get the equivalent result for indefinite forms, and life is good.
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Cohen doesn’t give a table of narrow class fields, but Magma can compute them, so we can still
churn out results.

6 Cubic Forms

Since it was so easy to handle indefinite quadratic forms with the theory we have, let’s be a little
big more ambitious, and see how our theory can handle this question.

The plan of attack is roughly as follows.

1. Recognize this as a norm form

I chose this cubic form for a very particular reason. I already know this is the norm on
Z[ 3
√

11], the ring of integers of Q( 3
√

11). a3 + 11b3 + 121c3− 33abc = N(a+ b 3
√

11 + c
3
√

112).

2. Now turn this into a question about number fields

This means we’re looking for an element α of norm p in Q( 3
√

11). Since −1 has norm −1
here, a principal ideal of norm p has a generator of norm ±p, which can be chosen to have
norm p. So we’re looking for principal ideals of norm p.

Ideals of norm p are easy: if (p) splits then one of the factors has norm p. But we want to
know when the factor of norm p is principal. The class number of K is 2, so the factor is
not necessarily principal, we need to do some work.

3. Throw some class field at it

We have the Hilbert class field of K.

As we argued before, if (p) has a principal ideal of norm p above it, then this splits
completely in the Hilbert class field. So (p) splits in L where some prime R has e = f = 1.
This gives a root of the polynomial generating the Hilbert class field over Q. Always taking
p to not divide the discriminant.

Conversely if the polynomial has a root, then we get a prime R in L with e = f = 1. This
lies above some prime P of K, so this prime of K must split completely in L/K as L/K
is Galois. Then this is an ideal of norm p (as it has f = 1 and is a factor of (p)).

4. Black magic and magma happens here to find the Hilbert class field and its generating
polynomial.

5. And we get the criteria. . .

7 Modular Forms

7.1 Representation Numbers

Going back to quadratic forms: now we can determine when there are solutions, another natural
question to consider is how many solutions are there?

The theta series of a quadratic form is obtained as the following sum. It can be rearranged to
explicitly show how it counts the representation numbers (number of solutions/number of ways
of representing a number by the quadratic form). The theta series is a modular form for some
group, weight, character etc that I don’t really care about. But for a particular discriminant
they are all the same regardless of which quadratic form you look at.
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Let’s have a running example throughout. The quadratic forms of discriminant −20 are:

Q1 = x2 + 5y2

Q2 = 2x2 + 2xy + 3y2

The theta series are:

ΘQ1 = 1 + 2q + 2q4 + 2q5 + 4q6 + 6q9 + · · ·
ΘQ2

= 1 + 2q2 + 4q3 + 4q7 + 2q8 + 2q10 + · · ·

We’re going to look at linear combinations of all these theta series, corresponding to certain
characters of the class group. That is, look at maps χ : C(K)→ C∗, and the linear combinations
coming from these.

In this case the class group is Z2, so the characters are χ : 1 7→ 1, and φ : 1 7→ −1. So we get
two combinations:

fχ =
1

2
(ΘQ1

+ ΘQ2
)

fψ =
1

2
(ΘQ1 −ΘQ2)

That 1
2 is there to normalize things.

7.2 L-series

We can look at the L-series associated to this modular form to sometimes extract formulae for
the representation numbers. From the general theory about this sort of thing, one knows that
the linear combinations above have Euler products, that is can be written as a product over
primes like this . . . . Where ai is just the i-th coefficicent of the modular form.

In our cases:

L(fχ, s) =
∏

p prime

1

1− app−s + (D/p)p−2s

where

ap =


1 p ramifies

0 p inert

2 p splits into principal

2 p splits into non-principal

Have:
ap = 1 + (−20/p)

So

L(fχ, s) =
∏

p prime

1

(1− p−s)(1− (−20/p)p−s)
= L(1, s)L((−20/·), s)

And this tells us the coefficient an =
∑
d|n(−20/d). This arithmetic convolution of the coefficients

of the two series we are multiplying.
Similarly:

L(fφ, s) =
∏

p prime

1

1− bpp−s + (D/p)p−2s

9



bp =



0 p inert

1 p ramifies into principal

−1 p ramifies into non-principal

2 p splits into principal

−2 p splits into non-principal

Have:
bp = (−4/p) + (5/p)

(This follows from our criteria before using splitting in Q(
√
−1) and Q(

√
−5). So

L(fχ, s) =
∏

p prime

1

(1− (−4/p)p−s)(1− (5/p)p−s)
= L((−4/·), s)L((5/·), s)

So the general coefficient is bn =
∑
d|n(−4/d)(5/n/d).

Now notice the sum of the two series gives us the rep numbers rx2+5y2(n) and the difference
r2x2+2xy+3y2(n), so we have formulae for the number of representations as follows. . . .

By specialising them to a prime we get things like:

rx2+5y2(p) =((−20/1) + (−4/1)(5/p)) + ((−20/p) + (−4/p)(5/1))

= (1 + (5/p)) + ((−20/p) + (−4/p))

= (1 + (−4/p))(1 + (5/p))

If this is non-zero (so the prime p is represented) then both factors must be non-zero, i.e.
(5/p) = 1 and (−4/p) = 1, so these formulae allow us to derive our earlier criteria.

8 Epilogue

There is still plenty to be done, and plenty of different directions we can look at.
Non-fundamental discriminants: class field theory can also handle non-fundamental dis-

criminants but we would first need to make a study of orders in quadratic fields, things like
Z[2
√
−1] & Z[

√
−1] = OK for K = Q(

√
−1).

Separating all forms of discriminant D. With class field theory we can make some headway
here. Subgroups of the (narrow) class group (corresponding to subgroups of quadratic forms)
are themselves generalised ideal class groups. (They are the inverse image of a quotient map,
so define a subgroup sitting between P(+)(K) and I(K).) Hence they give rise to class fields.
These are in fact intermediate fields between the Hilbert/Narrow class field and K as the Galois
group is isomorphic to the (narrow) class group. With a bit of inclusion/exclusion type reasoning
we can sometimes isolate some or all quadratic forms. For examples Q(

√
−17) has class group

Z2 ×Z2, corresponding to four forms Q11, Q12, Q21, Q22. We can separate Q11, and Q11, Q12, so
can separate Q12 by negating the criteria for the principal form.

But what if we have Q(
√
−47) where the class group is Z5. There are no non-trivial subgroups.

So either we find a condition for the principal form, or we find a condition for all forms and all
forms less the principal form. We can’t separate any of the non-principal forms.

But the coefficients of the theta series modular forms can separate out these forms.
Counting other rep numbers: well this L-series factorisation stuff works fine when the class

group is Zm2 (when so called genus theory works), but doesn’t work otherwise. (Here the charac-
ters would take values other than ±1 and the L-series don’t necessarily factor in this nice way.
Modular forms and their connection with elliptic curves can still be used to put bounds on the
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rep numbers. Also what do you do in the indefinite case. . . the rep numbers are infinite, but is
there a sensible way mod out the units and count the rep numbers? The Theta series now have
a non-holomorphic (in fact non-meromorphic) part, so how?

The last bit about more general polynomial equations leading to non-abelian class field theory
and the Langlands program I just throw in because Jens insists it sounds good.

11


	Introduction
	Quadratic Forms
	Binary Quadratic Forms
	Equivalence
	Ideals in Quadratic Fields
	Representing Integers
	Class Number One

	Class Field Theory
	Generalised Ideal Class Groups
	The Artin Map
	The Theorems of Class Field Theory

	Hilbert Class Field
	Positive-Definite Forms

	Narrow Class Field
	Cubic Forms
	Modular Forms
	Representation Numbers
	L-series

	Epilogue

