Modular Forms and The Kissing Number Problem

Jonathan Crawford

October 31, 2013

Lattices Modular Forms Theta Series Conclusion

Introduction Lattices Modular Forms Theta Series

The Game Plan

• The Problem

The Game Plan

• The Problem

Lattices

Lattices Modular Forms Theta Series Conclusion

- The Problem
- Lattices
- Modular Forms

Lattices Modular Forms Theta Series Conclusion

- The Problem
- Lattices
- Modular Forms
- Theta Series

Lattices Modular Forms Theta Series Conclusion

- The Problem
- Lattices
- Modular Forms
- Theta Series
- The Solution

Lattices Modular Forms Theta Series Conclusion

- The Problem
- Lattices
- Modular Forms
- Theta Series
- The Solution
- Other cool uses of Modular Forms

Lattices Modular Forms Theta Series Conclusion

- The Problem
- Lattices
- Modular Forms
- Theta Series
- The Solution
- Other cool uses of Modular Forms
- Pub

Lattices Modular Forms Theta Series Conclusion

The Problem

Definition: Kissing Number τ_n

"the maximum number of non-overlapping unit spheres that can touch the boundary of a given unit sphere" $% \mathcal{T}_{\mathrm{sphere}}$

Lattices Modular Forms Theta Series Conclusion

The Problem

Definition: Kissing Number τ_n

"the maximum number of non-overlapping unit spheres that can touch the boundary of a given unit sphere"

The Question

What is the kissing number in n dimensions?

Lattices Modular Forms Theta Series Conclusion

The Problem

Definition: Kissing Number τ_n

"the maximum number of non-overlapping unit spheres that can touch the boundary of a given unit sphere"

The Question

What is the kissing number in n dimensions?

Question: How about the case n = 1?

Lattices Modular Forms Theta Series Conclusion

The Problem

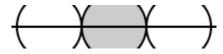
Definition: Kissing Number τ_n

"the maximum number of non-overlapping unit spheres that can touch the boundary of a given unit sphere" $% \left({{{\left[{{{C_{1}}} \right]}_{i}}}_{i}} \right)$

The Question

What is the kissing number in n dimensions?

```
Question: How about the case n = 1?
Answer: \tau_1 = 2
```



Lattices Modular Forms Theta Series Conclusion

Higher Cases

Question: How about the case n = 2?

Lattices Modular Forms Theta Series Conclusion

Higher Cases

Question: How about the case n = 2? Answer: $\tau_2 = 6$

Lattices Modular Forms Theta Series Conclusion

Higher Cases

Question: How about the case n = 2? Answer: $\tau_2 = 6$

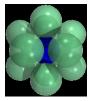
Question: How about the case n = 3?

Lattices Modular Forms Theta Series Conclusion

Higher Cases

Question: How about the case n = 2? Answer: $\tau_2 = 6$

Question: How about the case n = 3? Answer: $\tau_3 = 12$

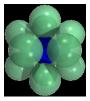


Lattices Modular Forms Theta Series Conclusion

Higher Cases

Question: How about the case n = 2? Answer: $\tau_2 = 6$

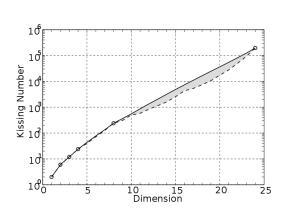
Question: How about the case n = 3? Answer: $\tau_3 = 12$



The case n = 3 is actually already quite hard!

Lattices Modular Forms Theta Series Conclusion

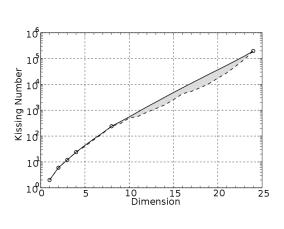
Even Higher Cases



Dimension	Lower bound	Upper bound
1	2	
2	6	
3	12	
4	24 ^[4]	
5	40	44
6	72	78
7	126	134
8	240	
9	306	364
10	500	554
11	582	870
12	840	1,357
13	1,154 ^[9]	2,069
14	1,606 ^[9]	3,183
15	2,564	4,866
16	4,320	7,355
17	5,346	11,072
18	7,398	16,572
19	10,688	24,812
20	17,400	36,764
21	27,720	54,584
22	49,896	82,340
23	93,150	124,416
24	196,560	

Lattices Modular Forms Theta Series Conclusion

Even Higher Cases



Today we will look at the special case n = 24

Definition

Definition

A lattice *L* of rank *n* in \mathbb{R}^n is the free \mathbb{Z} -module generated by *n* linearly independent vectors.

Definition

Definition

A lattice *L* of rank *n* in \mathbb{R}^n is the free \mathbb{Z} -module generated by *n* linearly independent vectors.

I.e. $L = \left\{ \sum_{i=1}^{n} a_i b_i | a_i \in \mathbb{Z} \right\}$ where b_i form a basis for \mathbb{R}^n .

Definition

Definition

A lattice *L* of rank *n* in \mathbb{R}^n is the free \mathbb{Z} -module generated by *n* linearly independent vectors.

I.e. $L = \left\{ \sum_{i=1}^{n} a_i b_i | a_i \in \mathbb{Z} \right\}$ where b_i form a basis for \mathbb{R}^n .

Example

 $L = \mathbb{Z}(1,0) \oplus \mathbb{Z}(1/2,\sqrt{3}/2)$

Definition

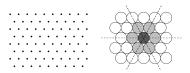
Definition

A lattice *L* of rank *n* in \mathbb{R}^n is the free \mathbb{Z} -module generated by *n* linearly independent vectors.

I.e. $L = \left\{\sum_{i=1}^{n} a_i b_i | a_i \in \mathbb{Z}\right\}$ where b_i form a basis for \mathbb{R}^n .

Example

 $L = \mathbb{Z}(1,0) \oplus \mathbb{Z}(1/2,\sqrt{3}/2)$



Definition

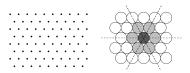
Definition

A lattice *L* of rank *n* in \mathbb{R}^n is the free \mathbb{Z} -module generated by *n* linearly independent vectors.

I.e. $L = \left\{\sum_{i=1}^{n} a_i b_i | a_i \in \mathbb{Z}\right\}$ where b_i form a basis for \mathbb{R}^n .

Example

 $L = \mathbb{Z}(1,0) \oplus \mathbb{Z}(1/2,\sqrt{3}/2)$



Lattices (in our case) are subsets of \mathbb{R}^n and equipped with the standard inner product (dot product) denoted (x, y) for $x, y \in \mathbb{R}^n$ with norm $(x, x) = ||x||^2$. (any inner product on a real vector space is a positive-definite symmetric bilinear form).

Strategy

Lattices (in our case) are subsets of \mathbb{R}^n and equipped with the standard inner product (dot product) denoted (x, y) for $x, y \in \mathbb{R}^n$ with norm $(x, x) = ||x||^2$. (any inner product on a real vector space is a positive-definite symmetric bilinear form).

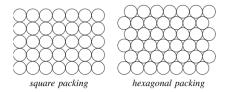
Look for a lattice with the maximal number of vectors of "shortest length"

Strategy

Lattices (in our case) are subsets of \mathbb{R}^n and equipped with the standard inner product (dot product) denoted (x, y) for $x, y \in \mathbb{R}^n$ with norm $(x, x) = ||x||^2$. (any inner product on a real vector space is a positive-definite symmetric bilinear form).

Look for a lattice with the maximal number of vectors of "shortest length"

Example:



The Leech Lattice

Definitions

A lattice is even if $(x, x) \in 2\mathbb{Z}$ for all $x \in L$

The Leech Lattice

Definitions

A lattice is even if $(x, x) \in 2\mathbb{Z}$ for all $x \in L$

The **Gram Matrix** B is the matrix $B_{ij} = (b_i, b_j)$ where b_i were the generators. This can depend on the choice of generators but det(B) is independent.

The Leech Lattice

Definitions

A lattice is even if $(x, x) \in 2\mathbb{Z}$ for all $x \in L$

The **Gram Matrix** B is the matrix $B_{ij} = (b_i, b_j)$ where b_i were the generators. This can depend on the choice of generators but det(B) is independent.

A lattice is **unimodular** if det(B) = 1

The Leech Lattice

Definitions

A lattice is even if $(x, x) \in 2\mathbb{Z}$ for all $x \in L$

The **Gram Matrix** B is the matrix $B_{ij} = (b_i, b_j)$ where b_i were the generators. This can depend on the choice of generators but det(B) is independent.

A lattice is **unimodular** if det(B) = 1

Definition: Leech Lattice

 L_{24} is the lattice described by $\left\{x\in\mathbb{Z}^{25}|(x,y)=0\right\}$ where $y=(3,5,7,\ldots47,51,-145)$

The Leech Lattice

Definitions

A lattice is **even** if $(x, x) \in 2\mathbb{Z}$ for all $x \in L$

The **Gram Matrix** B is the matrix $B_{ij} = (b_i, b_j)$ where b_i were the generators. This can depend on the choice of generators but det(B) is independent.

A lattice is **unimodular** if det(B) = 1

Definition: Leech Lattice

 L_{24} is the lattice described by $\left\{x\in\mathbb{Z}^{25}|(x,y)=0\right\}$ where $y=(3,5,7,\ldots47,51,-145)$

More importantly it is the unique lattice in \mathbb{R}^{24} such that

- $(x, x) \neq 2$ for all $x \in L_{24}$
- L₂₄ is even
- L₂₄ is unimodular

The Leech Lattice

Definitions

A lattice is **even** if $(x, x) \in 2\mathbb{Z}$ for all $x \in L$

The **Gram Matrix** B is the matrix $B_{ij} = (b_i, b_j)$ where b_i were the generators. This can depend on the choice of generators but det(B) is independent.

A lattice is **unimodular** if det(B) = 1

Definition: Leech Lattice

 L_{24} is the lattice described by $\left\{x\in\mathbb{Z}^{25}|(x,y)=0\right\}$ where $y=(3,5,7,\ldots47,51,-145)$

More importantly it is the unique lattice in \mathbb{R}^{24} such that

- $(x,x) \neq 2$ for all $x \in L_{24}$
- L₂₄ is even
- L₂₄ is unimodular

What to know how many length 4 vectors are there in L_{24} ?

Modular Forms for Dummies

Definition: Modular Form

Let k be an integer. A function $f : \mathbb{H} \mapsto \mathbb{C}$ is a modular form of weight k if

- (1) f is holomorphic on \mathbb{H} ,
- (2) f is weakly modular of weight k,
- (3) f is holomorphic at ∞ .

Modular Forms for Dummies

Definition: Modular Form

Let k be an integer. A function $f : \mathbb{H} \mapsto \mathbb{C}$ is a modular form of weight k if (1) f is holomorphic on \mathbb{H} , (2) f is weakly modular of weight k, (3) f is holomorphic at ∞ .

Translation:

• I.e. nice and complex differentiable on the upper half plane

Modular Forms for Dummies

Definition: Modular Form

Let k be an integer. A function $f : \mathbb{H} \to \mathbb{C}$ is a modular form of weight k if (1) f is holomorphic on \mathbb{H} , (2) f is weakly modular of weight k, (3) f is holomorphic at ∞ .

Translation:

- I.e. nice and complex differentiable on the upper half plane
- We have an action on the upper half plane defined by (^a_c ^b_d) τ = ^{aτ+b}/_{cτ+d} for any element (^{a b}_{c d}) in (some congruent subgroup of) SL₂(ℤ)

Modular Forms for Dummies

Definition: Modular Form

Let k be an integer. A function $f : \mathbb{H} \to \mathbb{C}$ is a modular form of weight k if (1) f is holomorphic on \mathbb{H} , (2) f is weakly modular of weight k, (3) f is holomorphic at ∞ .

Translation:

- I.e. nice and complex differentiable on the upper half plane
- We have an action on the upper half plane defined by (^a_c ^b_d) τ = ^{aτ+b}/_{cτ+d} for any element (^{a b}_{c d}) in (some congruent subgroup of) SL₂(ℤ)
- Weakly modular means $f(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^k f(\tau)$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$

Modular Forms for Dummies

Definition: Modular Form

Let k be an integer. A function $f : \mathbb{H} \to \mathbb{C}$ is a modular form of weight k if (1) f is holomorphic on \mathbb{H} , (2) f is weakly modular of weight k, (3) f is holomorphic at ∞ .

Translation:

- I.e. nice and complex differentiable on the upper half plane
- We have an action on the upper half plane defined by (^a_c ^b_d) τ = ^{aτ+b}/_{cτ+d} for any element (^{a b}_{c d}) in (some congruent subgroup of) SL₂(ℤ)
- Weakly modular means $f(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^k f(\tau)$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$
- No singularities

Modular Forms for Dummies

Definition: Modular Form

Let k be an integer. A function $f : \mathbb{H} \to \mathbb{C}$ is a modular form of weight k if (1) f is holomorphic on \mathbb{H} , (2) f is weakly modular of weight k, (3) f is holomorphic at ∞ .

Translation:

- I.e. nice and complex differentiable on the upper half plane
- We have an action on the upper half plane defined by (^a_c ^b_d) τ = ^{aτ+b}/_{cτ+d} for any element (^{a b}_{c d}) in (some congruent subgroup of) SL₂(ℤ)
- Weakly modular means $f(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^k f(\tau)$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$
- No singularities

Barry Mazur: "Modular forms are functions on the complex plane that are inordinately symmetric. They satisfy so many internal symmetries that their mere existence seem like accidents. But they do exist."

Properties of Modular Forms

• Weakly holomorphic means that using the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ we see $f(\tau + 1) = f(\tau)$.

Properties of Modular Forms

- Weakly holomorphic means that using the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ we see $f(\tau + 1) = f(\tau)$.
- This periodicity means we have a fourier expansion

$$f(\tau) = \sum_{n=-\infty}^{n=\infty} a_n e^{2\pi i \tau n} = \sum_{n=-\infty}^{n=\infty} a_n q^n$$

Properties of Modular Forms

- Weakly holomorphic means that using the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ we see $f(\tau + 1) = f(\tau)$.
- This periodicity means we have a fourier expansion

$$f(\tau) = \sum_{n=-\infty}^{n=\infty} a_n e^{2\pi i \tau n} = \sum_{n=-\infty}^{n=\infty} a_n q^n$$

 $\bullet\,$ No singularities at ∞ ie. a fourier expansion of the form

$$f(\tau) = \sum_{n=0}^{n=\infty} a_n e^{2\pi i \tau n}$$

Properties of Modular Forms

- Weakly holomorphic means that using the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ we see $f(\tau + 1) = f(\tau)$.
- This periodicity means we have a fourier expansion

$$f(\tau) = \sum_{n=-\infty}^{n=\infty} a_n e^{2\pi i \tau n} = \sum_{n=-\infty}^{n=\infty} a_n q^n$$

 $\bullet\,$ No singularities at ∞ ie. a fourier expansion of the form

$$f(\tau) = \sum_{n=0}^{n=\infty} a_n e^{2\pi i \tau n}$$

• The weight k is always even and non-negative

Properties of Modular Forms

- Weakly holomorphic means that using the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ we see $f(\tau + 1) = f(\tau)$.
- This periodicity means we have a fourier expansion

$$f(\tau) = \sum_{n=-\infty}^{n=\infty} a_n e^{2\pi i \tau n} = \sum_{n=-\infty}^{n=\infty} a_n q^n$$

 $\bullet\,$ No singularities at ∞ ie. a fourier expansion of the form

$$f(\tau) = \sum_{n=0}^{n=\infty} a_n e^{2\pi i \tau n}$$

- The weight k is always even and non-negative
- We denote the space of modular forms of weight k as M_k

Properties of Modular Forms

- Weakly holomorphic means that using the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ we see $f(\tau + 1) = f(\tau)$.
- This periodicity means we have a fourier expansion

$$f(\tau) = \sum_{n=-\infty}^{n=\infty} a_n e^{2\pi i \tau n} = \sum_{n=-\infty}^{n=\infty} a_n q^n$$

 $\bullet\,$ No singularities at ∞ ie. a fourier expansion of the form

$$f(\tau) = \sum_{n=0}^{n=\infty} a_n e^{2\pi i \tau n}$$

- The weight k is always even and non-negative
- We denote the space of modular forms of weight k as M_k
- Remarkably this is a finite dimensional space given by the formula

$$\dim(M_k) = \lfloor k/12 \rfloor$$
 if $k \equiv 2 \mod 12$
 $\lfloor k/12 \rfloor + 1$ otherwise

Properties of Modular Forms

- Weakly holomorphic means that using the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ we see $f(\tau + 1) = f(\tau)$.
- This periodicity means we have a fourier expansion

$$f(\tau) = \sum_{n=-\infty}^{n=\infty} a_n e^{2\pi i \tau n} = \sum_{n=-\infty}^{n=\infty} a_n q^n$$

 $\bullet\,$ No singularities at ∞ ie. a fourier expansion of the form

$$f(\tau) = \sum_{n=0}^{n=\infty} a_n e^{2\pi i \tau n}$$

- The weight k is always even and non-negative
- We denote the space of modular forms of weight k as M_k
- Remarkably this is a finite dimensional space given by the formula

$$\dim(M_k) = \lfloor k/12 \rfloor \quad \text{if} \quad k \equiv 2 \mod 12$$
$$\lfloor k/12 \rfloor + 1 \quad \text{otherwise}$$

"Unreasonable effectiveness of modular forms"

Some examples

• Constant functions are in M_0

Some examples

- Constant functions are in M₀
- We will see shortly we need modular forms of weight 12
- Eisenstein Series of weight 12

$$E_{12}(\tau) = 1 + rac{65530}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^n$$

where $\sigma_k(n) = \sum_{d|n,d>0} d^k$

Some examples

- Constant functions are in M₀
- We will see shortly we need modular forms of weight 12
- Eisenstein Series of weight 12

$$E_{12}(au) = 1 + rac{65530}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^n$$

where $\sigma_k(n) = \sum_{d \mid n, d > 0} d^k$

The discriminant

$$\Delta(\tau) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n$$

where $\tau(n)$ can be written as

$$\frac{65}{756}\sigma_{11}(n) + \frac{691}{756}\sigma_5(n) - \frac{691}{3}\sum_{k=1}^{n-1}\sigma_5(k)\sigma_5(n-k)$$

Some examples

- Constant functions are in M₀
- We will see shortly we need modular forms of weight 12
- Eisenstein Series of weight 12

$$E_{12}(au) = 1 + rac{65530}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^n$$

where $\sigma_k(n) = \sum_{d \mid n, d > 0} d^k$

The discriminant

$$\Delta(\tau) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n$$

where $\tau(n)$ can be written as

$$\frac{65}{756}\sigma_{11}(n) + \frac{691}{756}\sigma_5(n) - \frac{691}{3}\sum_{k=1}^{n-1}\sigma_5(k)\sigma_5(n-k)$$

• As dimension of dim $(M_{12}) = 2$ $M_{12} = \mathbb{C}E_{12} \oplus \mathbb{C}\Delta$

Definition

Definition: Theta Series

Given a lattice L (in our positive definite case) we can define it's theta series as

$$\Theta_L(\tau) = \sum_{x \in L} q^{((x,x)/2)} = \sum_{m=0}^{\infty} N_m q^{m/2}$$

where N_m is the number of vectors of norm m.

Definition

Definition: Theta Series

Given a lattice L (in our positive definite case) we can define it's theta series as

$$\Theta_L(\tau) = \sum_{x \in L} q^{((x,x)/2)} = \sum_{m=0}^{\infty} N_m q^{m/2}$$

where N_m is the number of vectors of norm m.

This is defined for $\Im(au) > 0$ and is a holomorphic function on $\mathbb H$

Definition

Definition: Theta Series

Given a lattice L (in our positive definite case) we can define it's theta series as

$$\Theta_L(\tau) = \sum_{x \in L} q^{((x,x)/2)} = \sum_{m=0}^{\infty} N_m q^{m/2}$$

where N_m is the number of vectors of norm m.

This is defined for $\Im(\tau) > 0$ and is a holomorphic function on \mathbb{H} Examples:

• The case n = 1

$$\Theta_{\mathbb{Z}} = 1 + 2\sum_{m=1}^{\infty} q^{m^2/2}$$

Definition

Definition: Theta Series

Given a lattice L (in our positive definite case) we can define it's theta series as

$$\Theta_L(\tau) = \sum_{x \in L} q^{((x,x)/2)} = \sum_{m=0}^{\infty} N_m q^{m/2}$$

where N_m is the number of vectors of norm m.

This is defined for $\Im(\tau) > 0$ and is a holomorphic function on \mathbb{H} Examples:

• The case n = 1

$$\Theta_{\mathbb{Z}} = 1 + 2\sum_{m=1}^{\infty} q^{m^2/2}$$

• In the case n = 2 and for the square lattice $\mathbb{Z}(1,0) \oplus \mathbb{Z}(0,1)$

$$\Theta_{\mathbb{Z}(1,0)\oplus\mathbb{Z}(0,1)}=\sum_{m=0}^{\infty}r_2(n)q^{m/2}$$

where $r_2(n)$ is the number of ways of writing a number as a sum of squares

Theorem

If $L \subset \mathbb{R}^n$ is even and unimodular then Θ_L is a modular form of weight n/2

Theorem

If $L \subset \mathbb{R}^n$ is even and unimodular then Θ_L is a modular form of weight n/2

This is the final piece of information we need to show:

Theorem

If $L \subset \mathbb{R}^n$ is even and unimodular then Θ_L is a modular form of weight n/2

This is the final piece of information we need to show:

Theorem

The kissing number problem in 24 dimensions has a solution of $au_{24} = 196560$

The Proof

• $\Theta_{L_{24}} \in M_{12}$ by theorem on previous slide as the Leech lattice is even and unimodular

The Proof

- $\Theta_{L_{24}} \in M_{12}$ by theorem on previous slide as the Leech lattice is even and unimodular
- We remember M_{12} is 2-dimensional and spanned by $\mathbb{C}E_{12} \oplus \mathbb{C}\Delta$ so $\Theta_{L_{24}} = \alpha E_{12} \oplus \beta \Delta$

The Proof

- $\Theta_{L_{24}} \in M_{12}$ by theorem on previous slide as the Leech lattice is even and unimodular
- We remember M_{12} is 2-dimensional and spanned by $\mathbb{C}E_{12} \oplus \mathbb{C}\Delta$ so $\Theta_{L_{24}} = \alpha E_{12} \oplus \beta \Delta$
- We also remember that the leech lattice only has vectors of even norm and no vectors of norm 2 so it has an expansion of the form

$$\Theta_{L_{24}}=1+0q+\ldots$$

The Proof

- $\Theta_{L_{24}} \in M_{12}$ by theorem on previous slide as the Leech lattice is even and unimodular
- We remember M_{12} is 2-dimensional and spanned by $\mathbb{C}E_{12} \oplus \mathbb{C}\Delta$ so $\Theta_{L_{24}} = \alpha E_{12} \oplus \beta \Delta$
- We also remember that the leech lattice only has vectors of even norm and no vectors of norm 2 so it has an expansion of the form

$$\Theta_{L_{24}}=1+0q+\ldots$$

• We then compare coefficients to see $\alpha = 1$ and $\beta = -\frac{65530}{691}$ so we now know all the coefficients!

$$N_{2m} = \frac{65530}{691} (\sigma_{11}(m) - \tau(m))$$

The Proof

- $\Theta_{L_{24}} \in M_{12}$ by theorem on previous slide as the Leech lattice is even and unimodular
- We remember M_{12} is 2-dimensional and spanned by $\mathbb{C}E_{12} \oplus \mathbb{C}\Delta$ so $\Theta_{L_{24}} = \alpha E_{12} \oplus \beta \Delta$
- We also remember that the leech lattice only has vectors of even norm and no vectors of norm 2 so it has an expansion of the form

$$\Theta_{L_{24}}=1+0q+\ldots$$

• We then compare coefficients to see $\alpha = 1$ and $\beta = -\frac{65530}{691}$ so we now know all the coefficients!

$$N_{2m} = \frac{65530}{691} (\sigma_{11}(m) - \tau(m))$$

• So for m = 2 there are $N_4 = \frac{65530}{691}(\sigma_{11}(2) - \tau(2)) = 196560$ vectors of norm 4 in the Leech lattice.

The Proof

- $\Theta_{L_{24}} \in M_{12}$ by theorem on previous slide as the Leech lattice is even and unimodular
- We remember M_{12} is 2-dimensional and spanned by $\mathbb{C}E_{12} \oplus \mathbb{C}\Delta$ so $\Theta_{L_{24}} = \alpha E_{12} \oplus \beta \Delta$
- We also remember that the leech lattice only has vectors of even norm and no vectors of norm 2 so it has an expansion of the form

$$\Theta_{L_{24}}=1+0q+\ldots$$

• We then compare coefficients to see $\alpha = 1$ and $\beta = -\frac{65530}{691}$ so we now know all the coefficients!

$$N_{2m} = \frac{65530}{691} (\sigma_{11}(m) - \tau(m))$$

- So for m = 2 there are $N_4 = \frac{65530}{691}(\sigma_{11}(2) \tau(2)) = 196560$ vectors of norm 4 in the Leech lattice.
- But there already exists an upper bound of 196560 so this is indeed the kissing number in 24 dimensions.

Reasons to work with Modular Forms

 Representation numbers r_n(m): Number of ways of summing n squares to equal an positive integer m

- Representation numbers r_n(m): Number of ways of summing n squares to equal an positive integer m
- Fermat's Last Theorem: $a^n + b^n = c^n$, uses the link between elliptic curves and modular forms

- Representation numbers r_n(m): Number of ways of summing n squares to equal an positive integer m
- Fermat's Last Theorem: $a^n + b^n = c^n$, uses the link between elliptic curves and modular forms
- Partition numbers p(n): Number of ways of summing to an positive integer n

- Representation numbers r_n(m): Number of ways of summing n squares to equal an positive integer m
- Fermat's Last Theorem: $a^n + b^n = c^n$, uses the link between elliptic curves and modular forms
- Partition numbers p(n): Number of ways of summing to an positive integer n
- Birch Swinerton Dyer Conjecture: Links *L*-function at *s* = 1 with rank of (1,000,000 dollars)

- Representation numbers r_n(m): Number of ways of summing n squares to equal an positive integer m
- Fermat's Last Theorem: $a^n + b^n = c^n$, uses the link between elliptic curves and modular forms
- Partition numbers p(n): Number of ways of summing to an positive integer n
- Birch Swinerton Dyer Conjecture: Links *L*-function at *s* = 1 with rank of (1,000,000 dollars)
- Congruent number problem: When does a right angle triangle with rational sides have positive integer area?

- Representation numbers r_n(m): Number of ways of summing n squares to equal an positive integer m
- Fermat's Last Theorem: $a^n + b^n = c^n$, uses the link between elliptic curves and modular forms
- Partition numbers p(n): Number of ways of summing to an positive integer n
- Birch Swinerton Dyer Conjecture: Links *L*-function at *s* = 1 with rank of (1,000,000 dollars)
- Congruent number problem: When does a right angle triangle with rational sides have positive integer area?
- Zeta values: Zeta functions of totally real number fields are rational at negative integers

- Representation numbers r_n(m): Number of ways of summing n squares to equal an positive integer m
- Fermat's Last Theorem: $a^n + b^n = c^n$, uses the link between elliptic curves and modular forms
- Partition numbers p(n): Number of ways of summing to an positive integer n
- Birch Swinerton Dyer Conjecture: Links *L*-function at *s* = 1 with rank of (1,000,000 dollars)
- Congruent number problem: When does a right angle triangle with rational sides have positive integer area?
- Zeta values: Zeta functions of totally real number fields are rational at negative integers
- From wiki on applications of mock theta functions "Semikhatov, Taormina Tipunin (2005) related mock theta functions to infinite dimensional Lie superalgebras and conformal field theory"

- Representation numbers r_n(m): Number of ways of summing n squares to equal an positive integer m
- Fermat's Last Theorem: $a^n + b^n = c^n$, uses the link between elliptic curves and modular forms
- Partition numbers p(n): Number of ways of summing to an positive integer n
- Birch Swinerton Dyer Conjecture: Links *L*-function at *s* = 1 with rank of (1,000,000 dollars)
- Congruent number problem: When does a right angle triangle with rational sides have positive integer area?
- Zeta values: Zeta functions of totally real number fields are rational at negative integers
- From wiki on applications of mock theta functions "Semikhatov, Taormina Tipunin (2005) related mock theta functions to infinite dimensional Lie superalgebras and conformal field theory"
- From wiki on applications of mock theta functions "Lawrence Zagier (1999) related mock theta functions to quantum invariants of 3-manifolds"

Reasons to work with Modular Forms

- Representation numbers r_n(m): Number of ways of summing n squares to equal an positive integer m
- Fermat's Last Theorem: $a^n + b^n = c^n$, uses the link between elliptic curves and modular forms
- Partition numbers p(n): Number of ways of summing to an positive integer n
- Birch Swinerton Dyer Conjecture: Links *L*-function at *s* = 1 with rank of (1,000,000 dollars)
- Congruent number problem: When does a right angle triangle with rational sides have positive integer area?
- Zeta values: Zeta functions of totally real number fields are rational at negative integers
- From wiki on applications of mock theta functions "Semikhatov, Taormina Tipunin (2005) related mock theta functions to infinite dimensional Lie superalgebras and conformal field theory"
- From wiki on applications of mock theta functions "Lawrence Zagier (1999) related mock theta functions to quantum invariants of 3-manifolds"
- Other things:

Generate class numbers of imaginary quadratic fields, main conjecture of Iwasawa theory, Langlands program, identities between divisor functions, physics (Calabi-Yau varieties, Kac Moody algebras, moonshine, number of BPS states in N = 4 string theories), polymer chemistry allegedly.

Summary of what I actually work on!

Other types of "modular forms"

 S_k , cusp forms H_k , harmonic weak Maass forms LH_k , locally harmonic Maass forms

Summary of what I actually work on!

Other types of "modular forms"

 S_k , cusp forms H_k , harmonic weak Maass forms LH_k , locally harmonic Maass forms

Definition

The ξ_k operator for a smooth function $f : \mathbb{H} \to \mathbb{C}$ as:

$$\xi_k(f) = v^k i \overline{\left(\frac{\partial}{\partial u} + i \frac{\partial}{\partial v}(f)\right)}$$

Summary of what I actually work on!

Other types of "modular forms"

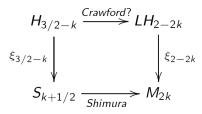
 S_k , cusp forms H_k , harmonic weak Maass forms LH_k , locally harmonic Maass forms

Definition

The ξ_k operator for a smooth function $f : \mathbb{H} \to \mathbb{C}$ as:

$$\xi_k(f) = v^k i \overline{\left(\frac{\partial}{\partial u} + i \frac{\partial}{\partial v}(f)\right)}$$

Summary of what I actually work on!



Summary of what I actually work on!

We form this theta lift (roughly) by integrating against a theta function $\Theta(\tau, z)$ of weight (k - 3/2, 2 - 2k)

$$\int_{\tau\in\mathcal{F}}^{reg}\left\langle f(\tau),\overline{\Theta(\tau,z)}\right\rangle \frac{dudv}{v^2}$$

where $f \in H_{3/2-k}$

Summary of what I actually work on!

We form this theta lift (roughly) by integrating against a theta function $\Theta(\tau, z)$ of weight (k - 3/2, 2 - 2k)

$$\int_{\tau\in\mathcal{F}}^{reg}\left\langle f(\tau),\overline{\Theta(\tau,z)}\right\rangle \frac{dudv}{v^2}$$

where $f \in H_{3/2-k}$ Will have too wait for another time!