1-form Laplacian on a Graph-like Manifold

Michela Egidi

GandAIF

March 13, 2014

Content

Content

- Metric Graph and metric Laplacian

Content

- Metric Graph and metric Laplacian
- Graph-like Manifold and the Hodge Laplacian

Content

- Metric Graph and metric Laplacian
- Graph-like Manifold and the Hodge Laplacian
- Aim, Strategy and Results

Content

- Metric Graph and metric Laplacian
- Graph-like Manifold and the Hodge Laplacian
- Aim, Strategy and Results
- Proofs

Content

- Metric Graph and metric Laplacian
- Graph-like Manifold and the Hodge Laplacian
- Aim, Strategy and Results
- Proofs
- Spectral gaps

Metric Graph

Metric Graph

Given a discrete graph $G=(V, E, \partial)$ where $\partial: E \rightarrow V \times V$ such that $e \mapsto\left(\partial_{-} e, \partial_{+} e\right)$ and a length function $\ell: E \rightarrow(0,+\infty)$, $e \mapsto \ell_{e}>0$, we identify $e \sim I_{e}:=\left[0, \ell_{e}\right]$. A metric graph X_{0} is

$$
X_{0}:=\bigcup_{e \in E} I_{e} / \sim
$$

where \sim identifies end points of I_{e}.

Metric Laplacian

Metric Laplacian

- 1-form α on $X_{0}: \quad \alpha=\left(\alpha_{e}\right)_{e \in E}$ with $\alpha_{e}=f_{e} d s$

Metric Laplacian

- 1-form α on $X_{0}: \quad \alpha=\left(\alpha_{e}\right)_{e \in E}$ with $\alpha_{e}=f_{e} d s$
- L^{2}-space $L^{2}\left(\Lambda^{1}\left(X_{0}\right)\right)$:

$$
\begin{aligned}
& L^{2}\left(\Lambda^{1}\left(X_{0}\right)\right)=\bigoplus_{e \in E} L^{2}\left(\Lambda^{1}\left(I_{e}\right)\right) \\
&\|\alpha\|_{L^{2}\left(\Lambda^{1}\left(X_{0}\right)\right)}^{2}:=\sum_{e \in E}\left\|\alpha_{e}\right\|_{L^{2}\left(\Lambda^{1}\left(I_{e}\right)\right)}^{2}
\end{aligned}
$$

Metric Laplacian

- 1-form α on $X_{0}: \quad \alpha=\left(\alpha_{e}\right)_{e \in E}$ with $\alpha_{e}=f_{e} d s$
- L^{2}-space $L^{2}\left(\Lambda^{1}\left(X_{0}\right)\right)$:

$$
\begin{aligned}
L^{2}\left(\Lambda^{1}\left(X_{0}\right)\right) & =\bigoplus_{e \in E} L^{2}\left(\Lambda^{1}\left(I_{e}\right)\right) \\
\|\alpha\|_{L^{2}\left(\Lambda^{1}\left(X_{0}\right)\right)}^{2}:= & \sum_{e \in E}\left\|\alpha_{e}\right\|_{L^{2}\left(\Lambda^{1}\left(I_{e}\right)\right)}^{2}
\end{aligned}
$$

- exterior derivative:

$$
\begin{gathered}
d: \operatorname{dom} d \longrightarrow L^{2}\left(\Lambda^{1}\left(X_{0}\right)\right), \quad\left(f_{e}\right)_{e \in E}=\left(f_{e}^{\prime} d s\right)_{e \in E} \\
\operatorname{dom} d=H^{1}\left(X_{0}\right) \cap C\left(X_{0}\right)
\end{gathered}
$$

- adjoint operator:

$$
\begin{gathered}
d^{*} \alpha=-\left(f_{e}\right)_{e \in E}^{\prime} \quad \operatorname{dom} d^{*}=\left\{\alpha \in H^{1}\left(\Lambda^{1}\left(X_{0}\right)\right) \mid \sum_{e \in E} \vec{\alpha}_{e}(v)=0\right\} \\
\vec{\alpha}_{e}(v)= \begin{cases}-f_{e}(0) d s & v=\partial_{-} e \\
f_{e}\left(l_{e}\right) d s & v=\partial_{+} e\end{cases}
\end{gathered}
$$

- adjoint operator:

$$
\begin{gathered}
d^{*} \alpha=-\left(f_{e}\right)_{e \in E}^{\prime} \quad \operatorname{dom} d^{*}=\left\{\alpha \in H^{1}\left(\Lambda^{1}\left(X_{0}\right)\right) \mid \sum_{e \in E} \vec{\alpha}_{e}(v)=0\right\} \\
\vec{\alpha}_{e}(v)= \begin{cases}-f_{e}(0) d s & v=\partial_{-} e \\
f_{e}\left(l_{e}\right) d s & v=\partial_{+} e\end{cases}
\end{gathered}
$$

- Laplacian on 1-forms on X_{0} :

$$
\Delta_{x_{0}}^{1} \alpha=d d^{*} \alpha=-\alpha^{\prime \prime}
$$

$$
\operatorname{dom} \Delta_{X_{0}}=\left\{\alpha \in \operatorname{dom} d^{*} \mid d^{*} \alpha \in \operatorname{dom} d\right\}
$$

Graph-like Manifold

Graph-like Manifold

Given a metric graph X_{0}, we associate a family of compact and connected manifolds $X_{\varepsilon}=\left(X, g_{\varepsilon}\right), \varepsilon>0$, of dimension $n \geq 2$ built as

$$
\begin{gather*}
X_{\varepsilon}=\bigcup_{e \in E} X_{\varepsilon, e} \cup \bigcup_{v \in V} X_{\varepsilon, v} \\
X_{\varepsilon, v} \cap X_{\varepsilon, e}= \begin{cases}\emptyset & e \notin\left\{e \in E \mid v=\partial_{ \pm} e\right\} \\
Y_{\varepsilon, e} & e \in\left\{e \in E \mid v=\partial_{ \pm} e\right\}\end{cases} \tag{1}
\end{gather*}
$$

Here: $X_{\varepsilon, v}=\left(X_{v}, \varepsilon^{2} g_{v}\right), Y_{\varepsilon, e}=\left(Y_{e}, \varepsilon^{2} h_{e}\right)$ and $X_{\varepsilon, e}=\left(X_{e}, g_{\varepsilon, e}\right)=\left(I_{e} \times Y_{e}, d s^{2}+\varepsilon^{2} h_{e}\right)$ with X_{v}, X_{e} compact Riemannian manifolds with boundary of dimension n and Y_{e} a closed manifold of dimension $n-1$.

Figure: An example of a 2-dimensional graph-like manifold

Hodge Laplacian

Hodge Laplacian

- L2 -space:

$$
L^{2}\left(\Lambda^{1}\left(\mathrm{X}_{\varepsilon}\right)\right)=\left\{w \in \Lambda^{1}\left(\mathrm{X}_{\varepsilon}\right) \mid\|w\|_{L^{2}\left(\Lambda^{1}\left(\mathrm{X}_{\varepsilon}\right)\right)}^{2}:=\int_{\mathrm{X}_{\varepsilon}} w \wedge * w<\infty\right\}
$$

Hodge Laplacian

- L2 -space:

$$
L^{2}\left(\Lambda^{1}\left(\mathrm{X}_{\varepsilon}\right)\right)=\left\{w \in \Lambda^{1}\left(\mathrm{X}_{\varepsilon}\right) \mid\|w\|_{L^{2}\left(\Lambda^{1}\left(\mathrm{X}_{\varepsilon}\right)\right)}^{2}:=\int_{\mathrm{X}_{\varepsilon}} w \wedge * w<\infty\right\}
$$

- Hodge Laplacian on 1-forms on X_{ε} :

$$
\Delta_{\mathrm{X}_{\varepsilon}}^{1}=d d^{*}+d^{*} d
$$

with d and d^{*} are the classical exterior derivative and co-derivative on a manifold.

Aim and Strategy

Aim and Strategy

- We want to relate $\sigma\left(\Delta_{X_{\varepsilon}}^{1}\right)$ with $\sigma\left(\Delta_{X_{0}}^{1}\right)$

Aim and Strategy

- We want to relate $\sigma\left(\Delta_{X_{\varepsilon}}^{1}\right)$ with $\sigma\left(\Delta_{X_{0}}^{1}\right)$
- By Hodge Theorem, any 1-form splits as

$$
\alpha=d f+d^{*} \beta+h
$$

where f, β and h are a function, a 2-form and a harmonic 1-form respectively.

Aim and Strategy

- We want to relate $\sigma\left(\Delta_{X_{\varepsilon}}^{1}\right)$ with $\sigma\left(\Delta_{X_{0}}^{1}\right)$
- By Hodge Theorem, any 1-form splits as

$$
\alpha=d f+d^{*} \beta+h
$$

where f, β and h are a function, a 2-form and a harmonic 1-form respectively.
Then, we have

$$
\Delta_{X_{\varepsilon}}^{1} \alpha=d d^{*}(d f)+d^{*} d\left(d^{*} \beta\right)=\Delta_{X_{\varepsilon}}^{1, \mathrm{ex}}(d f)+\Delta_{X_{\varepsilon}}^{1, \mathrm{co-ex}}\left(d^{*} \beta\right)
$$

Aim and Strategy

- We want to relate $\sigma\left(\Delta_{X_{\varepsilon}}^{1}\right)$ with $\sigma\left(\Delta_{X_{0}}^{1}\right)$
- By Hodge Theorem, any 1-form splits as

$$
\alpha=d f+d^{*} \beta+h
$$

where f, β and h are a function, a 2-form and a harmonic 1-form respectively.
Then, we have

$$
\Delta_{\mathrm{X}_{\varepsilon}}^{1} \alpha=d d^{*}(d f)+d^{*} d\left(d^{*} \beta\right)=\Delta_{X_{\varepsilon}}^{1, \mathrm{ex}}(d f)+\Delta_{X_{\varepsilon}}^{1, \mathrm{co-ex}}\left(d^{*} \beta\right)
$$

Hence, we study the two new Laplacian separately.

Results

Results

Theorem 1
Let X_{ε} be a graph-like manifold with underlined graph X_{0}. Let $\lambda_{j}^{e x, 1}\left(X_{\varepsilon}\right)$, $\lambda_{j}^{1}\left(X_{0}\right)$ be the j-th eigenvalue on exact 1-forms on X_{ε} and on 1-forms on X_{0}, respectively. Then,

$$
\lambda_{j}^{e x, 1}\left(\mathrm{X}_{\varepsilon}\right) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \lambda_{j}^{1}\left(X_{0}\right) \quad \text { for all } j>0
$$

Results

Theorem 2
Let X_{ε} be a graph-like manifold of dimension $n \geq 3$ shrinking to a metric graph X_{0} as $\varepsilon \rightarrow 0$. Then, the first eigenvalue of the Laplacian defined on co-exact 1-forms on X_{ε} satisfies

$$
\lambda_{1}^{c o-e x, 1}\left(\mathrm{X}_{\varepsilon}\right) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \infty
$$

Therefore, in the limit, the spectrum of the Laplacian on co-exact 1-forms contains just 0 and all the other eigenvalues tend to ∞ as $\varepsilon \rightarrow 0$

Exact 1-forms: convergence

Exact 1-forms: convergence

$\lambda_{j}^{0}(\cdot)=j$-th eigenvalue of Δ^{0}.

Exact 1-forms: convergence

$\lambda_{j}^{0}(\cdot)=j$-th eigenvalue of Δ^{0}.
$\lambda_{j}^{1}\left(X_{0}\right)=j$-th eigenvalue of $\Delta_{1}^{X_{0}}$

Exact 1-forms: convergence

$\lambda_{j}^{0}(\cdot)=j$-th eigenvalue of Δ^{0}.
$\lambda_{j}^{1}\left(X_{0}\right)=j$-th eigenvalue of $\Delta_{1}^{X_{0}}$
$\lambda_{j}^{e x, 1}\left(X_{\varepsilon}\right)=j$-th eigenvalue of $\Delta_{X_{\varepsilon}}^{e x, 1}$

Exact 1-forms: convergence

$\lambda_{j}^{0}(\cdot)=j$-th eigenvalue of Δ^{0}.
$\lambda_{j}^{1}\left(X_{0}\right)=j$-th eigenvalue of $\Delta_{1}^{X_{0}}$
$\lambda_{j}^{e x, 1}\left(\mathrm{X}_{\varepsilon}\right)=j$-th eigenvalue of $\Delta_{X_{\varepsilon}}^{e x, 1}$
We have:

$$
\begin{array}{lll}
\lambda_{j}^{e x, 1}\left(\mathrm{X}_{\varepsilon}\right) & \stackrel{(a)}{=} & \lambda_{j}^{0}\left(\mathrm{X}_{\varepsilon}\right) \Longrightarrow \lambda_{j}^{e \times, 1}\left(\mathrm{X}_{\varepsilon}\right) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \lambda_{j}^{1}\left(X_{0}\right) \\
\lambda_{j}^{1}\left(X_{0}\right) & \stackrel{(b)}{=} & \begin{array}{l}
\text { (c) } \mid \varepsilon \rightarrow 0 \\
\lambda_{j}^{0}\left(X_{0}\right)
\end{array}
\end{array}
$$

Exact 1-forms: convergence

$\lambda_{j}^{0}(\cdot)=j$-th eigenvalue of Δ^{0}.
$\lambda_{j}^{1}\left(X_{0}\right)=j$-th eigenvalue of $\Delta_{1}^{X_{0}}$
$\lambda_{j}^{e x, 1}\left(\mathrm{X}_{\varepsilon}\right)=j$-th eigenvalue of $\Delta_{X_{\varepsilon}}^{e x, 1}$
We have:

$$
\begin{array}{lll}
\lambda_{j}^{e x, 1}\left(\mathrm{X}_{\varepsilon}\right) & \stackrel{(a)}{=} & \lambda_{j}^{0}\left(\mathrm{X}_{\varepsilon}\right) \Longrightarrow \lambda_{j}^{e x, 1}\left(\mathrm{X}_{\varepsilon}\right) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \lambda_{j}^{1}\left(X_{0}\right) \\
\lambda_{j}^{1}\left(X_{0}\right) & \stackrel{(\text { bb }}{=} & \begin{array}{l}
\text { (c) } \mid \varepsilon \rightarrow 0 \\
\lambda_{j}^{0}\left(X_{0}\right)
\end{array}
\end{array}
$$

(a) is given applying d^{*} to the eigen-exact 1-forms on X_{ε} and d to the eigenfunctions on X_{ε}.

Exact 1-forms: convergence

$\lambda_{j}^{0}(\cdot)=j$-th eigenvalue of Δ^{0}.
$\lambda_{j}^{1}\left(X_{0}\right)=j$-th eigenvalue of $\Delta_{1}^{X_{0}}$
$\lambda_{j}^{e x, 1}\left(\mathrm{X}_{\varepsilon}\right)=j$-th eigenvalue of $\Delta_{X_{\varepsilon}}^{e x, 1}$
We have:

$$
\begin{array}{lll}
\lambda_{j}^{e x, 1}\left(X_{\varepsilon}\right) & \stackrel{(a)}{=} & \lambda_{j}^{0}\left(X_{\varepsilon}\right) \\
& (c) \downarrow \lambda_{k \rightarrow 0}^{e x, 1}\left(X_{\varepsilon}\right) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \lambda_{j}^{1}\left(X_{0}\right) \\
\lambda_{j}^{1}\left(X_{0}\right) & \stackrel{(b)}{=} & \lambda_{j}^{0}\left(X_{0}\right)
\end{array}
$$

(a) is given applying d^{*} to the eigen-exact 1-forms on X_{ε} and d to the eigenfunctions on X_{ε}.
(b) is given applying d^{*} to the eigen-1-forms on X_{0} and d to the eigenfunctions on X_{0}.

Exact 1-forms: convergence

$\lambda_{j}^{0}(\cdot)=j$-th eigenvalue of Δ^{0}.
$\lambda_{j}^{1}\left(X_{0}\right)=j$-th eigenvalue of $\Delta_{1}^{X_{0}}$
$\lambda_{j}^{e x, 1}\left(\mathrm{X}_{\varepsilon}\right)=j$-th eigenvalue of $\Delta_{X_{\varepsilon}}^{e x, 1}$
We have:

$$
\begin{array}{lll}
\lambda_{j}^{e x, 1}\left(\mathrm{X}_{\varepsilon}\right) & \stackrel{(a)}{=} & \lambda_{j}^{0}\left(\mathrm{X}_{\varepsilon}\right) \\
& (c) \downarrow \varepsilon \rightarrow 0 \\
\lambda_{j}^{1}\left(X_{0}\right) & \stackrel{(b)}{=} & \lambda_{j}^{0}\left(X_{0}\right)
\end{array}
$$

(a) is given applying d^{*} to the eigen-exact 1-forms on X_{ε} and d to the eigenfunctions on X_{ε}.
(b) is given applying d^{*} to the eigen-1-forms on X_{0} and d to the eigenfunctions on X_{0}.
(c) is due to convergence results by Exner and Post in $\{2]$.

Co-exact 1-forms: divergence

Co-exact 1-forms: divergence

- Let $\lambda_{j}^{c o-e x, 1}\left(\mathrm{X}_{\varepsilon}\right), \lambda_{j}^{\text {ex, } 2}\left(\mathrm{X}_{\varepsilon}\right)$ be the j-th eigenvalues, $j>0$, on co-exact 1-forms and exact 2-forms on X_{ε}.

Co-exact 1-forms: divergence

- Let $\lambda_{j}^{c o-e x, 1}\left(\mathrm{X}_{\varepsilon}\right), \lambda_{j}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right)$ be the j-th eigenvalues, $j>0$, on co-exact 1-forms and exact 2-forms on X_{ε}.
We have

$$
\lambda_{j}^{c o-e x, 1}\left(\mathrm{X}_{\varepsilon}\right)=\lambda_{j}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right)
$$

Co-exact 1-forms: divergence

- Let $\lambda_{j}^{c o-e x, 1}\left(\mathrm{X}_{\varepsilon}\right), \lambda_{j}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right)$ be the j-th eigenvalues, $j>0$, on co-exact 1-forms and exact 2-forms on X_{ε}.
We have

$$
\lambda_{j}^{c o-e x, 1}\left(\mathrm{X}_{\varepsilon}\right)=\lambda_{j}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right)
$$

Hence, we choose to work with 2-exact forms.

Theorem 3

Let M be a n-dimensional compact Riemannian manifold without boundary and let $\left\{U_{i}\right\}_{i=1}^{m}$ be an open cover of M. Let $U_{i j}=U_{i} \cap U_{j}$ and let $\mu\left(U_{i}\right)$, resp. $\mu\left(U_{i j}\right)$, be the smallest positive eigenvalue of the Laplacian acting on exact 2-forms on U_{i}, resp. on 1-forms on $U_{i j}$, satisfying absolute boundary conditions. Further, assume $H^{1}\left(U_{i j}\right)=0$ for all i, j. Then, the first eigenvalue of the Laplacian on exact 2-forms on M satisfies

$$
\lambda_{1}^{e x, 2}(M) \geq \frac{2^{-3}}{\sum_{i=1}^{m}\left(\frac{1}{\mu\left(U_{i}\right)}+\sum_{j=1}^{m_{i}}\left(\frac{w_{n, 2} c_{\rho}}{\mu\left(U_{i j}\right)}+1\right)\left(\frac{1}{\mu\left(U_{i}\right)}+\frac{1}{\mu\left(U_{j}\right)}\right)\right)}
$$

where m_{i} is the number of $j, j \neq i$ for which $U_{i} \cap U_{j} \neq \emptyset$ and $c_{\rho}, w_{n, 2}$ are constants.

See [3, Lemma 2.3]

Assume $n \geq 3$ and choose the open cover $\left\{U_{\varepsilon, i}\right\}_{i \in E, V}$ of X_{ε} as the disjoint union of edge and vertex neighbourhoods in (1) in such a way that they overlap a bit.

Assume $n \geq 3$ and choose the open cover $\left\{U_{\varepsilon, i}\right\}_{i \in E, V}$ of X_{ε} as the disjoint union of edge and vertex neighbourhoods in (1) in such a way that they overlap a bit.

Figure: The open cover of X_{ε}

Assume $H^{1}\left(Y_{\varepsilon, e}\right)=0$ for all $e \in E$.

Assume $H^{1}\left(Y_{\varepsilon, e}\right)=0$ for all $e \in E$.
Then,

$$
\lambda_{1}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right) \geq \frac{2^{-3}}{\sum_{v \in V}\left(\frac{1}{\mu_{1,2}\left(X_{\varepsilon, v}\right)}+\sum_{e \in E_{v}}\left(\frac{w_{n, 2} c_{\rho}}{\mu_{1,1}\left(X_{\varepsilon, e}\right)}+1\right)\left(\frac{1}{\mu_{1,2}\left(X_{\varepsilon, v}\right)}+\frac{1}{\mu_{1,2}\left(X_{\varepsilon, e}\right)}\right)\right)}
$$

Assume $H^{1}\left(Y_{\varepsilon, e}\right)=0$ for all $e \in E$.
Then,

$$
\lambda_{1}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right) \geq \frac{2^{-3}}{\sum_{v \in V}\left(\frac{1}{\mu_{1,2}\left(X_{\varepsilon, v}\right)}+\sum_{e \in E_{v}}\left(\frac{w_{n, 2} c_{\rho}}{\mu_{1,1}\left(X_{\varepsilon, e}\right)}+1\right)\left(\frac{1}{\mu_{1,2}\left(X_{\varepsilon, v}\right)}+\frac{1}{\mu_{1,2}\left(X_{\varepsilon, e}\right)}\right)\right)}
$$

where $\mu_{k, p}(\cdot)$ denotes the k-eigenvalue on p-forms satisfying absolute boundary conditions and $w_{n, 2}$ and c_{ρ} are constants.

Assume $H^{1}\left(Y_{\varepsilon, e}\right)=0$ for all $e \in E$.
Then,

where $\mu_{k, p}(\cdot)$ denotes the k-eigenvalue on p-forms satisfying absolute boundary conditions and $w_{n, 2}$ and c_{ρ} are constants.

Using a Rayleight question argument, we have

Assume $H^{1}\left(Y_{\varepsilon, e}\right)=0$ for all $e \in E$.
Then,

$$
\lambda_{1}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right) \geq \frac{2^{-3}}{\sum_{v \in V}\left(\frac{1}{\mu_{1,2}\left(X_{\varepsilon, v}\right)}+\sum_{e \in E_{v}}\left(\frac{w_{n, 2} c_{\rho}}{\mu_{1,1}\left(X_{\varepsilon, e}\right)}+1\right)\left(\frac{1}{\mu_{1,2}\left(X_{\varepsilon, v}\right)}+\frac{1}{\mu_{1,2}\left(X_{\varepsilon, e}\right)}\right)\right)}
$$

where $\mu_{k, p}(\cdot)$ denotes the k-eigenvalue on p-forms satisfying absolute boundary conditions and $w_{n, 2}$ and c_{ρ} are constants.
Using a Rayleight question argument, we have

$$
\mu_{1,2}\left(X_{\varepsilon, v}\right)=\frac{\mu_{1,2}\left(X_{v}\right)}{\varepsilon^{2}} \quad \mu_{1, i}\left(X_{\varepsilon, e}\right)=\frac{c_{i}(\varepsilon)}{\varepsilon^{2}}, \quad c_{i}(\varepsilon) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \lambda_{1, i}\left(Y_{e}\right) \quad i=1,2
$$

Assume $H^{1}\left(Y_{\varepsilon, e}\right)=0$ for all $e \in E$.
Then,

$$
\lambda_{1}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right) \geq \frac{2^{-3}}{\sum_{v \in V}\left(\frac{1}{\mu_{1,2}\left(X_{\varepsilon, v}\right)}+\sum_{e \in E_{v}}\left(\frac{w_{n, 2} c_{\rho}}{\mu_{1,1}\left(X_{\varepsilon, e}\right)}+1\right)\left(\frac{1}{\mu_{1,2}\left(X_{\varepsilon, v}\right)}+\frac{1}{\mu_{1,2}\left(X_{\varepsilon, e}\right)}\right)\right)}
$$

where $\mu_{k, p}(\cdot)$ denotes the k-eigenvalue on p-forms satisfying absolute boundary conditions and $w_{n, 2}$ and c_{ρ} are constants.
Using a Rayleight question argument, we have

$$
\mu_{1,2}\left(X_{\varepsilon, v}\right)=\frac{\mu_{1,2}\left(X_{v}\right)}{\varepsilon^{2}} \quad \mu_{1, i}\left(X_{\varepsilon, e}\right)=\frac{c_{i}(\varepsilon)}{\varepsilon^{2}}, \quad c_{i}(\varepsilon) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \lambda_{1, i}\left(Y_{e}\right) \quad i=1,2
$$

Therefore,

$$
\lambda_{1}^{c o-e x, 1}\left(\mathrm{X}_{\varepsilon}\right)=\lambda_{1}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right) \geq \frac{\text { const }}{\varepsilon^{2}} \underset{\varepsilon \rightarrow 0}{\longrightarrow} \infty
$$

Assume $H^{1}\left(Y_{\varepsilon, e}\right)=0$ for all $e \in E$.
Then,

$$
\lambda_{1}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right) \geq \frac{2^{-3}}{\sum_{v \in V}\left(\frac{1}{\mu_{1,2}\left(X_{\varepsilon, v}\right)}+\sum_{e \in E_{V}}\left(\frac{w_{n, 2} c_{\rho}}{\mu_{1,1}\left(X_{\varepsilon, e}\right)}+1\right)\left(\frac{1}{\mu_{1,2}\left(X_{\varepsilon, v}\right)}+\frac{1}{\mu_{1,2}\left(X_{\varepsilon, e}\right)}\right)\right)}
$$

where $\mu_{k, p}(\cdot)$ denotes the k-eigenvalue on p-forms satisfying absolute boundary conditions and $w_{n, 2}$ and c_{ρ} are constants.

Using a Rayleight question argument, we have

$$
\mu_{1,2}\left(X_{\varepsilon, v}\right)=\frac{\mu_{1,2}\left(X_{v}\right)}{\varepsilon^{2}} \quad \mu_{1, i}\left(X_{\varepsilon, e}\right)=\frac{c_{i}(\varepsilon)}{\varepsilon^{2}}, \quad c_{i}(\varepsilon) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \lambda_{1, i}\left(Y_{e}\right) \quad i=1,2
$$

Therefore,

$$
\lambda_{1}^{c o-e x, 1}\left(\mathrm{X}_{\varepsilon}\right)=\lambda_{1}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right) \geq \frac{\text { const }}{\varepsilon^{2}} \underset{\varepsilon \rightarrow 0}{\longrightarrow} \infty
$$

Hence, the whole spectrum escapes to infinity.

Remarks

Remarks

- The hypothesis $\operatorname{dim} X_{\varepsilon}>2$ is crucial. In fact, if $\operatorname{dim} X_{\varepsilon}=2$, then $\operatorname{dim} Y_{\varepsilon, e}=1$ and this would not allow the cohomology to vanish since $Y_{\varepsilon, e}$ is a finite union of circles.

Remarks

- The hypothesis $\operatorname{dim} X_{\varepsilon}>2$ is crucial. In fact, if $\operatorname{dim} X_{\varepsilon}=2$, then $\operatorname{dim} Y_{\varepsilon, e}=1$ and this would not allow the cohomology to vanish since $Y_{\varepsilon, e}$ is a finite union of circles.
- If $H^{1}\left(Y_{\varepsilon, e}\right) \neq 0$ for some $e \in E$, we obtain the same result proving $\lambda_{j}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right) \rightarrow \infty$ as $\varepsilon \rightarrow 0$ for $j \geq N>1$ and $\lambda_{j}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right) \rightarrow 0$ for smaller j 's (again [3, Lemma 2.3]).

Remarks

- The hypothesis $\operatorname{dim} X_{\varepsilon}>2$ is crucial. In fact, if $\operatorname{dim} X_{\varepsilon}=2$, then $\operatorname{dim} Y_{\varepsilon, e}=1$ and this would not allow the cohomology to vanish since $Y_{\varepsilon, e}$ is a finite union of circles.
- If $H^{1}\left(Y_{\varepsilon, e}\right) \neq 0$ for some $e \in E$, we obtain the same result proving $\lambda_{j}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right) \rightarrow \infty$ as $\varepsilon \rightarrow 0$ for $j \geq N>1$ and $\lambda_{j}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right) \rightarrow 0$ for smaller j 's (again [3, Lemma 2.3]).
- The bound for $\lambda_{1}^{e x, 2}\left(\mathrm{X}_{\varepsilon}\right)$ extends to any exact p-forms assuming that $H^{p-1}\left(Y_{\varepsilon, e}\right)=0$.
Therefore, we have a complete description of the spectrum of the Laplacian on any degree forms.

Spectral gap

Spectral gap

Given a metric graph X_{0} with a spectral gap (a, b) in its 1-form Laplacian, i.e., (a, b) does not belong to the spectrum, then the associated graph-like manifold X_{ε} has a spectral gap close to (a, b) in its 1-form Laplacian for ε small enough.

Examples

Examples

Example 1: Graph decoration.

Examples

Example 1: Graph decoration.

Let X_{0} and X_{0} be two finite metric graphs.

Examples

Example 1: Graph decoration.

Let X_{0} and X_{0} be two finite metric graphs. Attach the graph \widetilde{X}_{0} to each vertex of X_{0}.

Examples

Example 1: Graph decoration.

Let X_{0} and X_{0} be two finite metric graphs.
Attach the graph $\widetilde{X_{0}}$ to each vertex of X_{0}.
This process opens up gaps in the spectrum of its 1-form Laplacian, and so in the spectrum of the 1-form Laplacian of its associated graph-like manifold.

Example 2: Ramanujan graphs, part 1

Example 2: Ramanujan graphs, part 1

Let G be a Ramanujan graph, i.e., G is a k-regular graph with n vertices such that

$$
\mu_{1}(G)=\max _{\left|\mu_{i}(G)\right| \leq k} \mu_{i}(G) \leq \frac{2 \sqrt{k-1}}{k}
$$

Example 2: Ramanujan graphs, part 1

Let G be a Ramanujan graph, i.e., G is a k-regular graph with n vertices such that

$$
\mu_{1}(G)=\max _{\left|\mu_{i}(G)\right| \leq k} \mu_{i}(G) \leq \frac{2 \sqrt{k-1}}{k}
$$

Consider the associated metric graph and associated graph-like manifold X_{0}, X_{ε}.

Example 2: Ramanujan graphs, part 1

Let G be a Ramanujan graph, i.e., G is a k-regular graph with n vertices such that

$$
\mu_{1}(G)=\max _{\left|\mu_{i}(G)\right| \leq k} \mu_{i}(G) \leq \frac{2 \sqrt{k-1}}{k}
$$

Consider the associated metric graph and associated graph-like manifold X_{0}, X_{ε}.

The discrete (normalized) Laplacian Δ_{G} on functions has a spectral gap

$$
\mu_{0}(G)-\mu_{1}(G) \geq 1-\frac{2 \sqrt{k-1}}{k}>0
$$

Example 2: Ramanujan graphs, part 1

Let G be a Ramanujan graph, i.e., G is a k-regular graph with n vertices such that

$$
\mu_{1}(G)=\max _{\left|\mu_{i}(G)\right| \leq k} \mu_{i}(G) \leq \frac{2 \sqrt{k-1}}{k}
$$

Consider the associated metric graph and associated graph-like manifold X_{0}, X_{ε}.
The discrete (normalized) Laplacian Δ_{G} on functions has a spectral gap

$$
\mu_{0}(G)-\mu_{1}(G) \geq 1-\frac{2 \sqrt{k-1}}{k}>0
$$

Due to the relation $\mu=1-\cos (\sqrt{\lambda}) \in \Delta_{G} \Leftrightarrow \lambda \in \Delta_{X_{0}}$ between discrete and metric graph (see [1]), it follows that $\sigma\left(\Delta_{x_{0}}\right)=\sigma\left(\Delta^{1}\left(X_{0}\right)\right.$ and therefore $\sigma\left(\Delta_{X_{\varepsilon}}^{1}\right)$ has a spectral gap given by $I=\left(0, b_{\varepsilon}\right)$ with b_{ε} close to $\arccos ^{2}\left(1-\frac{2 \sqrt{k-1}}{k}\right)$.

Example 3: Ramanujan graphs, part 2

Example 3: Ramanujan graphs, part 2

Consider a family of k-regular bipartite Ramanujan graphs with increasing number of verteces n and construct the associated family of metric graphs and graph-like manifolds.

Example 3: Ramanujan graphs, part 2

Consider a family of k-regular bipartite Ramanujan graphs with increasing number of verteces n and construct the associated family of metric graphs and graph-like manifolds.
Let the length of the edge neighborhoods shrink according to $n^{-\frac{1}{2 \alpha}}, \alpha \geq 1$.

Example 3: Ramanujan graphs, part 2

Consider a family of k-regular bipartite Ramanujan graphs with increasing number of verteces n and construct the associated family of metric graphs and graph-like manifolds.
Let the length of the edge neighborhoods shrink according to $n^{-\frac{1}{2 \alpha}}, \alpha \geq 1$. Set $\varepsilon=n^{-\frac{1}{\beta d}}, \beta \geq 1$

Example 3: Ramanujan graphs, part 2

Consider a family of k-regular bipartite Ramanujan graphs with increasing number of verteces n and construct the associated family of metric graphs and graph-like manifolds.
Let the length of the edge neighborhoods shrink according to $n^{-\frac{1}{2 \alpha}}, \alpha \geq 1$. Set $\varepsilon=n^{-\frac{1}{\beta d}}, \beta \geq 1$
Then,

- The volume grows according to some power of n

Example 3: Ramanujan graphs, part 2

Consider a family of k-regular bipartite Ramanujan graphs with increasing number of verteces n and construct the associated family of metric graphs and graph-like manifolds.
Let the length of the edge neighborhoods shrink according to $n^{-\frac{1}{2 \alpha}}, \alpha \geq 1$. Set $\varepsilon=n^{-\frac{1}{\beta d}}, \beta \geq 1$
Then,

- The volume grows according to some power of n
- It is possible to estimate the rate of convergence/divergence of the eigenvalues

Example 3: Ramanujan graphs, part 2

Consider a family of k-regular bipartite Ramanujan graphs with increasing number of verteces n and construct the associated family of metric graphs and graph-like manifolds.
Let the length of the edge neighborhoods shrink according to $n^{-\frac{1}{2 \alpha}}, \alpha \geq 1$. Set $\varepsilon=n^{-\frac{1}{\beta d}}, \beta \geq 1$
Then,

- The volume grows according to some power of n
- It is possible to estimate the rate of convergence/divergence of the eigenvalues
- There is an increasing spectral gap that grows according to a power of n.
[1] C. Cattaneo, The spectrum of the continuous Laplacian on a graph, Mh. Math. 124, (1995) 215-235.
[2] P. Exner, O. Post, Convergence of spectra of graph-like thin manifolds, J. Geom. Phys., 54, (2005), 77-115.
[3] J. McGowan, The p-spetrum of the Laplacian on compact hyperbolic three manifolds, Math. Ann., 279, (1993), 725-745.
[4] O. Post, Spectral Analysis on Graph-like Spaces, Springer, Berlin, 2012.

THANK YOU FOR YOUR ATTENTION!

