Knot Concordance

Jonathan Grant

Jonathan Grant Knot Concordance

Э

 $\equiv \rightarrow$

Definition

A knot is an isotopy class of embeddings of S^1 into S^3 .

Example

The first example is the unknot, the second two are both the (right-handed) trefoil.

Definition

A knot is an isotopy class of embeddings of S^1 into S^3 .

Example

The first example is the unknot, the second two are both the (right-handed) trefoil.

Theorem (Reidemeister)

Any two diagrams of the same knot are related via the following moves:

• Given a knot K, we can form its mirror image \overline{K} :

Given two knots K_1 and K_2 we can also form their connected sum $K_1 \# K_2 = K_2 \# K_1$:

Of course, K # U = K, where U is the unknote, is $\bullet = \mathfrak{I}$

Jonathan Grant Knot Concordance

Given two knots K_1 and K_2 we can also form their connected sum $K_1 \# K_2 = K_2 \# K_1$:

Of course, K # U = K, where U is the unknot $\rightarrow A \equiv A = A$

Jonathan Grant Knot Concordance

Theorem

For any knots A and B, if A#B is equal to the unknot, then both A and B are also equal to the unknot.

Proof.

Suppose A # B = B # A = U. Then

$$A = A \# (B \# A) \# (B \# A) \# \dots = (A \# B) \# (A \# B) \# \dots = U$$

so A = U. Similarly, B = U.

This trick is called the Mazur swindle.

▲ 同 ▶ ▲ 国 ▶ ▲

Theorem

For any knots A and B, if A#B is equal to the unknot, then both A and B are also equal to the unknot.

Proof.

Suppose A # B = B # A = U. Then

$$A = A \# (B \# A) \# (B \# A) \# \dots = (A \# B) \# (A \# B) \# \dots = U$$

so A = U. Similarly, B = U.

This trick is called the Mazur swindle.

Theorem

For any knots A and B, if A#B is equal to the unknot, then both A and B are also equal to the unknot.

Proof.

Suppose A # B = B # A = U. Then

$$A = A \# (B \# A) \# (B \# A) \# \dots = (A \# B) \# (A \# B) \# \dots = U$$

so A = U. Similarly, B = U.

This trick is called the Mazur swindle.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

• Why are we interested in knots?

- Knots give a concrete way of describing lots of 3- and 4-dimensional spaces
- Every (closed) 3-dimensional manifold can be described by cutting out a tube around a knot, and then gluing it back in 'with a twist'
- One way to understand 4-dimensional topology is to study knot concordance

• Why are we interested in knots?

- Knots give a concrete way of describing lots of 3- and 4-dimensional spaces
- Every (closed) 3-dimensional manifold can be described by cutting out a tube around a knot, and then gluing it back in 'with a twist'
- One way to understand 4-dimensional topology is to study knot concordance

- Why are we interested in knots?
- Knots give a concrete way of describing lots of 3- and 4-dimensional spaces
- Every (closed) 3-dimensional manifold can be described by cutting out a tube around a knot, and then gluing it back in 'with a twist'
- One way to understand 4-dimensional topology is to study knot concordance

- Why are we interested in knots?
- Knots give a concrete way of describing lots of 3- and 4-dimensional spaces
- Every (closed) 3-dimensional manifold can be described by cutting out a tube around a knot, and then gluing it back in 'with a twist'
- One way to understand 4-dimensional topology is to study knot concordance

Definition

Two knots K_1 and K_2 are said to be concordant (and we write $K_1 \sim K_2$ if there is an embedding $f : S^1 \times [0, 1] \rightarrow S^3 \times [0, 1]$ such that $f(S^1 \times 0) = K_1$ and $f(S^1 \times 1) = K_2$.

Clearly concordance is an equivalence relation, and the equivalence classes are called concordance classes.

Definition

We say a knot K is slice if $K \sim U$.

Definition

Two knots K_1 and K_2 are said to be concordant (and we write $K_1 \sim K_2$ if there is an embedding $f : S^1 \times [0, 1] \rightarrow S^3 \times [0, 1]$ such that $f(S^1 \times 0) = K_1$ and $f(S^1 \times 1) = K_2$.

Clearly concordance is an equivalence relation, and the equivalence classes are called concordance classes.

Definition

We say a knot K is slice if $K \sim U$.

Definition

Two knots K_1 and K_2 are said to be concordant (and we write $K_1 \sim K_2$ if there is an embedding $f : S^1 \times [0, 1] \rightarrow S^3 \times [0, 1]$ such that $f(S^1 \times 0) = K_1$ and $f(S^1 \times 1) = K_2$.

Clearly concordance is an equivalence relation, and the equivalence classes are called concordance classes.

Definition

We say a knot K is slice if $K \sim U$.

Theorem

A knot K is slice if and only if there is a an embedding of the disc into B^4 with boundary equal to K.

Example

Theorem

The set of concordance classes of knots form an abelian group under the operation of connected sum, with the inverse of a knot given by its mirror image.

Proof.

If K_1 is concordant to K'_1 and K_2 is concordant to K'_2 , then by cutting a vertical strip out of each of the concordance cylinders, we can glue them together to see that $K_1 \# K_2$ is concordant to $K'_1 \# K'_2$ so the operation is well-defined. To show that K and \bar{K} are inverses, we must show that $K \# \bar{K}$ is slice. Take the embedding of the cylinder such that both boundaries are K. Then cutting a strip out of the cylinder produces a disc with boundary $K \# \bar{K}$.

◆ロト ◆部 ト ◆注 ト ◆注 ト

Ξ

- Clearly the concordance class of the figure 8 knot has order 2 in the concordance group, since it is equal to its own mirror image (ie. it is amphichiral).
- Very little is known about the concordance group: it is known it contains $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_2^{\infty}$.
- It is an open question whether the concordance group contains any \mathbb{Z}_n summands for n > 2 (it is conjectured that it does not).

- Clearly the concordance class of the figure 8 knot has order 2 in the concordance group, since it is equal to its own mirror image (ie. it is amphichiral).
- Very little is known about the concordance group: it is known it contains $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_2^{\infty}$.
- It is an open question whether the concordance group contains any \mathbb{Z}_n summands for n > 2 (it is conjectured that it does not).

- Clearly the concordance class of the figure 8 knot has order 2 in the concordance group, since it is equal to its own mirror image (ie. it is amphichiral).
- Very little is known about the concordance group: it is known it contains $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_2^{\infty}$.
- It is an open question whether the concordance group contains any Z_n summands for n > 2 (it is conjectured that it does not).

Definition

We define the slice genus $g_*(K)$ of a knot to be the minimal genus of a surface embedded in B^4 with boundary equal to the knot.

- Smooth slice genus: require the surface to be smoothly embedded
- Topological slice genus: require the surface to be 'locally flatly' embedded

Definition

We define the slice genus $g_*(K)$ of a knot to be the minimal genus of a surface embedded in B^4 with boundary equal to the knot.

- Smooth slice genus: require the surface to be smoothly embedded
- Topological slice genus: require the surface to be 'locally flatly' embedded

Definition

We define the slice genus $g_*(K)$ of a knot to be the minimal genus of a surface embedded in B^4 with boundary equal to the knot.

- Smooth slice genus: require the surface to be smoothly embedded
- Topological slice genus: require the surface to be 'locally flatly' embedded

Definition

We define the slice genus $g_*(K)$ of a knot to be the minimal genus of a surface embedded in B^4 with boundary equal to the knot.

- Smooth slice genus: require the surface to be smoothly embedded
- Topological slice genus: require the surface to be 'locally flatly' embedded

Theorem

Every knot bounds a disc topologically embedded in B^4 .

Proof.

The 'cone' of S^1 is defined to be $S^1 \times [0,1]/(S^1 \times 1)$, which is homeomorphic to a disc. Similarly, the cone of S^3 is homeomorphic to B^4 . Hence given our knot, given by an embedding $f: S^1 \to S^3$, we can define an embedding $Cf: D^2 \to B^4$ that bounds the knot.

The slice genus is often hard to compute in general, but it is possible to extract information about it from algebraic invariants.

Definition

The Alexander polynomial is defined by $\Delta(U) = 1$ and

$$\Delta(\nearrow) - \Delta(\nearrow) = (t - t^{-1})\Delta(\uparrow\uparrow)$$

Example

For example, the Alexander polynomial of the trefoil is

$$\Delta(\textcircled{a}) = t^2 - 1 + t^{-2}$$

▲ 同 ▶ → 三 ▶

Definition

The Alexander polynomial is defined by $\Delta(U) = 1$ and

$$\Delta(\nearrow) - \Delta(\nearrow) = (t-t^{-1})\Delta(\uparrow\uparrow)$$

Example

For example, the Alexander polynomial of the trefoil is

$$\Delta(\textcircled{o}) = t^2 - 1 + t^{-2}$$

Theorem (Freedman)

If $\Delta(K) = 1$, K is topologically slice.

Example

Khovanov homology associates an abelian group Kh(K) to each knot K. From Kh(K) it is possible to extract a number s, called the Rasmussen s invariant. This s has the property that

$|s(K)| \le 2g_*(K)$

for any knot K, where $g_*(K)$ is the smooth slice genus. Equality holds for some classes of knots.

Example

The *s* invariant of the Pretzel knot *K* in the previous example is s = 2. Therefore the smooth slice genus of *K* is ≥ 1 . So *K* is topologically slice, but not smoothly slice.

Khovanov homology associates an abelian group Kh(K) to each knot K. From Kh(K) it is possible to extract a number s, called the Rasmussen s invariant. This s has the property that

 $|s(K)| \leq 2g_*(K)$

for any knot K, where $g_*(K)$ is the smooth slice genus. Equality holds for some classes of knots.

Example

The *s* invariant of the Pretzel knot *K* in the previous example is s = 2. Therefore the smooth slice genus of *K* is ≥ 1 . So *K* is topologically slice, but not smoothly slice.

Khovanov homology associates an abelian group Kh(K) to each knot K. From Kh(K) it is possible to extract a number s, called the Rasmussen s invariant. This s has the property that

 $|s(K)| \leq 2g_*(K)$

for any knot K, where $g_*(K)$ is the smooth slice genus. Equality holds for some classes of knots.

Example

The *s* invariant of the Pretzel knot *K* in the previous example is s = 2. Therefore the smooth slice genus of *K* is ≥ 1 . So *K* is topologically slice, but not smoothly slice.

We can use this to construct an exotic \mathbb{R}^4 : this is a space that is homeomorphic to \mathbb{R}^4 , but not diffeomorphic (ie. a non-standard smooth structure on \mathbb{R}^4).

Let K be a knot. Construct a space X_K by gluing $D^2 \times D^2$ along the knot K.

Theorem

 X_K has a smooth embedding into \mathbb{R}^4 if and only if K is smoothly slice, and X_K has a topological embedding into \mathbb{R}^4 if and only if K is topologically slice.

We can use this to construct an exotic \mathbb{R}^4 : this is a space that is homeomorphic to \mathbb{R}^4 , but not diffeomorphic (ie. a non-standard smooth structure on \mathbb{R}^4). Let K be a knot. Construct a space X_K by gluing $D^2 \times D^2$ along the knot K.

Theorem

 X_K has a smooth embedding into \mathbb{R}^4 if and only if K is smoothly slice, and X_K has a topological embedding into \mathbb{R}^4 if and only if K is topologically slice.

There is a smooth structure on $\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_K))$. The smooth structures on $\partial(\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_K)))$ and ∂X_K are diffeomorphic because there is a unique smooth structure on any closed 3-manifold.

Hence we can glue $X_{\mathcal{K}}$ into $\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_{\mathcal{K}}))$ by identifying their boundaries to form a new space R, which is homeomorphic to \mathbb{R}^4 and comes equipped with a smooth structure.

If there was a diffeomorphism $\phi : R \to \mathbb{R}^4$, it would restrict to an embedding $\phi_{|X_K} : X_K \to \mathbb{R}^4$, which is impossible as K is not smoothly slice. Hence R is an exotic \mathbb{R}^4 .

There is a smooth structure on $\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_K))$. The smooth structures on $\partial(\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_K)))$ and ∂X_K are diffeomorphic because there is a unique smooth structure on any closed 3-manifold.

Hence we can glue X_K into $\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_K))$ by identifying their boundaries to form a new space R, which is homeomorphic to \mathbb{R}^4 and comes equipped with a smooth structure. If there was a diffeomorphism $\phi : R \to \mathbb{R}^4$, it would restrict to an embedding $\phi_{|X_K} : X_K \to \mathbb{R}^4$, which is impossible as K is not

smoothly slice. Hence R is an exotic \mathbb{R}^4 .

There is a smooth structure on $\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_{\mathcal{K}}))$. The smooth structures on $\partial(\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_{\mathcal{K}})))$ and $\partial X_{\mathcal{K}}$ are diffeomorphic because there is a unique smooth structure on any closed 3-manifold.

Hence we can glue $X_{\mathcal{K}}$ into $\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_{\mathcal{K}}))$ by identifying their boundaries to form a new space R, which is homeomorphic to \mathbb{R}^4 and comes equipped with a smooth structure.

If there was a diffeomorphism $\phi : R \to \mathbb{R}^4$, it would restrict to an embedding $\phi_{|X_K} : X_K \to \mathbb{R}^4$, which is impossible as K is not smoothly slice. Hence R is an exotic \mathbb{R}^4 .

There is a smooth structure on $\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_{\mathcal{K}}))$. The smooth structures on $\partial(\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_{\mathcal{K}})))$ and $\partial X_{\mathcal{K}}$ are diffeomorphic because there is a unique smooth structure on any closed 3-manifold.

Hence we can glue $X_{\mathcal{K}}$ into $\mathbb{R}^4 \setminus \rho(\operatorname{int}(X_{\mathcal{K}}))$ by identifying their boundaries to form a new space R, which is homeomorphic to \mathbb{R}^4 and comes equipped with a smooth structure.

If there was a diffeomorphism $\phi : R \to \mathbb{R}^4$, it would restrict to an embedding $\phi_{|X_K} : X_K \to \mathbb{R}^4$, which is impossible as K is not smoothly slice. Hence R is an exotic \mathbb{R}^4 .

- It is known there are uncountably many distinct exotic \mathbb{R}^{4} 's, but there are no exotic \mathbb{R}^{n} 's for any $n \neq 4$.
- This is one of many wild behaviours unique to dimension 4.
- It is still unknown whether there are any exotic S^4 's: there may be none or there may be uncountably many, and either possibility seems equally plausible.

- It is known there are uncountably many distinct exotic \mathbb{R}^{4} 's, but there are no exotic \mathbb{R}^{n} 's for any $n \neq 4$.
- This is one of many wild behaviours unique to dimension 4.
- It is still unknown whether there are any exotic S⁴'s: there may be none or there may be uncountably many, and either possibility seems equally plausible.

- It is known there are uncountably many distinct exotic \mathbb{R}^{4} 's, but there are no exotic \mathbb{R}^{n} 's for any $n \neq 4$.
- This is one of many wild behaviours unique to dimension 4.
- It is still unknown whether there are any exotic S⁴'s: there may be none or there may be uncountably many, and either possibility seems equally plausible.