Knot Concordance

Jonathan Grant

Definition

A knot is an isotopy class of embeddings of S^{1} into S^{3}.

Example

> The first example is the unknot, the second two are both the (right-handed) trefoil.

Definition

A knot is an isotopy class of embeddings of S^{1} into S^{3}.

Example

The first example is the unknot, the second two are both the (right-handed) trefoil.

Theorem (Reidemeister)

Any two diagrams of the same knot are related via the following moves:

(1) Given a knot K, we can form its mirror image \bar{K} :

Given two knots K_{1} and K_{2} we can also form their connected sum $K_{1} \# K_{2}=K_{2} \# K_{1}:$

Given two knots K_{1} and K_{2} we can also form their connected sum $K_{1} \# K_{2}=K_{2} \# K_{1}:$

Of course, $K \# U=K$, where U is the unknot:

Theorem

For any knots A and B, if $A \# B$ is equal to the unknot, then both A and B are also equal to the unknot.

```
Proof.
Suppose A#B = B#A =U. Then
A=A#(B#A)#(B#A)#\cdots=(A#B)#(A#B)#\cdots=U
so }A=U\mathrm{ . Similarly, }B=U\mathrm{ .
This trick is called the Mazur swindle.
```


Theorem

For any knots A and B, if $A \# B$ is equal to the unknot, then both A and B are also equal to the unknot.

Proof.

Suppose $A \# B=B \# A=U$. Then

$$
A=A \#(B \# A) \#(B \# A) \# \cdots=(A \# B) \#(A \# B) \# \cdots=U
$$

so $A=U$. Similarly, $B=U$.
This trick is called the Mazur swindle.

Theorem

For any knots A and B, if $A \# B$ is equal to the unknot, then both A and B are also equal to the unknot.

Proof.

Suppose $A \# B=B \# A=U$. Then

$$
A=A \#(B \# A) \#(B \# A) \# \cdots=(A \# B) \#(A \# B) \# \cdots=U
$$

so $A=U$. Similarly, $B=U$.
This trick is called the Mazur swindle.
(1) Why are we interested in knots?
(2) Knots give a concrete way of describing lots of 3- and 4-dimensional spaces
(3) Every (closed) 3-dimensional manifold can be described by cutting out a tube around a knot, and then gluing it back in 'with a twist'
(1) One way to understand 4-dimensional topology is to study knot concordance
(1) Why are we interested in knots?
(2) Knots give a concrete way of describing lots of 3- and 4-dimensional spaces
(3) Every (closed) 3-dimensional manifold can be described by cutting out a tube around a knot, and then gluing it back in 'with a twist'
(9) One way to understand 4-dimensional topology is to study knot concordance
(1) Why are we interested in knots?
(2) Knots give a concrete way of describing lots of 3- and 4-dimensional spaces
(3) Every (closed) 3-dimensional manifold can be described by cutting out a tube around a knot, and then gluing it back in 'with a twist'
(9) One way to understand 4-dimensional topology is to study knot concordance
(1) Why are we interested in knots?
(2) Knots give a concrete way of describing lots of 3- and 4-dimensional spaces
(3) Every (closed) 3-dimensional manifold can be described by cutting out a tube around a knot, and then gluing it back in 'with a twist'
(9) One way to understand 4-dimensional topology is to study knot concordance

Definition

Two knots K_{1} and K_{2} are said to be concordant (and we write $K_{1} \sim K_{2}$ if there is an embedding $f: S^{1} \times[0,1] \rightarrow S^{3} \times[0,1]$ such that $f\left(S^{1} \times 0\right)=K_{1}$ and $f\left(S^{1} \times 1\right)=K_{2}$.

Clearly concordance is an equivalence relation, and the equivalence classes are called concordance classes.

Definition
We say a knot K is slice if $K \sim U$

Definition

Two knots K_{1} and K_{2} are said to be concordant (and we write $K_{1} \sim K_{2}$ if there is an embedding $f: S^{1} \times[0,1] \rightarrow S^{3} \times[0,1]$ such that $f\left(S^{1} \times 0\right)=K_{1}$ and $f\left(S^{1} \times 1\right)=K_{2}$.

Clearly concordance is an equivalence relation, and the equivalence classes are called concordance classes.

Definition
We say a knot K is slice if $K \sim U$.

Definition

Two knots K_{1} and K_{2} are said to be concordant (and we write $K_{1} \sim K_{2}$ if there is an embedding $f: S^{1} \times[0,1] \rightarrow S^{3} \times[0,1]$ such that $f\left(S^{1} \times 0\right)=K_{1}$ and $f\left(S^{1} \times 1\right)=K_{2}$.

Clearly concordance is an equivalence relation, and the equivalence classes are called concordance classes.

Definition

We say a knot K is slice if $K \sim U$.

Theorem
A knot K is slice if and only if there is a an embedding of the disc into B^{4} with boundary equal to K.

Example

Theorem

The set of concordance classes of knots form an abelian group under the operation of connected sum, with the inverse of a knot given by its mirror image.

Proof.

If K_{1} is concordant to K_{1}^{\prime} and K_{2} is concordant to K_{2}^{\prime}, then by cutting a vertical strip out of each of the concordance cylinders, we can glue them together to see that $K_{1} \# K_{2}$ is concordant to $K_{1}^{\prime} \# K_{2}^{\prime}$ so the operation is well-defined.
To show that K and \bar{K} are inverses, we must show that $K \# \bar{K}$ is slice. Take the embedding of the cylinder such that both boundaries are K. Then cutting a strip out of the cylinder produces a disc with boundary $K \# \bar{K}$.

- Clearly the concordance class of the figure 8 knot has order 2 in the concordance group, since it is equal to its own mirror image (ie. it is amphichiral).
- Very little is known about the concordance group: it is known it contains $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty}$
- It is an onen question whether the concordance group contains any \mathbb{Z}_{n} summands for $n>2$ (it is conjectured that it does not)
- Clearly the concordance class of the figure 8 knot has order 2 in the concordance group, since it is equal to its own mirror image (ie. it is amphichiral).
- Very little is known about the concordance group: it is known it contains $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty}$.
- It is an open question whether the concordance group contains any \mathbb{Z}_{n} summands for $n>2$ (it is conjectured that it does not)
- Clearly the concordance class of the figure 8 knot has order 2 in the concordance group, since it is equal to its own mirror image (ie. it is amphichiral).
- Very little is known about the concordance group: it is known it contains $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty}$.
- It is an open question whether the concordance group contains any \mathbb{Z}_{n} summands for $n>2$ (it is conjectured that it does not).

A knot may not bound a disc in B^{4}, but it will always bound some embedded (orientable) surface in B^{4}.

Definition

We define the slice genus $g_{*}(K)$ of a knot to be the minimal genus of a surface embedded in B^{4} with boundary equal to the knot.

To be more specific:

- Smooth slice genus: require the surface to be smoothly embedded
- Topological slice genus: require the surface to be 'locally flatly' embedded

A knot may not bound a disc in B^{4}, but it will always bound some embedded (orientable) surface in B^{4}.

Definition

We define the slice genus $g_{*}(K)$ of a knot to be the minimal genus of a surface embedded in B^{4} with boundary equal to the knot.

To be more specific:

- Smooth slice genus: require the surface to be smoothly embedded
- Topological slice genus: require the surface to be 'locally flatly' embedded

A knot may not bound a disc in B^{4}, but it will always bound some embedded (orientable) surface in B^{4}.

Definition

We define the slice genus $g_{*}(K)$ of a knot to be the minimal genus of a surface embedded in B^{4} with boundary equal to the knot.

To be more specific:

- Smooth slice genus: require the surface to be smoothly embedded
- Topological slice genus: require the surface to be 'locally flatly' embedded

A knot may not bound a disc in B^{4}, but it will always bound some embedded (orientable) surface in B^{4}.

Definition

We define the slice genus $g_{*}(K)$ of a knot to be the minimal genus of a surface embedded in B^{4} with boundary equal to the knot.

To be more specific:

- Smooth slice genus: require the surface to be smoothly embedded
- Topological slice genus: require the surface to be 'locally flatly' embedded

Theorem

Every knot bounds a disc topologically embedded in B^{4}.

Proof.

The 'cone' of S^{1} is defined to be $S^{1} \times[0,1] /\left(S^{1} \times 1\right)$, which is homeomorphic to a disc. Similarly, the cone of S^{3} is homeomorphic to B^{4}. Hence given our knot, given by an embedding $f: S^{1} \rightarrow S^{3}$, we can define an embedding $C f: D^{2} \rightarrow B^{4}$ that bounds the knot.

The slice genus is often hard to compute in general, but it is possible to extract information about it from algebraic invariants.

Definition

The Alexander polynomial is defined by $\Delta(U)=1$ and

$$
\Delta(\%)-\Delta\left(\aleph^{*}\right)=\left(t-t^{-1}\right) \Delta(\uparrow \uparrow)
$$

Example

For example, the Alexander polynomial of the trefoil is

Definition

The Alexander polynomial is defined by $\Delta(U)=1$ and

$$
\Delta(\approx)-\Delta\left(\nearrow^{\aleph}\right)=\left(t-t^{-1}\right) \Delta(\uparrow \uparrow)
$$

Example

For example, the Alexander polynomial of the trefoil is

$$
\Delta(\mathrm{Q})=t^{2}-1+t^{-2}
$$

Theorem (Freedman)
 If $\Delta(K)=1, K$ is topologically slice.

Example

Khovanov homology associates an abelian group $K h(K)$ to each knot K. From $K h(K)$ it is possible to extract a number s, called the Rasmussen s invariant. This s has the property that

for any knot K, where $g_{*}(K)$ is the smooth slice genus. Equality holds for some classes of knots.

> Example
> The s invariant of the Pretzel knot K in the previous example is $s=2$. Therefore the smooth slice genus of K is ≥ 1. So K is topologically slice, but not smoothly slice.

Khovanov homology associates an abelian group $K h(K)$ to each knot K. From $K h(K)$ it is possible to extract a number s, called the Rasmussen s invariant. This s has the property that

$$
|s(K)| \leq 2 g_{*}(K)
$$

for any knot K, where $g_{*}(K)$ is the smooth slice genus. Equality holds for some classes of knots.

> Example
> The s invariant of the Pretzel knot K in the previous example is $s=2$. Therefore the smooth slice genus of K is ≥ 1. So K is topologically slice, but not smoothly slice.

Khovanov homology associates an abelian group $K h(K)$ to each knot K. From $K h(K)$ it is possible to extract a number s, called the Rasmussen s invariant. This s has the property that

$$
|s(K)| \leq 2 g_{*}(K)
$$

for any knot K, where $g_{*}(K)$ is the smooth slice genus. Equality holds for some classes of knots.

Example

The s invariant of the Pretzel knot K in the previous example is $s=2$. Therefore the smooth slice genus of K is ≥ 1. So K is topologically slice, but not smoothly slice.

We can use this to construct an exotic \mathbb{R}^{4} : this is a space that is homeomorphic to \mathbb{R}^{4}, but not diffeomorphic (ie. a non-standard smooth structure on \mathbb{R}^{4}).
Let K be a knot. Construct a space X_{K} by gluing $D^{2} \times D^{2}$ along the knot K.

Theorem

X_{K} has a smooth embedding into \mathbb{R}^{4} if and only if K is smoothly slice, and X_{K} has a topological embedding into \mathbb{R}^{4} if and only if K is topologically slice.

We can use this to construct an exotic \mathbb{R}^{4} : this is a space that is homeomorphic to \mathbb{R}^{4}, but not diffeomorphic (ie. a non-standard smooth structure on \mathbb{R}^{4}).
Let K be a knot. Construct a space X_{K} by gluing $D^{2} \times D^{2}$ along the knot K.

Theorem

X_{K} has a smooth embedding into \mathbb{R}^{4} if and only if K is smoothly slice, and X_{K} has a topological embedding into \mathbb{R}^{4} if and only if K is topologically slice.

Let K be a knot that is topologically slice but not smoothly slice (such as the Pretzel knot before). Let $\rho: X_{K} \rightarrow \mathbb{R}^{4}$ be a topological embedding.

Let K be a knot that is topologically slice but not smoothly slice (such as the Pretzel knot before). Let $\rho: X_{K} \rightarrow \mathbb{R}^{4}$ be a topological embedding.
There is a smooth structure on $\mathbb{R}^{4} \backslash \rho\left(\operatorname{int}\left(X_{K}\right)\right)$. The smooth structures on $\partial\left(\mathbb{R}^{4} \backslash \rho\left(\operatorname{int}\left(X_{K}\right)\right)\right)$ and ∂X_{K} are diffeomorphic because there is a unique smooth structure on any closed 3 -manifold.

Let K be a knot that is topologically slice but not smoothly slice (such as the Pretzel knot before). Let $\rho: X_{K} \rightarrow \mathbb{R}^{4}$ be a topological embedding.
There is a smooth structure on $\mathbb{R}^{4} \backslash \rho\left(\operatorname{int}\left(X_{K}\right)\right)$. The smooth structures on $\partial\left(\mathbb{R}^{4} \backslash \rho\left(\operatorname{int}\left(X_{K}\right)\right)\right)$ and ∂X_{K} are diffeomorphic because there is a unique smooth structure on any closed 3-manifold.
Hence we can glue X_{K} into $\mathbb{R}^{4} \backslash \rho\left(\operatorname{int}\left(X_{K}\right)\right)$ by identifying their boundaries to form a new space R, which is homeomorphic to \mathbb{R}^{4} and comes equipped with a smooth structure.

Let K be a knot that is topologically slice but not smoothly slice (such as the Pretzel knot before). Let $\rho: X_{K} \rightarrow \mathbb{R}^{4}$ be a topological embedding.
There is a smooth structure on $\mathbb{R}^{4} \backslash \rho\left(\operatorname{int}\left(X_{K}\right)\right)$. The smooth structures on $\partial\left(\mathbb{R}^{4} \backslash \rho\left(\operatorname{int}\left(X_{K}\right)\right)\right)$ and ∂X_{K} are diffeomorphic because there is a unique smooth structure on any closed 3-manifold.
Hence we can glue X_{K} into $\mathbb{R}^{4} \backslash \rho\left(\operatorname{int}\left(X_{K}\right)\right)$ by identifying their boundaries to form a new space R, which is homeomorphic to \mathbb{R}^{4} and comes equipped with a smooth structure.
If there was a diffeomorphism $\phi: R \rightarrow \mathbb{R}^{4}$, it would restrict to an embedding $\phi_{\mid X_{K}}: X_{K} \rightarrow \mathbb{R}^{4}$, which is impossible as K is not smoothly slice. Hence R is an exotic \mathbb{R}^{4}.

- It is known there are uncountably many distinct exotic \mathbb{R}^{4} 's, but there are no exotic \mathbb{R}^{n} 's for any $n \neq 4$.
- This is one of many wild behaviours unique to dimension 4.
- It is still unknown whether there are any exotic S^{4} 's: there may be none or there may be uncountably many, and either possibility seems equally plausible.
- It is known there are uncountably many distinct exotic \mathbb{R}^{4} 's, but there are no exotic \mathbb{R}^{n} 's for any $n \neq 4$.
- This is one of many wild behaviours unique to dimension 4.
- It is still unknown whether there are any exotic S^{41} s: there may be none or there may be uncountably many, and either possibility seems equally plausible.
- It is known there are uncountably many distinct exotic \mathbb{R}^{4} 's, but there are no exotic \mathbb{R}^{n} 's for any $n \neq 4$.
- This is one of many wild behaviours unique to dimension 4.
- It is still unknown whether there are any exotic S^{4} 's: there may be none or there may be uncountably many, and either possibility seems equally plausible.

