Quantum Invariants of Knots

Jonathan Grant

February 20, 2014

Definition

A pivot category is a category \mathcal{C} with a bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ with

- natural isomorphisms $\alpha_{U, V, W}: U \otimes(V \otimes W) \rightarrow(U \otimes V) \otimes W$ satisfying a commutative diagram
- an object $I \in \mathcal{C}$ and natural isomorphisms $\rho_{U}: U \otimes I \rightarrow U$ and $\lambda_{U}: I \otimes U \rightarrow U$ satisfying a commutative diagram.
- an object U^{*} for each U and morphisms ev $U: U^{*} \otimes U \rightarrow I$ and $\pi_{U}: I \rightarrow U \otimes U^{*}$ and is such that the contravariant functor $U \mapsto U^{*}$ is an anti-equivalence of categories.

Suppose we had a family of natural isomorphisms $R_{U, V}: U \otimes V \rightarrow V \otimes U$ for each pair of objects U, V. Then we could label each strand with an object in \mathcal{C} and define:

Then we can define a link invariant by colouring each strand with an object in \mathcal{C} and reading the map from bottom to top as a map $\mid \rightarrow I$. The element of End (I) will be a link invariant as long as RU, watisfies the braid relations.

Suppose we had a family of natural isomorphisms $R_{U, V}: U \otimes V \rightarrow V \otimes U$ for each pair of objects U, V. Then we could label each strand with an object in \mathcal{C} and define:

Then we can define a link invariant by colouring each strand with an object in \mathcal{C} and reading the map from bottom to top as a map $I \rightarrow I$. The element of End(I) will be a link invariant as long as $R_{U, V}$ satisfies the braid relations.

Definition

The braid group B_{n} is defined as

$$
\left.\left\langle\sigma_{1}, \ldots, \sigma_{n}\right| \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if }|i-j|>1\right\rangle
$$

Definition

The braid group B_{n} is defined as

$$
\left.\left\langle\sigma_{1}, \ldots, \sigma_{n}\right| \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if }|i-j|>1\right\rangle
$$

Definition

The braid group B_{n} is defined as

$$
\left.\left\langle\sigma_{1}, \ldots, \sigma_{n}\right| \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if }|i-j|>1\right\rangle
$$

becomes

$$
I \longrightarrow V^{*} \otimes V \otimes V \otimes V^{*} \xrightarrow{1 \otimes R^{3} \otimes \mathbb{1}} V^{*} \otimes V \otimes V \otimes V^{*} \longrightarrow I
$$

So how do we find pivot categories? One of the most general constructions is from the representation theory of Hopf algebras

Definition

A Hopf algebra A over a commutative ring k is a k-module equipped with k-module maps $m: A \otimes_{k} A \rightarrow A, \eta: k \rightarrow A, \Delta: A \rightarrow A \otimes_{k} A, \epsilon: A \rightarrow k$ and $S: A \rightarrow A$ satisfying various associativity and coassociativity axioms, and so that the algebra and coalgebra structures are compatible.

The category of A-modules form a pivot category, with $I=k$. If V, W are A-modules, then $V \otimes W$ is an A-module with $x \cdot(v \otimes w)=\Delta(x)(v \otimes w)$ Also,

So how do we find pivot categories? One of the most general constructions is from the representation theory of Hopf algebras

Definition

A Hopf algebra A over a commutative ring k is a k-module equipped with k-module maps $m: A \otimes_{k} A \rightarrow A, \eta: k \rightarrow A, \Delta: A \rightarrow A \otimes_{k} A, \epsilon: A \rightarrow k$ and $S: A \rightarrow A$ satisfying various associativity and coassociativity axioms, and so that the algebra and coalgebra structures are compatible.

The category of A-modules form a pivot category, with $I=k$. Also, V^{*} is an A-module with $(x \cdot \phi)(v)=\phi(S(x) v)$

So how do we find pivot categories? One of the most general constructions is from the representation theory of Hopf algebras

Definition

A Hopf algebra A over a commutative ring k is a k-module equipped with k-module maps $m: A \otimes_{k} A \rightarrow A, \eta: k \rightarrow A, \Delta: A \rightarrow A \otimes_{k} A, \epsilon: A \rightarrow k$ and $S: A \rightarrow A$ satisfying various associativity and coassociativity axioms, and so that the algebra and coalgebra structures are compatible.

The category of A-modules form a pivot category, with $I=k$. If V, W are A-modules, then $V \otimes W$ is an A-module with $x \cdot(v \otimes w)=\Delta(x)(v \otimes w)$.

So how do we find pivot categories? One of the most general constructions is from the representation theory of Hopf algebras

Definition

A Hopf algebra A over a commutative ring k is a k-module equipped with k-module maps $m: A \otimes_{k} A \rightarrow A, \eta: k \rightarrow A, \Delta: A \rightarrow A \otimes_{k} A, \epsilon: A \rightarrow k$ and $S: A \rightarrow A$ satisfying various associativity and coassociativity axioms, and so that the algebra and coalgebra structures are compatible.

The category of A-modules form a pivot category, with $I=k$. If V, W are A-modules, then $V \otimes W$ is an A-module with $x \cdot(v \otimes w)=\Delta(x)(v \otimes w)$. Also, V^{*} is an A-module with $(x \cdot \phi)(v)=\phi(S(x) v)$.

Note that the canonical k-module maps $V^{*} \otimes V \rightarrow k$ and $k \rightarrow V \otimes V^{*}$ commute with the action of A, but in general the canonical maps $V \otimes V^{*} \rightarrow k$ and $k \rightarrow V^{*} \otimes V$ do not. Also note that we could also define a dual by using S^{-1} instead of S. These two duals will be isomorphic as long as the automorphism S^{2} is inner, ie. there exists invertible u such that

$$
S^{2}(a)=u a u^{-1}
$$

for all $a \in A$. In this case, the map $\xi \mapsto u^{-1} \xi$ between the two kinds of dual commutes with the action of A. In this case, we also have $V^{* *} \cong V$

Note that the canonical k-module maps $V^{*} \otimes V \rightarrow k$ and $k \rightarrow V \otimes V^{*}$ commute with the action of A, but in general the canonical maps $V \otimes V^{*} \rightarrow k$ and $k \rightarrow V^{*} \otimes V$ do not. Also note that we could also define a dual by using S^{-1} instead of S. These two duals will be isomorphic as long as the automorphism S^{2} is inner, ie. there exists invertible u such that

$$
S^{2}(a)=u a u^{-1}
$$

for all $a \in A$. In this case, the map $\xi \mapsto u^{-1} \xi$ between the two kinds of dual commutes with the action of A. In this case, we also have $V^{* *} \cong V$.

Definition

The universal enveloping algebra $U(\mathfrak{g})$ of a Lie algebra \mathfrak{g} is a quotient of

$$
T(\mathfrak{g})=\oplus_{n} \mathfrak{g}^{\otimes n}
$$

by the two-sided ideal generated by $x \otimes y-y \otimes x-[x, y]$.
This can be made into a Hopf algebra with

for $x \in \mathfrak{g}$. It is then clear that a $U(\mathfrak{g})$-module is equivalent to a representation of \mathfrak{g}.

Definition

The universal enveloping algebra $U(\mathfrak{g})$ of a Lie algebra \mathfrak{g} is a quotient of

$$
T(\mathfrak{g})=\oplus_{n} \mathfrak{g}^{\otimes n}
$$

by the two-sided ideal generated by $x \otimes y-y \otimes x-[x, y]$.
This can be made into a Hopf algebra with

$$
\Delta(x)=x \otimes 1+1 \otimes x, \quad S(x)=-x, \quad \epsilon(x)=0
$$

for $x \in \mathfrak{g}$. It is then clear that a $U(\mathfrak{g})$-module is equivalent to a representation of \mathfrak{g}.

Unfortunately, if V is a finite-dimensional representation of a simple Lie algebra \mathfrak{g}, the only morphisms $V \otimes V \rightarrow V \otimes V$ are the identity and the map that interchanges the two tensor factors.
This means that the square of $R_{V, V}$ is the identity, so the same map is associated to a positive crossing or a negative crossing. So every knot is assigned the same invariant.
The problem is the cocommutativity of Δ : if we didn't have $\Delta^{o p}=\Delta$, then the flip map wouldn't be a morphism of $U(\mathfrak{g})$-modules, so there might be a non-trivial map instead.

Unfortunately, if V is a finite-dimensional representation of a simple Lie algebra \mathfrak{g}, the only morphisms $V \otimes V \rightarrow V \otimes V$ are the identity and the map that interchanges the two tensor factors.
This means that the square of $R_{V, V}$ is the identity, so the same map is associated to a positive crossing or a negative crossing. So every knot is assigned the same invariant.
then the flip map wouldn't be a morphism of $U(\mathfrak{g})$-modules, so there might be a non-trivial map instead.

Unfortunately, if V is a finite-dimensional representation of a simple Lie algebra \mathfrak{g}, the only morphisms $V \otimes V \rightarrow V \otimes V$ are the identity and the map that interchanges the two tensor factors.
This means that the square of $R_{V, V}$ is the identity, so the same map is associated to a positive crossing or a negative crossing. So every knot is assigned the same invariant.
The problem is the cocommutativity of Δ : if we didn't have $\Delta^{O P}=\Delta$, then the flip map wouldn't be a morphism of $U(\mathfrak{g})$-modules, so there might be a non-trivial map instead.

The problem of turning commutative things into non-commutative things (or cocommutative things into non-cocommutative things) has been studied by algebraic geometers, quantum physicists and others.

Definition

A deformation of a Hopf algebra $(A, \eta, \mu, \epsilon, \Delta, S)$ over a field k is a topological Hopf algebra $\left(A_{h}, \eta_{h}, \mu_{h}, \epsilon_{h}, \Delta_{h}, S_{h}\right)$ over the ring $k[[h]]$ such that

- A_{h} is isomorphic to $A[[h]]$ as a $k[[h]]$-module
- $\mu_{h} \equiv \mu \bmod h, \Delta_{h} \equiv \Delta \bmod h$.

Theorem

If \mathfrak{g} is semi-simple, every deformation of $U(\mathfrak{g})$ is isomorphic to $U(\mathfrak{g})[[h]]$ as an algebra. Moreover, if \mathfrak{g} is simple, every cocommutative deformation of $U(\mathfrak{g})$ is trivial.

So we may restrict our attention to the 'usual' algebra structure, but the coalgebra structure must be changed.

The standard deformation $U_{h}(\mathfrak{s l}(2))$ is generated by $\left\{H, X^{+}, X^{-}\right\}$with relations

$$
\left[H, X^{+}\right]=2 X^{+}, \quad\left[H, X^{-}\right]=-2 X^{-}, \quad\left[X^{+}, X^{-}\right]=\frac{e^{h H}-e^{h H}}{e^{h}-e^{-h}} .
$$

The Hopf algebra structure is given by:

The standard deformation $U_{h}(\mathfrak{s l}(2))$ is generated by $\left\{H, X^{+}, X^{-}\right\}$with relations

$$
\left[H, X^{+}\right]=2 X^{+}, \quad\left[H, X^{-}\right]=-2 X^{-}, \quad\left[X^{+}, X^{-}\right]=\frac{e^{h H}-e^{h H}}{e^{h}-e^{-h}}
$$

The Hopf algebra structure is given by:

$$
\begin{gathered}
\Delta_{h}(H)=H \otimes 1+1 \otimes H, \quad \Delta_{h}\left(X^{+}\right)=X^{+} \otimes e^{h H}+1 \otimes X^{+} \\
\Delta_{h}\left(X^{-}\right)=X^{-} \otimes 1+e^{-h H} \otimes X^{-} \\
S_{h}(H)=-H, \quad S_{h}\left(X^{+}\right)=-X^{+} e^{-h H}, \quad S_{h}\left(X^{-}\right)=-e^{h H} X^{-}
\end{gathered}
$$

The standard deformation $U_{h}(\mathfrak{s l}(2))$ is generated by $\left\{H, X^{+}, X^{-}\right\}$with relations

$$
\left[H, X^{+}\right]=2 X^{+}, \quad\left[H, X^{-}\right]=-2 X^{-}, \quad\left[X^{+}, X^{-}\right]=\frac{e^{h H}-e^{h H}}{e^{h}-e^{-h}}
$$

The Hopf algebra structure is given by:

$$
\begin{gathered}
\Delta_{h}(H)=H \otimes 1+1 \otimes H, \quad \Delta_{h}\left(X^{+}\right)=X^{+} \otimes e^{h H}+1 \otimes X^{+} \\
\Delta_{h}\left(X^{-}\right)=X^{-} \otimes 1+e^{-h H} \otimes X^{-} \\
S_{h}(H)=-H, \quad S_{h}\left(X^{+}\right)=-X^{+} e^{-h H}, \quad S_{h}\left(X^{-}\right)=-e^{h H} X^{-}
\end{gathered}
$$

The standard deformation $U_{h}(\mathfrak{s l}(2))$ is generated by $\left\{H, X^{+}, X^{-}\right\}$with relations

$$
\left[H, X^{+}\right]=2 X^{+}, \quad\left[H, X^{-}\right]=-2 X^{-}, \quad\left[X^{+}, X^{-}\right]=\frac{e^{h H}-e^{h H}}{e^{h}-e^{-h}}
$$

The Hopf algebra structure is given by:

$$
\begin{gathered}
\Delta_{h}(H)=H \otimes 1+1 \otimes H, \quad \Delta_{h}\left(X^{+}\right)=X^{+} \otimes e^{h H}+1 \otimes X^{+} \\
\Delta_{h}\left(X^{-}\right)=X^{-} \otimes 1+e^{-h H} \otimes X^{-} \\
S_{h}(H)=-H, \quad S_{h}\left(X^{+}\right)=-X^{+} e^{-h H}, \quad S_{h}\left(X^{-}\right)=-e^{h H} X^{-} \\
\epsilon_{h}(H)=\epsilon_{h}\left(X^{+}\right)=\epsilon_{h}\left(X^{-}\right)=0
\end{gathered}
$$

Since $U_{h}(\mathfrak{s l}(2))$ is not cocommutative, the flip map is no longer a morphism of representations. However, there is still a relationship between Δ_{h} and $\Delta_{h}^{o p}$.

Theorem

The element $R_{h} \in U_{h}(\mathfrak{s l}(2)) \hat{\otimes} U_{h}(\mathfrak{s l}(2))$ defined by

is invertible and satisfies

for all $a \in U_{h}(\mathfrak{s l}(2))$
We call R_{h} the universal R-matrix.

Since $U_{h}(\mathfrak{s l}(2))$ is not cocommutative, the flip map is no longer a morphism of representations. However, there is still a relationship between Δ_{h} and $\Delta_{h}^{o p}$.

Theorem

The element $R_{h} \in U_{h}(\mathfrak{s l}(2)) \hat{\otimes} U_{h}(\mathfrak{s l}(2))$ defined by

$$
R_{h}=\sum_{n=0}^{\infty} A_{n}(h) e^{\frac{1}{2} h(H \otimes H)}\left(X^{+}\right)^{n} \otimes\left(X^{-}\right)^{n}
$$

is invertible and satisfies

$$
\Delta_{h}^{o p}(a)=R_{h} \Delta_{h}(a) R_{h}^{-1}
$$

for all $a \in U_{h}(\mathfrak{s l}(2))$.
We call R_{h} the universal R-matrix.

Since $U_{h}(\mathfrak{s l}(2))$ is not cocommutative, the flip map is no longer a morphism of representations. However, there is still a relationship between Δ_{h} and $\Delta_{h}^{o p}$.

Theorem

The element $R_{h} \in U_{h}(\mathfrak{s l}(2)) \hat{\otimes} U_{h}(\mathfrak{s l}(2))$ defined by

$$
R_{h}=\sum_{n=0}^{\infty} A_{n}(h) e^{\frac{1}{2} h(H \otimes H)}\left(X^{+}\right)^{n} \otimes\left(X^{-}\right)^{n}
$$

is invertible and satisfies

$$
\Delta_{h}^{o p}(a)=R_{h} \Delta_{h}(a) R_{h}^{-1}
$$

for all $a \in U_{h}(\mathfrak{s l}(2))$.
We call R_{h} the universal R-matrix.

Letting $R_{h}^{12}=R_{h} \otimes 1 \in U_{h}(\mathfrak{s l}(2))^{\hat{\otimes} 3}$ etc., we have

Theorem

$$
R_{h}^{12} R_{h}^{13} R_{h}^{23}=R_{h}^{23} R_{h}^{13} R_{h}^{12}
$$

in $U_{h}(\mathfrak{s l}(2))^{\hat{\otimes} 3}$.

Theorem
 If $u_{h}=\mu(S \otimes \mathbb{1})\left(\sigma R_{h}\right)$, then

$$
S^{2}(a)=u_{h} a u_{h}^{-1}
$$

for all $a \in U_{h}(\mathfrak{s l}(2))$. Also, if we let $v_{h}=e^{-h H} u_{h}$, then v_{h} is central and

Letting $R_{h}^{12}=R_{h} \otimes 1 \in U_{h}(\mathfrak{s l}(2))^{\hat{\otimes} 3}$ etc., we have

Theorem

$$
R_{h}^{12} R_{h}^{13} R_{h}^{23}=R_{h}^{23} R_{h}^{13} R_{h}^{12}
$$

in $U_{h}(\mathfrak{s l}(2))^{\hat{\otimes} 3}$.

Theorem

If $u_{h}=\mu(S \otimes \mathbb{1})\left(\sigma R_{h}\right)$, then

$$
S^{2}(a)=u_{h} a u_{h}^{-1}
$$

for all $a \in U_{h}(\mathfrak{s l}(2))$. Also, if we let $v_{h}=e^{-h H} u_{h}$, then v_{h} is central and

$$
v_{h}^{2}=u_{h} S\left(u_{h}\right)
$$

Definition

For any Lie algebra \mathfrak{g} associated to a symmetrisable Cartan matrix $\left(a_{i j}\right)_{i, j=1, \ldots, n}, U_{h}(\mathfrak{g})$ is defined as the algebra over $\mathbb{C}[[h]]$ topologically generated by $H_{i}, X_{i}^{+}, X_{i}^{-}$for $i=1, \ldots, n$ subject to

$$
\begin{gathered}
{\left[H_{i}, H_{j}\right]=0, \quad\left[H_{i}, X_{j}^{ \pm}\right]= \pm a_{i j} X_{j}^{ \pm}} \\
X_{i}^{+} X_{j}^{-}-X_{j}^{-} X_{i}^{+}=\delta_{i, j} \frac{e^{d_{i} h H_{i}}-e^{-d_{i} h H_{i}}}{e^{d_{i} h}-e^{-d_{i} h}} \\
\sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{e^{d_{i} h}}\left(X_{i}^{ \pm}\right)^{k} X_{j}^{ \pm}\left(X_{i}^{ \pm}\right)^{1-a_{i j}-k}=0 .
\end{gathered}
$$

Theorem

$U_{h}(\mathfrak{g})$ becomes a topological Hopf algebra with

$$
\Delta_{h}\left(H_{i}\right)=H_{i} \otimes 1+1 \otimes H_{i}, \quad \Delta_{h}\left(X_{i}^{+}\right)=X_{i}^{+} \otimes e^{d_{i} h H_{i}}+1 \otimes X_{i}^{+}
$$

$$
\Delta_{h}\left(X_{i}^{-}\right)=X_{i}^{-} \otimes 1+e^{-d_{i} h H_{i}} \otimes X_{i}^{-}
$$

and

$$
\begin{gathered}
S_{h}\left(H_{i}\right)=-H_{i}, \quad S_{h}\left(X_{i}^{+}\right)=-X_{i}^{+} e^{-d_{i} h H_{i}}, \quad S_{h}\left(X_{i}^{-}\right)=-e^{d_{i} h H_{i}} X_{i}^{-} \\
\epsilon_{h}\left(H_{i}\right)=\epsilon_{h}\left(X_{i}^{ \pm}\right)=0
\end{gathered}
$$

There are also analogous elements R_{h}, u_{h} and v_{h} in this case.

The classification of finite-dimensional representations of $U_{h}(\mathfrak{g})$ is no harder than that of $U(\mathfrak{g})$.

Lemma

If V_{h} is a representation of $U_{h}(\mathfrak{g})$, then $V_{h} / h V_{h}$ is a representation of $U(\mathfrak{g})$. If V is a representation of $U(\mathfrak{g})$, then $V[[h]]$ is a representation of $U_{h}(g)$. If the representations are finite-dimensional, these operations are mutually inverse, and send indecomposable representations to indecomposable representations.

In other words, the category of $U(\mathfrak{g})$ representations is equivalent to the category of $U_{h}(\mathfrak{g})$ representations (as long as we resetrict to finite-dimensional and free representations).

The classification of finite-dimensional representations of $U_{h}(\mathfrak{g})$ is no harder than that of $U(\mathfrak{g})$.

Lemma

If V_{h} is a representation of $U_{h}(\mathfrak{g})$, then $V_{h} / h V_{h}$ is a representation of $U(\mathfrak{g})$. If V is a representation of $U(\mathfrak{g})$, then $V[[h]]$ is a representation of $U_{h}(\mathfrak{g})$. If the representations are finite-dimensional, these operations are mutually inverse, and send indecomposable representations to indecomposable representations.

In other words, the category of $U(\mathfrak{g})$ representations is equivalent to the category of $U_{h}(\mathfrak{g})$ representations (as long as we resetrict to finite-dimensional and free representations)

The classification of finite-dimensional representations of $U_{h}(\mathfrak{g})$ is no harder than that of $U(\mathfrak{g})$.

Lemma

If V_{h} is a representation of $U_{h}(\mathfrak{g})$, then $V_{h} / h V_{h}$ is a representation of $U(\mathfrak{g})$. If V is a representation of $U(\mathfrak{g})$, then $V[[h]]$ is a representation of $U_{h}(\mathfrak{g})$. If the representations are finite-dimensional, these operations are mutually inverse, and send indecomposable representations to indecomposable representations.

In other words, the category of $U(\mathfrak{g})$ representations is equivalent to the category of $U_{h}(\mathfrak{g})$ representations (as long as we resetrict to finite-dimensional and free representations).

Let $\rho: U_{h}(\mathfrak{g}) \rightarrow \operatorname{End}(V)$ be a representation. As we remarked before, in general the map $V \otimes V^{*} \rightarrow k$ is not a morphism of $U_{h}(\mathfrak{g})$-modules. However, since we have an element $v_{h}^{-1} u_{h}$ with $S^{2}(a)=v_{h}^{-1} u_{h} a u_{h}^{-1} v_{h}$ we get $V \cong V^{* *}$, so we could consider the map

$$
V \otimes V^{*} \rightarrow V^{* *} \otimes V^{*} \rightarrow k
$$

An element $f \in \operatorname{End}(V) \cong V \otimes V^{*}$ is mapped to $\operatorname{trace}\left(\rho\left(v_{h}^{-1} u_{h}\right) f\right)$.
\square
Definition
The quantum trace tr_{q} is defined as $\operatorname{tr}_{q}(f)=\operatorname{trace}\left(\rho\left(v_{h}^{-1} u_{h}\right) f\right)$.

The quantum dimension $\operatorname{dim}_{q}(V)$ of V is defined as
\square

Let $\rho: U_{h}(\mathfrak{g}) \rightarrow \operatorname{End}(V)$ be a representation. As we remarked before, in general the map $V \otimes V^{*} \rightarrow k$ is not a morphism of $U_{h}(\mathfrak{g})$-modules. However, since we have an element $v_{h}^{-1} u_{h}$ with $S^{2}(a)=v_{h}^{-1} u_{h} a u_{h}^{-1} v_{h}$ we get $V \cong V^{* *}$, so we could consider the map

$$
V \otimes V^{*} \rightarrow V^{* *} \otimes V^{*} \rightarrow k
$$

An element $f \in \operatorname{End}(V) \cong V \otimes V^{*}$ is mapped to $\operatorname{trace}\left(\rho\left(v_{h}^{-1} u_{h}\right) f\right)$.

Definition

The quantum trace tr_{q} is defined as

$$
\operatorname{tr}_{q}(f)=\operatorname{trace}\left(\rho\left(v_{h}^{-1} u_{h}\right) f\right)
$$

The quantum dimension $\operatorname{dim}_{q}(V)$ of V is defined as

$$
\operatorname{dim}_{q}(V)=\operatorname{tr}_{q}\left(\mathbb{1}_{V}\right)=\operatorname{trace}\left(\rho\left(v_{h}^{-1} u_{h}\right)\right)
$$

Quantised universal enveloping algebras usually appear in the literature in a simplified form:

Definition

The associative algebra $U_{q}(\mathfrak{s l}(2))$ over $\mathbb{C}(q)$ is generated by E, F, K, K^{-1} with relations

This is related to $U_{h}(\mathfrak{s l}(2))$ by $E=X^{+}, F=X^{-}, q=e^{h}$, and $K=e^{h H}$ Another technical advantage to this is we can specialise q to any complex number, which we could not do with U_{h}.

Quantised universal enveloping algebras usually appear in the literature in a simplified form:

Definition

The associative algebra $U_{q}(\mathfrak{s l l}(2))$ over $\mathbb{C}(q)$ is generated by E, F, K, K^{-1} with relations

$$
\begin{gathered}
K K^{-1}=K^{-1} K=1, \quad K E=q^{2} E K, \quad K F=q^{-2} F K \\
E F-F E=\frac{K-K^{-1}}{q-q^{-1}} .
\end{gathered}
$$

Another technical advantage to this is we can specialise q to any complex number, which we could not do with U_{h}.

Quantised universal enveloping algebras usually appear in the literature in a simplified form:

Definition

The associative algebra $U_{q}(\mathfrak{s l}(2))$ over $\mathbb{C}(q)$ is generated by E, F, K, K^{-1} with relations

$$
\begin{gathered}
K K^{-1}=K^{-1} K=1, \quad K E=q^{2} E K, \quad K F=q^{-2} F K \\
E F-F E=\frac{K-K^{-1}}{q-q^{-1}}
\end{gathered}
$$

This is related to $U_{h}(\mathfrak{s l}(2))$ by $E=X^{+}, F=X^{-}, q=e^{h}$, and $K=e^{h H}$. Another technical advantage to this is we can specialise q to any complex number, which we could not do with U_{h}.

The Hopf algebra structure becomes

$$
\begin{gathered}
\Delta(E)=E \otimes K+1 \otimes E, \quad \Delta(F)=F \otimes 1+K^{-1} \otimes F \\
\Delta(K)=K \otimes K \\
S(E)=-E K^{-1}, \quad S(F)=-K F, \quad S(K)=K^{-1} \\
\epsilon(E)=\epsilon(F)=0, \epsilon(K)=1
\end{gathered}
$$

The simplified algebra no longer has all the structure of $U_{h}(\mathfrak{s l}(2))$, but we can still formally write

$$
\begin{gathered}
R=q^{H \otimes H / 2} \sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2}\left(q-q^{-1}\right)^{n}}{[n]!} E^{n} \otimes F^{n} \\
u=q^{-H^{2} / 2} \sum_{n=0}^{\infty} q^{3 n(n-1) / 2} \frac{\left(q-q^{-1}\right)^{n}}{[n]!} F^{n} K^{-n} E^{n} \\
v=q^{-H^{2} / 2} \sum_{n=0}^{\infty} q^{3 n(n-1) / 2} \frac{\left(q-q^{-1}\right)^{n}}{[n]!} F^{n} K^{-n-1} E^{n}
\end{gathered}
$$

Let $V=\left\langle v_{-}, v_{+}\right\rangle$be the 2-dimensional representation of $U_{q}(\mathfrak{s l}(2))$. This is defined by

$$
\begin{gathered}
E\left(v_{-}\right)=v_{+}, F\left(v_{-}\right)=0, K\left(v_{-}\right)=q^{-1} v_{-} \\
E\left(v_{+}\right)=0, F\left(v_{+}\right)=v_{-}, K\left(v_{+}\right)=q v_{+}
\end{gathered}
$$

In fact, the element $v^{-1} u$ acts the same as K here, so

Hence the invariant associated to the unknot is $q+q^{-1}$ in this case.

Let $V=\left\langle v_{-}, v_{+}\right\rangle$be the 2-dimensional representation of $U_{q}(\mathfrak{s l}(2))$. This is defined by

$$
\begin{gathered}
E\left(v_{-}\right)=v_{+}, F\left(v_{-}\right)=0, K\left(v_{-}\right)=q^{-1} v_{-} \\
E\left(v_{+}\right)=0, F\left(v_{+}\right)=v_{-}, K\left(v_{+}\right)=q v_{+}
\end{gathered}
$$

In fact, the element $v^{-1} u$ acts the same as K here, so

$$
\operatorname{dim}_{q}(V)=q+q^{-1}
$$

Hence the invariant associated to the unknot is $q+q^{-1}$ in this case.

The R-matrix in this case acts on the basis $\left\langle v_{+} \otimes v_{+}, v_{+} \otimes v_{-}, v_{-} \otimes v_{+}, v_{-} \otimes v_{-}\right\rangle$of $V \otimes V$ as

$$
q^{\frac{3}{2}}\left(\begin{array}{cccc}
q^{-1} & 0 & 0 & 0 \\
0 & 0 & q^{-2} & 0 \\
0 & q^{-2} & q^{-1}-q^{-3} & 0 \\
0 & 0 & 0 & q^{-1}
\end{array}\right)
$$

and the element v acts as multiplication by $q^{-3 / 2}$. We therefore see that

The R-matrix in this case acts on the basis $\left\langle v_{+} \otimes v_{+}, v_{+} \otimes v_{-}, v_{-} \otimes v_{+}, v_{-} \otimes v_{-}\right\rangle$of $V \otimes V$ as

$$
q^{\frac{3}{2}}\left(\begin{array}{cccc}
q^{-1} & 0 & 0 & 0 \\
0 & 0 & q^{-2} & 0 \\
0 & q^{-2} & q^{-1}-q^{-3} & 0 \\
0 & 0 & 0 & q^{-1}
\end{array}\right)
$$

and the element v acts as multiplication by $q^{-3 / 2}$. We therefore see that

$$
q^{\frac{1}{2}} R-q^{-\frac{1}{2}} R^{-1}=\left(q-q^{-1}\right) \mathbb{1}_{V \otimes V}
$$

and that a twist of a strand is multiplication by $q^{-3 / 2}$.

We can turn this from a framed invariant to a genuine knot invariant by multiplying R by $q^{-3 / 2}$. Then a twist of a strand is just the identity, and

$$
q^{2} R-q^{-2} R^{-2}=\left(q-q^{-1}\right) \mathbb{1}_{V \otimes V}
$$

This is exactly the skein relation for the Jones polynomial.

A special feature of V is that $V \cong V^{*}$ via the map

$$
f: V \rightarrow V^{*}: v_{+} \mapsto v_{-}^{*}, \quad v_{-} \mapsto-q^{-1} v_{+}^{*} .
$$

This means that upward-oriented strands are assigned the same colouring as downward-oriented strands (ie. the Jones polynomial is an invariant of unoriented knots). We can interpret cups and caps as

$$
\checkmark=\left(\mathbb{1} \otimes f^{-1}\right) \circ \pi_{V}: \mathbb{C}(q) \rightarrow V \otimes V
$$

$$
=\operatorname{ev} \circ(f \otimes \mathbb{1})=\operatorname{tr}_{q} \circ(\mathbb{1} \otimes f): V \otimes V \rightarrow \mathbb{C}(q)
$$

Then the map associated to an unoriented circle is multiplication by $-q-q^{-1}$.

By explicit computation, we see that the R-matrix acts in the same way as

which is exactly what the Kauffman bracket associates to a crossing.

Why we are interested in quantum invariants of knots:

- Very little is known about them: even in the case of the Jones polynomial it is unknown if the invariant detects the unknot.
- They may contain some topological information about 3- or 4-manifolds
- Quantum invariants generally seem to be fairly strong invariants
- Fvery quantum invariant can be categorified

Why we are interested in quantum invariants of knots:

- Very little is known about them: even in the case of the Jones polynomial it is unknown if the invariant detects the unknot.
- They may contain some topological information about 3- or 4-manifolds
- Quantum invariants generally seem to be fairly strong invariants
- Every quantum invariant can be categorified.

Why we are interested in quantum invariants of knots:

- Very little is known about them: even in the case of the Jones polynomial it is unknown if the invariant detects the unknot.
- They may contain some topological information about 3- or 4-manifolds
- Quantum invariants generally seem to be fairly strong invariants
- Every quantum invariant can be categorified.

Why we are interested in quantum invariants of knots:

- Very little is known about them: even in the case of the Jones polynomial it is unknown if the invariant detects the unknot.
- They may contain some topological information about 3- or 4-manifolds
- Quantum invariants generally seem to be fairly strong invariants
- Every quantum invariant can be categorified.

Why we are interested in quantum invariants of knots:

- Very little is known about them: even in the case of the Jones polynomial it is unknown if the invariant detects the unknot.
- They may contain some topological information about 3- or 4-manifolds
- Quantum invariants generally seem to be fairly strong invariants
- Every quantum invariant can be categorified.

Khovanov homology associates to every knot K a bigraded abelian group $K h^{i, j}(K)$ so that

$$
J(K)=\sum_{i, j}(-1)^{i} q^{j} \text { rank } K h^{i, j}(K) .
$$

> The advantage of this is that $K h(K)$ is a stronger invariant of knots, gives us access to methods in homological algebra, and also that $K h(K)$ is functorial: for any cobordism $\Sigma: K \rightarrow K^{\prime}$, there exists a map $K h(K) \rightarrow K h\left(K^{\prime}\right)$. Using this, it is possible to extract a lower-bound for the slice-genus of a knot using the Rasmussen s-invariant.

Khovanov homology associates to every knot K a bigraded abelian group $K h^{i, j}(K)$ so that

$$
J(K)=\sum_{i, j}(-1)^{i} q^{j} \text { rank } K h^{i, j}(K) .
$$

The advantage of this is that $K h(K)$ is a stronger invariant of knots, gives us access to methods in homological algebra, and also that $K h(K)$ is functorial: for any cobordism $\Sigma: K \rightarrow K^{\prime}$, there exists a map $K h(K) \rightarrow K h\left(K^{\prime}\right)$.

Khovanov homology associates to every knot K a bigraded abelian group $K h^{i, j}(K)$ so that

$$
J(K)=\sum_{i, j}(-1)^{i} q^{j} \text { rank } K h^{i, j}(K) .
$$

The advantage of this is that $K h(K)$ is a stronger invariant of knots, gives us access to methods in homological algebra, and also that $K h(K)$ is functorial: for any cobordism $\Sigma: K \rightarrow K^{\prime}$, there exists a map $K h(K) \rightarrow K h\left(K^{\prime}\right)$. Using this, it is possible to extract a lower-bound for the slice-genus of a knot using the Rasmussen s-invariant.

Theorem (Webster, 2010)

For any simple Lie algebra \mathfrak{g} and representation V, there is a homology theory $H_{\mathfrak{g}}, V$ of bigraded vector spaces so that

$$
\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} H_{\mathfrak{g}, V}^{i, j}
$$

is the quantum polynomial invariant of K associated to (\mathfrak{g}, V).

