An Introduction to Khovanov Homology

Dan Jones

GAndAIF / RADAGAST

20th March 2014

Dan Jones An Introduction to Khovanov Homology

< ∃ →

The Khovanov Complex

In order to construct the Khovanov complex, we have to:

Construct a cube of resolutions using

Construct a cube of resolutions using

So if D has n crossings, there are 2^n different (complete) resolutions. We present them on the vertices of the cube $[0.1]^n$.

Construct a cube of resolutions using

So if D has n crossings, there are 2^n different (complete) resolutions. We present them on the vertices of the cube $[0.1]^n$.

2 Apply a (1 + 1)-dimensional TQFT to this cube.

Construct a cube of resolutions using

So if *D* has *n* crossings, there are 2^n different (complete) resolutions. We present them on the vertices of the cube $[0.1]^n$.

Apply a (1 + 1)-dimensional TQFT to this cube. This associates a vector space to every circle, and map between vector spaces to a cobordism between circles.

Example: The trefoil

포 씨는 포

We think of the resolution cube as increasing from 000 to 111. Then going along each edge of the cube results in exactly one coordinate changing from 0 to 1.

We think of the resolution cube as increasing from 000 to 111. Then going along each edge of the cube results in exactly one coordinate changing from 0 to 1. So a cobordism on an edge should correspond to a change from a 0-resolution to a 1-resolution:

So every cobordism will contain this saddle-cobordism.

Let V be a graded vector space spanned by v_+ and v_- .

Let V be a graded vector space spanned by v_+ and v_- . Then a (1+1)-dimensional TQFT \mathcal{A} assigns to each circle in the resolution cube, the vector space V.

Let V be a graded vector space spanned by v_+ and v_- . Then a (1+1)-dimensional TQFT \mathcal{A} assigns to each circle in the resolution cube, the vector space V. Each additional circle corresponds to a tensor factor of V.

Let V be a graded vector space spanned by v_+ and v_- . Then a (1+1)-dimensional TQFT \mathcal{A} assigns to each circle in the resolution cube, the vector space V. Each additional circle corresponds to a tensor factor of V.

 ${\mathcal A}$ assigns to a cobordism of circles, a map between vector spaces.

Let V be a graded vector space spanned by v_+ and v_- . Then a (1+1)-dimensional TQFT \mathcal{A} assigns to each circle in the resolution cube, the vector space V. Each additional circle corresponds to a tensor factor of V.

 \mathcal{A} assigns to a cobordism of circles, a map between vector spaces. Since the cobordisms on edges change one crossing from a 0-smoothing to a 1-smoothing, we will either be merging circles, or splitting them.

Let V be a graded vector space spanned by v_+ and v_- . Then a (1+1)-dimensional TQFT \mathcal{A} assigns to each circle in the resolution cube, the vector space V. Each additional circle corresponds to a tensor factor of V.

 \mathcal{A} assigns to a cobordism of circles, a map between vector spaces. Since the cobordisms on edges change one crossing from a 0-smoothing to a 1-smoothing, we will either be merging circles, or splitting them. The corresponding maps are

$$\begin{array}{ll} m: V \otimes V \to V & \Delta: V \to V \otimes V \\ v_+ \otimes v_+ \mapsto v_+ & v_+ \mapsto v_+ \otimes v_- + v_- \otimes v_+ \\ v_+ \otimes v_- \mapsto v_- & v_- \mapsto v_- \otimes v_- \\ v_- \otimes v_+ \mapsto v_- \\ v_- \otimes v_- \mapsto 0 \end{array}$$

Example: The Trefoil

문 🛌 문

Let v be a vertex of the resolution cube.

æ

伺 ト く ヨ ト く ヨ ト

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$.

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism.

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

• Define a homological grading as $h(v) = |v| - n_{-}$.

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

- Define a homological grading as $h(v) = |v| n_{-}$.
- h(w) = h(v) + 1.

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

- Define a homological grading as $h(v) = |v| n_{-}$.
- h(w) = h(v) + 1.
- Define grading α by setting α(v₊) = 1 and α(v_−) = −1. This is extended to tensors as

$$\alpha(\mathbf{v}_1\otimes\cdots\otimes\mathbf{v}_k)=\alpha(\mathbf{v}_1)+\cdots+\alpha(\mathbf{v}_k).$$

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

- Define a homological grading as $h(v) = |v| n_{-}$.
- h(w) = h(v) + 1.
- Define grading α by setting $\alpha(v_+) = 1$ and $\alpha(v_-) = -1$. This is extended to tensors as

$$\alpha(\mathbf{v}_1\otimes\cdots\otimes\mathbf{v}_k)=\alpha(\mathbf{v}_1)+\cdots+\alpha(\mathbf{v}_k).$$

•
$$\alpha(w) = \alpha(v) - 1.$$

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

- Define a homological grading as $h(v) = |v| n_{-}$.
- h(w) = h(v) + 1.
- Define grading α by setting $\alpha(v_+) = 1$ and $\alpha(v_-) = -1$. This is extended to tensors as

$$\alpha(\mathbf{v}_1\otimes\cdots\otimes\mathbf{v}_k)=\alpha(\mathbf{v}_1)+\cdots+\alpha(\mathbf{v}_k).$$

•
$$\alpha(w) = \alpha(v) - 1.$$

• We use α to define a *quantum grading q* as $q(v) = \alpha(v) + h(v) + n_{+} - n_{-}$.

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

- Define a homological grading as $h(v) = |v| n_{-}$.
- h(w) = h(v) + 1.
- Define grading α by setting $\alpha(v_+) = 1$ and $\alpha(v_-) = -1$. This is extended to tensors as

$$\alpha(\mathbf{v}_1\otimes\cdots\otimes\mathbf{v}_k)=\alpha(\mathbf{v}_1)+\cdots+\alpha(\mathbf{v}_k).$$

•
$$\alpha(w) = \alpha(v) - 1.$$

• We use α to define a *quantum grading q* as $q(v) = \alpha(v) + h(v) + n_{+} - n_{-}$.

•
$$q(w) = q(v)$$
.

Example: The Trefoil

For the trefoil, $n_{-} = 3$, so homological grading is h(v) = |v| - 3.

∃ ► < ∃ ►</p>

э

Example: The Trefoil

For the trefoil, $n_{-} = 3$, so homological grading is h(v) = |v| - 3.

Since the quantum grading does not change passing over edges, this complex splits as a direct sum of complexes; one for each quantum grading. This gives a bi-graded chain complex. To ensure that we do get a chain complex $(d^2 = 0)$, we just sprinkle the cube with (-)-signs so that every face anti-commutes:

To ensure that we do get a chain complex $(d^2 = 0)$, we just sprinkle the cube with (-)-signs so that every face anti-commutes:

So for the trefoil, the Khovanov chain complex $CKh^{i,j}$ is given as before, with the additional (-)-signs to ensure we can take homology.

So for the trefoil, the Khovanov chain complex $CKh^{i,j}$ is given as before, with the additional (-)-signs to ensure we can take homology. Then $Kh^{i,j}(\mathfrak{D};\mathbb{Z})$ is given by:

$j \setminus i$	-3	-2	-1	0
-1				\mathbb{Z}
-3				\mathbb{Z}
-5		\mathbb{Z}		
-7		$\mathbb{Z}/2\mathbb{Z}$		
-9	\mathbb{Z}			

So for the trefoil, the Khovanov chain complex $CKh^{i,j}$ is given as before, with the additional (-)-signs to ensure we can take homology. Then $Kh^{i,j}(\ \ensuremath{\mathbb{O}}\ ; \ensuremath{\mathbb{Z}}\)$ is given by:

$j \setminus i$	-3	-2	-1	0
-1				\mathbb{Z}
-3				\mathbb{Z}
-5		Z		
-7		$\mathbb{Z}/2\mathbb{Z}$		
-9	\mathbb{Z}			

To prove invariance of Khovanov homology, you take two diagrams D_1 and D_2 of the same knot (so differ by a sequence of Reidemeister moves), and produce a quasi-isomorphism on $C^{*,*}(D_1) \rightarrow C^{*,*}(D_2)$.

So for the trefoil, the Khovanov chain complex $CKh^{i,j}$ is given as before, with the additional (-)-signs to ensure we can take homology. Then $Kh^{i,j}(\ \ensuremath{\mathbb{G}}\ ; \ensuremath{\mathbb{Z}}\)$ is given by:

$j \setminus i$	-3	-2	-1	0
-1				\mathbb{Z}
-3				\mathbb{Z}
-5		Z		
-7		$\mathbb{Z}/2\mathbb{Z}$		
-9	\mathbb{Z}			

To prove invariance of Khovanov homology, you take two diagrams D_1 and D_2 of the same knot (so differ by a sequence of Reidemeister moves), and produce a quasi-isomorphism on $C^{*,*}(D_1) \rightarrow C^{*,*}(D_2)$. It is sufficient to provide a quasi-isomorphism for each of the three Reidemeister moves.

Significance of Kh*,*

Khovanov homology is a stronger invariant than the Jones polynomial. To see this, consider the knots 5_1 and 10_{132} :

Significance of Kh*,*

Khovanov homology is a stronger invariant than the Jones polynomial. To see this, consider the knots 5_1 and 10_{132} :

They have the same (unnormalised) Jones polynomials; $\hat{J}(5_1) = \hat{J}(10_{132}) = q^{-3} + q^{-5} + q^{-7} - q^{-15}$.

Significance of Kh*,*

Khovanov homology is a stronger invariant than the Jones polynomial. To see this, consider the knots 5_1 and 10_{132} :

They have the same (unnormalised) Jones polynomials; $\hat{J}(5_1) = \hat{J}(10_{132}) = q^{-3} + q^{-5} + q^{-7} - q^{-15}$. Khovanov homology, however, can distinguish the two:

Continuing the study of Khovanov Homology can lead into many directions.

э

Continuing the study of Khovanov Homology can lead into many directions. What I have been looking at is a 'homotopy type' of Khovanov Homology.

Continuing the study of Khovanov Homology can lead into many directions. What I have been looking at is a 'homotopy type' of Khovanov Homology. So given a knot K, there is a sequence $\chi_{Kh}(K) = \bigvee_{j} \chi^{j}_{Kh}(K)$ of CW-complexes assigned to K, with the property that

$$\widetilde{H}^{i}(\chi^{j}_{Kh}(K)) \cong Kh^{i,j}(K)$$

and each $\chi^{j}_{Kh}(K)$ is an invariant of the knot, up to stable homotopy.

Continuing the study of Khovanov Homology can lead into many directions. What I have been looking at is a 'homotopy type' of Khovanov Homology. So given a knot K, there is a sequence $\chi_{Kh}(K) = \bigvee_{j} \chi^{j}_{Kh}(K)$ of CW-complexes assigned to K, with the property that

$$\widetilde{H}^{i}(\chi^{j}_{Kh}(K)) \cong Kh^{i,j}(K)$$

and each $\chi^{j}_{Kh}(K)$ is an invariant of the knot, up to stable homotopy. This is interesting because there are pairs of knots K_1, K_2 which have the same Khovanov homology, but have distinct Khovanov homotopy types.