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The Khovanov Complex

In order to construct the Khovanov complex, we have to:

1 Construct a cube of resolutions using

10

So if D has n crossings, there are 2n different (complete)
resolutions. We present them on the vertices of the cube
[0.1]n.

2 Apply a (1 + 1)-dimensional TQFT to this cube. This
associates a vector space to every circle, and map between
vector spaces to a cobordism between circles.
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Example: The trefoil
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Cobordisms on edges

We think of the resolution cube as increasing from 000 to 111.
Then going along each edge of the cube results in exactly one
coordinate changing from 0 to 1.

So a cobordism on an edge
should correspond to a change from a 0-resolution to a
1-resolution:

So every cobordism will contain this saddle-cobordism.
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A (1 + 1)-dimensional TQFT

Let V be a graded vector space spanned by v+ and v−.

Then a
(1 + 1)-dimensional TQFT A assigns to each circle in the
resolution cube, the vector space V . Each additional circle
corresponds to a tensor factor of V .
A assigns to a cobordism of circles, a map between vector spaces.
Since the cobordisms on edges change one crossing from a
0-smoothing to a 1-smoothing, we will either be merging circles, or
splitting them. The corresponding maps are

m :V ⊗ V → V ∆ :V → V ⊗ V

v+ ⊗ v+ 7→ v+ v+ 7→ v+ ⊗ v− + v− ⊗ v+

v+ ⊗ v− 7→ v− v− 7→ v− ⊗ v−

v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0
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Example: The Trefoil
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Gradings

Let v be a vertex of the resolution cube.

So it corresponds to a
collection of k circles, or equivalently the k-tensor product V⊗k .
Denote w as the image of v under an edge-cobordism. Then:

Define a homological grading as h(v) = |v | − n−.

h(w) = h(v) + 1.

Define grading α by setting α(v+) = 1 and α(v−) = −1. This
is extended to tensors as
α(v1 ⊗ · · · ⊗ vk) = α(v1) + · · ·+ α(vk).

α(w) = α(v)− 1.

We use α to define a quantum grading q as
q(v) = α(v) + h(v) + n+ − n−.

q(w) = q(v).
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Example: The Trefoil

For the trefoil, n− = 3, so homological grading is h(v) = |v | − 3.

Since the quantum grading does not change passing over edges,
this complex splits as a direct sum of complexes; one for each
quantum grading. This gives a bi-graded chain complex.
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To ensure that we do get a chain complex (d2 = 0), we just
sprinkle the cube with (−)-signs so that every face anti-commutes:
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So for the trefoil, the Khovanov chain complex CKhi ,j is given as
before, with the additional (−)-signs to ensure we can take

homology.

Then Khi ,j( ;Z) is given by:

j \i -3 -2 -1 0

-1 Z
-3 Z
-5 Z
-7 Z/2Z
-9 Z

To prove invariance of Khovanov homology, you take two diagrams
D1 and D2 of the same knot (so differ by a sequence of
Reidemeister moves), and produce a quasi-isomorphism on
C ∗,∗(D1)→ C ∗,∗(D2). It is sufficient to provide a
quasi-isomorphism for each of the three Reidemeister moves.
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Significance of Kh∗,∗

Khovanov homology is a stronger invariant than the Jones
polynomial. To see this, consider the knots 51 and 10132:

They have the same (unnormalised) Jones polynomials;
Ĵ(51) = Ĵ(10132) = q−3 + q−5 + q−7− q−15. Khovanov homology,
however, can distinguish the two:
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What now?

Continuing the study of Khovanov Homology can lead into many
directions.

What I have been looking at is a ‘homotopy type’ of
Khovanov Homology. So given a knot K , there is a sequence
χKh(K ) =

∨
j
χj
Kh(K ) of CW-complexes assigned to K , with the

property that

H̃ i (χj
Kh(K )) ∼= Khi ,j(K )

and each χj
Kh(K ) is an invariant of the knot, up to stable

homotopy. This is interesting because there are pairs of knots
K1,K2 which have the same Khovanov homology, but have distinct
Khovanov homotopy types.
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