An Introduction to Khovanov Homology

Dan Jones

GAndAIF / RADAGAST

20th March 2014

The Khovanov Complex

In order to construct the Khovanov complex, we have to:

The Khovanov Complex

In order to construct the Khovanov complex, we have to:
(1) Construct a cube of resolutions using

In order to construct the Khovanov complex, we have to:
(1) Construct a cube of resolutions using

So if D has n crossings, there are 2^{n} different (complete) resolutions. We present them on the vertices of the cube [0.1] ${ }^{n}$.

The Khovanov Complex

In order to construct the Khovanov complex, we have to:
(1) Construct a cube of resolutions using

So if D has n crossings, there are 2^{n} different (complete) resolutions. We present them on the vertices of the cube [0.1] ${ }^{n}$.
(2) Apply a $(1+1)$-dimensional TQFT to this cube.

The Khovanov Complex

In order to construct the Khovanov complex, we have to:
(1) Construct a cube of resolutions using

So if D has n crossings, there are 2^{n} different (complete) resolutions. We present them on the vertices of the cube [0.1] ${ }^{n}$.
(2) Apply a $(1+1)$-dimensional TQFT to this cube. This associates a vector space to every circle, and map between vector spaces to a cobordism between circles.

Cobordisms on edges

We think of the resolution cube as increasing from 000 to 111 . Then going along each edge of the cube results in exactly one coordinate changing from 0 to 1 .

Cobordisms on edges

We think of the resolution cube as increasing from 000 to 111. Then going along each edge of the cube results in exactly one coordinate changing from 0 to 1 . So a cobordism on an edge should correspond to a change from a 0 -resolution to a 1-resolution:

So every cobordism will contain this saddle-cobordism.

A (1 + 1)-dimensional TQFT

Let V be a graded vector space spanned by v_{+}and v_{-}.

Let V be a graded vector space spanned by v_{+}and v_{-}. Then a $(1+1)$-dimensional TQFT \mathcal{A} assigns to each circle in the resolution cube, the vector space V.

Let V be a graded vector space spanned by v_{+}and v_{-}. Then a $(1+1)$-dimensional TQFT \mathcal{A} assigns to each circle in the resolution cube, the vector space V. Each additional circle corresponds to a tensor factor of V.

A (1+1)-dimensional TQFT

Let V be a graded vector space spanned by v_{+}and v_{-}. Then a $(1+1)$-dimensional TQFT \mathcal{A} assigns to each circle in the resolution cube, the vector space V. Each additional circle corresponds to a tensor factor of V.
\mathcal{A} assigns to a cobordism of circles, a map between vector spaces.

A (1 + 1)-dimensional TQFT

Let V be a graded vector space spanned by v_{+}and v_{-}. Then a $(1+1)$-dimensional TQFT \mathcal{A} assigns to each circle in the resolution cube, the vector space V. Each additional circle corresponds to a tensor factor of V.
\mathcal{A} assigns to a cobordism of circles, a map between vector spaces.
Since the cobordisms on edges change one crossing from a 0 -smoothing to a 1 -smoothing, we will either be merging circles, or splitting them.

A (1 + 1)-dimensional TQFT

Let V be a graded vector space spanned by v_{+}and v_{-}. Then a $(1+1)$-dimensional TQFT \mathcal{A} assigns to each circle in the resolution cube, the vector space V. Each additional circle corresponds to a tensor factor of V.
\mathcal{A} assigns to a cobordism of circles, a map between vector spaces.
Since the cobordisms on edges change one crossing from a
0 -smoothing to a 1 -smoothing, we will either be merging circles, or splitting them. The corresponding maps are

$$
\begin{aligned}
& m: V \otimes V \rightarrow V \\
& v_{+} \otimes v_{+} \mapsto v_{+} \\
& v_{+} \otimes v_{-} \mapsto v_{-} \\
& v_{-} \otimes v_{+} \mapsto v_{-} \\
& v_{-} \otimes v_{-} \mapsto 0
\end{aligned}
$$

Example: The Trefoil

Gradings

Let v be a vertex of the resolution cube.

Gradings

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$.

Gradings

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism.

Gradings

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

- Define a homological grading as $h(v)=|v|-n_{-}$.

Gradings

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

- Define a homological grading as $h(v)=|v|-n_{-}$.
- $h(w)=h(v)+1$.

Gradings

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

- Define a homological grading as $h(v)=|v|-n_{-}$.
- $h(w)=h(v)+1$.
- Define grading α by setting $\alpha\left(v_{+}\right)=1$ and $\alpha\left(v_{-}\right)=-1$. This is extended to tensors as

$$
\alpha\left(v_{1} \otimes \cdots \otimes v_{k}\right)=\alpha\left(v_{1}\right)+\cdots+\alpha\left(v_{k}\right) .
$$

Gradings

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

- Define a homological grading as $h(v)=|v|-n_{-}$.
- $h(w)=h(v)+1$.
- Define grading α by setting $\alpha\left(v_{+}\right)=1$ and $\alpha\left(v_{-}\right)=-1$. This is extended to tensors as

$$
\alpha\left(v_{1} \otimes \cdots \otimes v_{k}\right)=\alpha\left(v_{1}\right)+\cdots+\alpha\left(v_{k}\right) .
$$

- $\alpha(w)=\alpha(v)-1$.

Gradings

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

- Define a homological grading as $h(v)=|v|-n_{-}$.
- $h(w)=h(v)+1$.
- Define grading α by setting $\alpha\left(v_{+}\right)=1$ and $\alpha\left(v_{-}\right)=-1$. This is extended to tensors as

$$
\alpha\left(v_{1} \otimes \cdots \otimes v_{k}\right)=\alpha\left(v_{1}\right)+\cdots+\alpha\left(v_{k}\right) .
$$

- $\alpha(w)=\alpha(v)-1$.
- We use α to define a quantum grading q as

$$
q(v)=\alpha(v)+h(v)+n_{+}-n_{-} .
$$

Gradings

Let v be a vertex of the resolution cube. So it corresponds to a collection of k circles, or equivalently the k-tensor product $V^{\otimes k}$. Denote w as the image of v under an edge-cobordism. Then:

- Define a homological grading as $h(v)=|v|-n_{-}$.
- $h(w)=h(v)+1$.
- Define grading α by setting $\alpha\left(v_{+}\right)=1$ and $\alpha\left(v_{-}\right)=-1$. This is extended to tensors as

$$
\alpha\left(v_{1} \otimes \cdots \otimes v_{k}\right)=\alpha\left(v_{1}\right)+\cdots+\alpha\left(v_{k}\right) .
$$

- $\alpha(w)=\alpha(v)-1$.
- We use α to define a quantum grading q as

$$
q(v)=\alpha(v)+h(v)+n_{+}-n_{-} .
$$

- $q(w)=q(v)$.

Example: The Trefoil

For the trefoil, $n_{-}=3$, so homological grading is $h(v)=|v|-3$.

Example: The Trefoil

For the trefoil, $n_{-}=3$, so homological grading is $h(v)=|v|-3$.

Since the quantum grading does not change passing over edges, this complex splits as a direct sum of complexes; one for each quantum grading. This gives a bi-graded chain complex.

To ensure that we do get a chain complex $\left(d^{2}=0\right)$, we just sprinkle the cube with $(-)$-signs so that every face anti-commutes:

To ensure that we do get a chain complex $\left(d^{2}=0\right)$, we just sprinkle the cube with $(-)$-signs so that every face anti-commutes:

So for the trefoil, the Khovanov chain complex $C K h^{i, j}$ is given as before, with the additional (- -signs to ensure we can take homology.

So for the trefoil, the Khovanov chain complex $C K h^{i, j}$ is given as before, with the additional (- -signs to ensure we can take homology. Then $K h^{i, j}(\mathscr{P} ; \mathbb{Z})$ is given by:

$j \backslash i$	-3	-2	-1	0
-1				\mathbb{Z}
-3				\mathbb{Z}
-5		\mathbb{Z}		
-7		$\mathbb{Z} / 2 \mathbb{Z}$		
-9	\mathbb{Z}			

So for the trefoil, the Khovanov chain complex $C K h^{i, j}$ is given as before, with the additional (-)-signs to ensure we can take homology. Then $K h^{i, j}(\mathscr{\theta} ; \mathbb{Z})$ is given by:

$j \backslash i$	-3	-2	-1	0
-1				\mathbb{Z}
-3				\mathbb{Z}
-5		\mathbb{Z}		
-7		$\mathbb{Z} / 2 \mathbb{Z}$		
-9	\mathbb{Z}			

To prove invariance of Khovanov homology, you take two diagrams D_{1} and D_{2} of the same knot (so differ by a sequence of Reidemeister moves), and produce a quasi-isomorphism on $C^{*, *}\left(D_{1}\right) \rightarrow C^{*, *}\left(D_{2}\right)$.

So for the trefoil, the Khovanov chain complex $C K h^{i, j}$ is given as before, with the additional (-)-signs to ensure we can take homology. Then $K h^{i, j}(\mathscr{\theta} ; \mathbb{Z})$ is given by:

$j \backslash i$	-3	-2	-1	0
-1				\mathbb{Z}
-3				\mathbb{Z}
-5		\mathbb{Z}		
-7		$\mathbb{Z} / 2 \mathbb{Z}$		
-9	\mathbb{Z}			

To prove invariance of Khovanov homology, you take two diagrams D_{1} and D_{2} of the same knot (so differ by a sequence of Reidemeister moves), and produce a quasi-isomorphism on $C^{*, *}\left(D_{1}\right) \rightarrow C^{*, *}\left(D_{2}\right)$. It is sufficient to provide a quasi-isomorphism for each of the three Reidemeister moves.

Significance of $K h^{*, *}$

Khovanov homology is a stronger invariant than the Jones polynomial. To see this, consider the knots 5_{1} and 10_{132} :

Significance of $K h^{*, *}$

Khovanov homology is a stronger invariant than the Jones polynomial. To see this, consider the knots 5_{1} and 10_{132} :

They have the same (unnormalised) Jones polynomials; $\hat{J}\left(5_{1}\right)=\hat{J}\left(10_{132}\right)=q^{-3}+q^{-5}+q^{-7}-q^{-15}$.

Significance of $K h^{*, *}$

Khovanov homology is a stronger invariant than the Jones polynomial. To see this, consider the knots 5_{1} and 10_{132} :

They have the same (unnormalised) Jones polynomials; $\hat{J}\left(5_{1}\right)=\hat{J}\left(10_{132}\right)=q^{-3}+q^{-5}+q^{-7}-q^{-15}$. Khovanov homology, however, can distinguish the two:

j	i^{i}	-5	-4	-3	-2	-1
0						
-3						\mathbb{Q}
-5						\mathbb{Q}
-7				\mathbb{Q}		
-9						
-11		\mathbb{Q}	\mathbb{Q}			
-13						
-15	\mathbb{Q}					

j	r^{2}	-7	-6	-5	-4	-3	-2	-1
j^{2}							\mathbb{Q}	\mathbb{Q}
-1								\mathbb{Q}
-3								
-5					\mathbb{Q}	$\mathbb{Q} \oplus \mathbb{Q}$		
-7				\mathbb{Q}				
-9				\mathbb{Q}	\mathbb{Q}			
-11		\mathbb{Q}	\mathbb{Q}					
-13								
-15	\mathbb{Q}							

What now?

Continuing the study of Khovanov Homology can lead into many directions.

What now?

Continuing the study of Khovanov Homology can lead into many directions. What I have been looking at is a 'homotopy type' of Khovanov Homology.

Continuing the study of Khovanov Homology can lead into many directions. What I have been looking at is a 'homotopy type' of Khovanov Homology. So given a knot K, there is a sequence $\chi_{K h}(K)=\bigvee_{j} \chi_{K h}^{j}(K)$ of CW-complexes assigned to K, with the property that

$$
\widetilde{H}^{i}\left(\chi_{K h}^{j}(K)\right) \cong K h^{i, j}(K)
$$

and each $\chi_{K h}^{j}(K)$ is an invariant of the knot, up to stable homotopy.

Continuing the study of Khovanov Homology can lead into many directions. What I have been looking at is a 'homotopy type' of Khovanov Homology. So given a knot K, there is a sequence $\chi_{K h}(K)=\bigvee_{j} \chi_{K h}^{j}(K)$ of CW-complexes assigned to K, with the property that

$$
\widetilde{H}^{i}\left(\chi_{K h}^{j}(K)\right) \cong K h^{i, j}(K)
$$

and each $\chi_{K h}^{j}(K)$ is an invariant of the knot, up to stable homotopy. This is interesting because there are pairs of knots K_{1}, K_{2} which have the same Khovanov homology, but have distinct Khovanov homotopy types.

