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Setup

e Periodic monopoles satisfy Bogomolny equations on R? x S! with
C=pe=x+iyandz~z+2r

F = xDo.

e ® and A are valued in su(2), with boundary conditions for p — oo
[Cherkis & Kapustin '01]

¢ — imlog(p/C)os Acy — 0 A; — ix/mos.

e Topological (magnetic) charge k is the number of zeroes of ®, also

k_/ tr(FO)
Sz 4xm|o]”




Parameters and moduli

There are four parameters we are allowed to vary — moduli:
o relative xy positions (determined by K € C),
o z offset,
e relative phase.

Define the z-holonomy through
2. V(() = (A; +i®)V(¢) with V(0)=1,.

This quantity is only sensitive to the K modulus.

Other parameters have an infinite L2 norm:
e monopole size |C|,
e orientation arg(C).

In contrast to monopoles in R3, variations of the centre of mass have
infinite L2 norm, so can only consider the relative moduli space, M.
[Cherkis & Kapustin '02]



Nahm transform

e A generalisation of the ADHM construction of instantons.

o Relates dimensional reductions of the self-dual Yang-Mills equations
on reciprocal 4-tori. [Braam & van Baal '89)

e Here, monopole space R? x S! suggests Hitchin equations on R x S!
withreR, t~t+1and s=r+it,

26 = il¢, 9] Ds¢ = 0.

e Spectral data defined from either side of the transform:
[Cherkis & Kapustin '01]

det(e” — V(¢)) = 0 = det(¢ — ¢(s)) = 0.

e This fixes gauge invariants of ¢,
tr(¢) = 0 det(¢) = —C?(2cosh(2rs) — K).



Solving the Nahm/Hitchin equations

Charge 2 solutions are gauge-equivalent to [Harland & Ward '09]

0 [ e?/?
¢ = <,u_e_w/2 0 as = aosz + ag
with gy = C?(2cosh(2ms) — K), and the Hitchin equations become
ARe() = 2 (Js PR — u o) a= —§osv

where « has been set to zero by symmetry (« # 0 encodes z offset and
phase). Im(%)) chosen to ensure ¢ is periodic.

e det(®) has two zeroes. Two distinct solutions: we can place both
zeroes in 4 or one in each of py.

e For |[C|> 1 and/or |K| > 2, solution is Re(v) = log (|p—|/|1+])-



Lumps on Cylinder

For K € R, zeroes of det(¢) correspond roughly to peaks in |f],

e ‘zeroes together’

N P i ‘\\\\“““
TR <5
! 1 roo J ¢ !

Here C = 1. The size/period ratio now determined by 1/C.



Moduli on the Cylinder

o For large |K|, we have ‘lumps’ at 27sy = +cosh™}(K/2).
e Treat these as delta-functions.

e Approximate fields away from s,

¢ = Cy/2cosh(27s) — Kos, ar(r,t) =0, a¢(0,t) = ifos.

e Peaks have a phase angle in the 01/0, plane. Relative phase w.

e The constant 6 gives the t-holonomy at r =0,
1
U= Pexp </ a:(0, t)dt) 2cos(f) = tr(V).
0

e The moduli w and & are defined up to a choice of sign.
o Take Re(K) > 0 for simplicity.



Moduli Space Approximation

e The low energy dynamics of monopoles can be understood as
geodesic motion on the moduli space, M.

e A tangent vector in M to the solution (¢, as) is V1 = (019, d1as),
which must be orthogonal to the gauge orbits and satisfy Hitchin
equations

4Ds (6125) = [¢,019'] D5 (810) = [¢,61a3].
e Three other solutions V; = (0;¢, 0;as),
Vo = iVh, Va3 = (20125, 30197), Vi = iV3

satisfying

(Vi, V) = %Re / tr ((5,¢)(5,-¢)T +4(5,-as-)(5jas-)f) drdt = p?6;



Metric on the Moduli Space

A perturbation satisfying all the above is Vj = ¢ (%h0'3, 0) with
h = C(—det(¢))™? = (2cosh(2ms) — K) /2,
Change coordinates such that V; = (§;Re(K), 6;Im(K), 0;0, 6;w), then

01K, 0K, 5K, 04K,

. 1| 6K 6K; 03K 04K;
Q= ; 010 60 530 040
fiw  Oow  d3w 4w

and

g =(QQ) .



Metric on the Moduli Space

A perturbation satisfying all the above is Vj = ¢ (%h0'3, 0) with
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Metric on the Moduli Space

¢ Recall the solution away from sy had a;(0, t) = ifo3

= determine 00 directly from Jas.

o A change Jas affects the progpagation of f_ to s, (but Ieaves f+
unchanged), with v a path between s; and w = tr(f;.f_

Oyf- +[ay +day,f-] =0 = w—4/6a de
This quantity is path-dependent due to twisting of 6.

e The constant p is given by

2

€ dr dt log(4|K|)
= — [ |h|drdt = ~ € .

4 /’ | dr |2 cosh(27s) — K| ‘ 4r|K|




Metric on the Moduli Space

Performing integrals for K = |K|e®™" and |K| > 2, get metric

log(4|K1)

ds® =
° 47|K|

(C?dK|? + 4]|K|d6?) + (dw — 4ndh)?.

(4\KI)

o Agreement with the metric obtained from the monopole side of the
Nahm transform using physical arguments. [Cherkis & Kapustin '03]

o Identify

e () = twice the z-offset,
e w = twice the relative phase between monopoles.



Surfaces of constant 6, w

Recall the two different solutions to the Nahm/Hitchin equations:
e ‘zeroes together’ has w = 0,

e ‘zeroes apart’ has w = 7.

In both cases we can have § = 0 or @ = w. These surfaces are isometric.
o For ‘zeroes together’ simply corresponds to choice of Im(v)) = £27t.

Analogue to Atiyah-Hitchin cone (next slide).

e For ‘zeroes apart’ the surfaces are connected on K € [—2,2].
“Double trumpet”, 3 dimensional scattering.

Double scattering: outgoing chains shifted along z by 7 and rotated.



Surfaces of constant 6, w

The metric on surfaces with w = 0 can be computed numerically for all K,

C=1 C=5

Im(K) 5 Re(K)

For |C| — oo, the conformal factor is

Q_1/ dr dt
4 ) |2cosh(27s) — K|

Agrees with ‘spectral approximation’.
Scattering in xy plane.




Surfaces of constant 6, w

For w = m, symmetries fix geodesic submanifolds with K € R and K € iR.
In terms of the coordinate K = W + W1 there are three distinct
geodesics (here p > 0),

8=m




Geodesics on the Double Trumpet - radial

e The trajectory with W € R and W > 0 describes monopoles
incoming along the x-axis at z = 0 and scattering along the z axis.
They then scatter with those in adjacent periods and depart parallel
to the x-axis and shifted by 7 along z.

e For W € iR monopoles are incoming along x = y. They scatter first

along z, and again along x = —y. We thus have a shift and a rotaion
by /2.




Geodesics on the Double Trumpet - |W| =1

e The |W| =1 geodesic describes a chain of equally separated
monopoles (at z = +£7/2) whose shape oscillates in size. For C =1
and W = 1,i:

e W = 41 encode a charge one chain taken over two periods.
[Harland & Ward '09]



Higher Charge Chains

The above can all be generalised to higher charges, e.g. for charge 3,



Summary & Outlook

Reproduce the metric describing the dynamics of charge 2 periodic
monopoles from Nahm data, identifying asymptotic moduli.

Investigate novel examples of monopole scattering.

Small size C: describe as small well separated monopoles, large C:
‘spectral approximation’. The intermediate region is also interesting.

Other geodesic submanifolds? e.g. expect a symmetry fixing § = 7/2.

Can we do the same for monopole walls? (work in progress)
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Geodesics on the Double Trumpet - |W| =1

For larger |C| the picture is more complicated. Here C = 1,2 with W = i.




Geodesics on the Double Trumpet - |W| =1

As |C| is increased the energy density distribution approaches that of the
‘spectral approximation’ (i.e. when approximate monopole fields are read
off from the spectral curve). Here, for W =i (K =0) and C = 4,6.
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