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Setup

• Periodic monopoles satisfy Bogomolny equations on R2 × S1 with
ζ = ρ eiθ = x + iy and z ∼ z + 2π

F = ∗DΦ.

• Φ and A are valued in su(2), with boundary conditions for ρ→∞
[Cherkis & Kapustin ’01]

Φ → iπ log(ρ/C )σ3 Ax ,y → 0 Az → iχ/πσ3.

• Topological (magnetic) charge k is the number of zeroes of Φ, also

k =

∫
T 2
∞

tr(FΦ)

4π|Φ|
.



Parameters and moduli

• There are four parameters we are allowed to vary → moduli:
• relative xy positions (determined by K ∈ C),
• z offset,
• relative phase.

• Define the z-holonomy through

∂zV (ζ) = (Az + iΦ)V (ζ) with V (0) = 12.

This quantity is only sensitive to the K modulus.

• Other parameters have an infinite L2 norm:
• monopole size |C |,
• orientation arg(C ).

• In contrast to monopoles in R3, variations of the centre of mass have
infinite L2 norm, so can only consider the relative moduli space, M.
[Cherkis & Kapustin ’02]



Nahm transform

• A generalisation of the ADHM construction of instantons.

• Relates dimensional reductions of the self-dual Yang-Mills equations
on reciprocal 4-tori. [Braam & van Baal ’89]

• Here, monopole space R2 × S1 suggests Hitchin equations on R× S1

with r ∈ R, t ∼ t + 1 and s = r + it,

2frt = i[φ, φ†] Ds̄φ = 0.

• Spectral data defined from either side of the transform:
[Cherkis & Kapustin ’01]

det(eβs − V (ζ)) = 0 ≡ det(ζ − φ(s)) = 0.

• This fixes gauge invariants of φ,

tr(φ) = 0 det(φ) = −C 2(2 cosh(2πs)− K ).



Solving the Nahm/Hitchin equations

Charge 2 solutions are gauge-equivalent to [Harland & Ward ’09]

φ =

(
0 µ+eψ/2

µ−e−ψ/2 0

)
as̄ = aσ3 + αφ

with µ+µ− = C 2(2 cosh(2πs)− K ), and the Hitchin equations become

∆Re(ψ) = 2
(
|µ+|2eReψ − |µ−|2e−Reψ

)
a = −1

4∂s̄ψ

where α has been set to zero by symmetry (α 6= 0 encodes z offset and
phase). Im(ψ) chosen to ensure φ is periodic.

• det(Φ) has two zeroes. Two distinct solutions: we can place both
zeroes in µ+ or one in each of µ±.

• For |C | � 1 and/or |K | � 2, solution is Re(ψ) = log (|µ−|/|µ+|).



Lumps on Cylinder

For K ∈ R, zeroes of det(φ) correspond roughly to peaks in |frt |,

• ‘zeroes together’
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• ‘zeroes apart’
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Here C = 1. The size/period ratio now determined by 1/C .



Moduli on the Cylinder

• For large |K |, we have ‘lumps’ at 2πs± = ± cosh−1(K/2).

• Treat these as delta-functions.

• Approximate fields away from s±,

φ = C
√

2 cosh(2πs)− Kσ3, ar (r , t) = 0, at(0, t) = iθσ3.

• Peaks have a phase angle in the σ1/σ2 plane. Relative phase ω.

• The constant θ gives the t-holonomy at r = 0,

U = P exp

(∫ 1

0
at(0, t)dt

)
2 cos(θ) = tr(U).

• The moduli ω and θ are defined up to a choice of sign.

• Take Re(K ) > 0 for simplicity.



Moduli Space Approximation

• The low energy dynamics of monopoles can be understood as
geodesic motion on the moduli space, M.

• A tangent vector in M to the solution (φ, as̄) is V1 = (δ1φ, δ1as̄),
which must be orthogonal to the gauge orbits and satisfy Hitchin
equations

4Ds̄ (δ1as) = [φ, δ1φ
†] Ds̄ (δ1φ) = [φ, δ1as̄ ].

• Three other solutions Vi = (δiφ, δias̄),

V2 = iV1, V3 = (2δ1as ,
1
2δ1φ

†), V4 = iV3

satisfying

〈Vi ,Vj〉 =
1

2
Re

∫
tr
(

(δiφ)(δjφ)† + 4(δias̄)(δjas̄)†
)
dr dt = p2δij



Metric on the Moduli Space

A perturbation satisfying all the above is V1 = ε ( 1
2hσ3, 0) with

h = C (−det(φ))−1/2 = (2 cosh(2πs)− K )−1/2.

Change coordinates such that Vi ≡ (δiRe(K ), δi Im(K ), δiθ, δiω), then

Q =
1

p


δ1Kr δ2Kr δ3Kr δ4Kr

δ1Ki δ2Ki δ3Ki δ4Ki

δ1θ δ2θ δ3θ δ4θ
δ1ω δ2ω δ3ω δ4ω


and

g = (QQᵀ)−1 .



Metric on the Moduli Space

A perturbation satisfying all the above is V1 = ε ( 1
2hσ3, 0) with

h = C (−det(φ))−1/2 = (2 cosh(2πs)− K )−1/2.
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1
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Metric on the Moduli Space

• Recall the solution away from s± had at(0, t) = iθσ3

⇒ determine δθ directly from δas̄ .

• A change δas̄ affects the progpagation of f− to s+ (but leaves f±
unchanged), with γ a path between s± and ω = tr(f+f̂ −).

∂γf− + [aγ + δaγ , f−] = 0 ⇒ δω = 4

∫
γ
δa · d`

This quantity is path-dependent due to twisting of θ.

• The constant p is given by

p2 =
ε2

4

∫
|h| dr dt =

ε2

4

∫
dr dt

|2 cosh(2πs)− K |
≈ ε2 log(4|K |)

4π|K |
.



Metric on the Moduli Space

Performing integrals for K = |K |e2πiη and |K | � 2, get metric

ds2 =
log(4|K |)

4π|K |
(
C 2|dK |2 + 4|K |dθ2

)
+

π

log(4|K |)
(dω − 4ηdθ)2 .

• Agreement with the metric obtained from the monopole side of the
Nahm transform using physical arguments. [Cherkis & Kapustin ’03]

• Identify
• θ = twice the z-offset,
• ω = twice the relative phase between monopoles.



Surfaces of constant θ, ω

Recall the two different solutions to the Nahm/Hitchin equations:

• ‘zeroes together’ has ω = 0,

• ‘zeroes apart’ has ω = π.

In both cases we can have θ = 0 or θ = π. These surfaces are isometric.

• For ‘zeroes together’ simply corresponds to choice of Im(ψ) = ±2πt.

Analogue to Atiyah-Hitchin cone (next slide).

• For ‘zeroes apart’ the surfaces are connected on K ∈ [−2, 2].

“Double trumpet”, 3 dimensional scattering.

Double scattering: outgoing chains shifted along z by π and rotated.



Surfaces of constant θ, ω

The metric on surfaces with ω = 0 can be computed numerically for all K ,
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For |C | → ∞, the conformal factor is

Ω =
1

4

∫
dr dt

|2 cosh(2πs)− K |
.

Agrees with ‘spectral approximation’.
Scattering in xy plane.



Surfaces of constant θ, ω

For ω = π, symmetries fix geodesic submanifolds with K ∈ R and K ∈ iR.
In terms of the coordinate K = W + W−1 there are three distinct
geodesics (here p > 0),



Geodesics on the Double Trumpet - radial

• The trajectory with W ∈ R and W > 0 describes monopoles
incoming along the x-axis at z = 0 and scattering along the z axis.
They then scatter with those in adjacent periods and depart parallel
to the x-axis and shifted by π along z .

• For W ∈ iR monopoles are incoming along x = y . They scatter first
along z , and again along x = −y . We thus have a shift and a rotaion
by π/2.



Geodesics on the Double Trumpet - |W | = 1

• The |W | = 1 geodesic describes a chain of equally separated
monopoles (at z = ±π/2) whose shape oscillates in size. For C = 1
and W = 1, i:

• W = ±1 encode a charge one chain taken over two periods.
[Harland & Ward ’09]



Higher Charge Chains

The above can all be generalised to higher charges, e.g. for charge 3,



Summary & Outlook

• Reproduce the metric describing the dynamics of charge 2 periodic
monopoles from Nahm data, identifying asymptotic moduli.

• Investigate novel examples of monopole scattering.

• Small size C : describe as small well separated monopoles, large C :
‘spectral approximation’. The intermediate region is also interesting.

• Other geodesic submanifolds? e.g. expect a symmetry fixing θ = π/2.

• Can we do the same for monopole walls? (work in progress)
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Geodesics on the Double Trumpet - |W | = 1

For larger |C | the picture is more complicated. Here C = 1, 2 with W = i.



Geodesics on the Double Trumpet - |W | = 1

As |C | is increased the energy density distribution approaches that of the
‘spectral approximation’ (i.e. when approximate monopole fields are read
off from the spectral curve). Here, for W = i (K = 0) and C = 4, 6.


