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Obstacle Problems




Ingredients

An obstacle problem is the problem of modelling a membrane
suspended over an obstacle and fastened to a wire on the boundary
of a domain. We need

1. a domain Q C R”,

2. an obstacle ¥ : Q = R,

3. the wire ¢ : 9Q — R and

4. an energy functional as an infinitesimal indicator for the

behaviour of the membrane.

But: The Energy functional must be global!



Naive Mathematical Formulation

Assume that Q C R” is an open domain with Lipschitz boundary
0Q € C%, ¢, € CO(Q) and assume that

F(u) = /Q F(x, u(x), Du(x)) dx

is an energy functional on C1(Q) for some f € C%(Q x R x R").
Find a function u € CY(Q) N C°(Q) that minimizes . in the class

K:={ve Q) NCQ)|v>1,v|sg = ¢}.



Example

Let Q = B3(0) C R”, ¢(x) =1 — |x|?. Find u: Q — R such that
1. u=0on 0B3(0),
2. u > 1 everywhere in B3(0) and
3. Z(u) =inf{#(v)|v e K} where
K:={ve Q) nC%Q)|v]sa =0,v >}

and

F(v) :/ |Dv|? dx .
Q



Example (cont.)

We would like to apply the direct method of the calculus of
variations to solve this prolem:

1. Take a sequence (v,) such that v, € K and
limp_yoo F(vp) = infuex F(v),
2. extract a convergent subsequence such that v, — v,
3. show that .Z(v) < liminfy_ o Z (v, ).
PROBLEMS:
» Compactness.

» Lower Semi-continuity.



Intermezzo: Sobolev Spaces 101

The Sobolev Space W*P(Q) is the completion of

{ue CKQ) | DY e LP(Q) Y |a| < Kk}

with respect to the norm

1
P
lullkp = (Z DQUZ,Q) :

o <k

Alternatively, u € W1P(Q) are the functions u € LP(2) such that
there are vy, ..., up € LP(Q) such that

/qudx:—/umdx Ve C(Q)
Q

and u € WkP(Q) iff u, u, ..., u, € WK=LP(Q) for higher k.



Intermezzo: Sobolev Spaces 101 (cont.)

If 9Q € C%1, then

» for p < 0o bounded subsets of W1P(Q) are weakly compact,
> if p < nthen WHP(Q) — L9(Q) for all g < p* = 25 > p and
the embedding is compact for g < p*,

> if p> nthen WHP(Q) — CO7(Q) for all a* =1 — 2.

By induction we proceed to higher order spaces. Reminder:

|ulo,o = |ulo+ sup M
x#£y€Q Ix =yl
and if 9Q € C%! then Ck*(Q) — C*#(Q) compactly and with
closed image for o > 3.

Reminder 2: f, — f converges weakly iff (A, f,) — (A, f) for all
continuous linear functionals .



Regularity for Obstacle Problems?
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Variational Inequalities

F(tu+ (1 —t)v)

<
B dt t=0
f(x,u+t(v—u),Du+ tD(v — u)) dx

_/d
Q dt|,_,

= [@D (- 0+ @) D ) o
= (Au+ Hu,v —u)

with

Au = —Dj(0¢,f(x, u, Du)), Hu = 0,f(x, u, Du)
as formal expressions in (Wg’p(Q))’ = W-LP(Q).



Elliptic Differential Operators

A quasi-linear differential operator in divergence form is an operator
Q=A+H: WP(Q) — W-LP(Q) with

Au = —div(a(x, u, Du)), Hu = h(x, u, Du)

acting by multiplication and integration (by parts) for a Lipschitz
vector field a and function h. Q is called elliptic if the matrix

.. Ha'
P26 = 5o (x.2,0)
J

is positive definite. For a functional .# this corresponds to
convexity in the gradient since a¥ = 0,0, f.



Regularity for obstacle problems? (cont.)

If we introduce the set of coincidence

I :={x€Q|u(x)=1(x)}
we can easily see that
1. Au+Hu=0in Q\/,
2. Obviously Au+ Hu = Ay + H almost everywhere in | and
3. Au—+ Hu > 0.




Main Theorem

Let Q C R” be a bounded domain with 9Q € C%2,

a',he COHQ xR x R"), B

A+ H an elliptic operator and ¢, € C11(Q). Set
={ve Wh(Q)|v >, vl = ¢}

and assume u € K solves

(Au+ Hu,v—u) >0 VveK.

Then u € W2P(Q) for all p < oo and hence u € C+*(Q) for all
a <1



Generalizations

1. The theorem remains true for domains with sharp edges away
from the non-smooth parts. The solution u is always C1 in
the interior and close to smooth parts of the boundary. For a
proof we have to deal with a relatively complicated localization
process.

2. The norm of u can be controlled in known local quantities.

3. The theorem remains true for « = 1 if 9Q € C3%, a € C>!
and ¢ € C>Y(Q) (or ¢ > 1 on 9Q). This is much harder to
show than the case a < 1 and the proof is highly technical.
The function

f(x):=>_27"5(2"), s(x)=min|x—m|
n=0

meZ

lies in C%[0, 1] for all a < 1, but not in BV(0,1) c C%1[0, 1].



Proof. Step I|: Simplification

We can assume that h is bounded and a? is uniformly positive
definite by using cut-off functions. Choose M such that
|u|oo + |Dul?, +1 < M and functions

t t|<M

o(t) = =M Mt
M+1 |t|>M+1
1 <t<2M

w(t) = 0st= , 0<w,w <1
0 t>3M

{o 0<t<M

0<g,g <1
1 t >2M =88 =



Proof. Step I: Simplification (cont.)

Now set

5"()(72’ ) = ai(X’ 0(2),5) - w (|§’2) + k ‘8 (|£‘2) : éi
i’(X>Z7 ) = h(X79(Z)a£)' W(|£|2)

for some k > 0. The operators are nicer now without having
changed in a neighbourhood of the solution. Most importantly, for
large enough ~ the operator A+ H + + is coercive, i.e.

(A+HAu—(A+H 4DV u=v) >0 VurtveW?@),

so for fixed us, € K the variational inequality

(Au+ Hu+ vy(u — ux),v—u) >0 VveK

has only one solution.



Proof. Step Il: Penalization (first idea)

0 u>
Au+ Hu = =0(u—1)-(AY+ Hy) >0
{AMHw =) (vt HY)
1
with ©(z) = 0 i g Problem: This equation is highly
Z =
irregular.
1 z>e¢
Ofz)=79% 0<z<e
0 z<0
and

Auc + Hue = Oc(ue — ) - max{AyY + H, 0},  ueloq = ¢

with the maximum to get u. > u for free.



Proof. Step Il: Penalization (first idea, cont.)

Then we need existence of solutions u. € H*P() (for large p),
[|ue||2,p < C for C € R independently of € to deduce that up to a
subsequence

ue — v € H*P(Q)

by weak compactness, thus u. — v strongly in H%?(Q) by compact
embeddings. For our operators then Au. + Hu, — Av + Hv weakly
in H=12(Q), hence

(Auc + Hue,w — ue) — (Av+ Hv,w — v) .

Here we get stuck in the general case. For A+ H = —A and ¢ < ¢
on 0N one can show that the left term is asymptotically
non-negative, thus - as the problem has only one solution -

u=v e H*P(Q) — CH*(Q), but in our case...



Proof. Step II: Penalization

2 <0
.. we need a different penalization. Let 5(z) = 2 2> and
0 z>0

p > 1. Assume that v, solves the obstacle problem and set
Auy, + Huy + y(uy — uso) + pfB(uy — 1) =0in Q
u, = ¢ ondQ

Then by design for v € K we have

(Au, + Hup +y(uy — Uso), v — up) = —p(B(uy — ), v — uy)
- u/w(uu—w)?(v—uu) d
0.

v



Proof. Step Il: Penalization (cont.)
Proof that lim, o u, € K. Set

Lv := —a¥(x, u, Du)D;Djv — (8,a")(x, u, Du)D;v + yv
Then

Lu = (9;a')(x, u, Du) — h(x, u, Du) + Yus — uB(u — 1)

and by the maximum principle, if u < v then

0 < L(®—u)

= C(a7 hﬂ/’) - :u'(u - ¢)2 .

The remaining estimates can be derived similarly. Existence follows
via Schauder's fixed point theorem and suitable a priori estimates in
w2p.



The case a =1

The case a = 1 is more difficult for several reasons:

>

From ||Aul|sc we can only deduce bounds on ||ul|2,p, not
[|ul|2,00, SO we have to work them out directly,

H?> is neither reflexive nor separable, nor do smooth
functions lie dense, so we always have to work with H?? and
consider show independence while p — oo,

While for p < oo we only get H1P — C%7% in the case

p = oo we have the converse direction by Rademacher’s
theorem:

H2’OO — Cl’l

This space is much more powerful than other Holder spaces,
so additional complications are to be expected.



Thank You!




