Regularity of Solutions to Obstacle Problems

Stephan Wojtowytsch

Department of Mathematical Sciences, Durham University

December 4, 2013

Obstacle Problems

?

Ingredients

An obstacle problem is the problem of modelling a membrane suspended over an obstacle and fastened to a wire on the boundary of a domain. We need

- 1. a domain $\Omega \subset \mathbb{R}^n$,
- 2. an obstacle $\psi:\overline{\Omega}\to\mathbb{R}$,
- 3. the wire $\phi: \partial \Omega \to \mathbb{R}$ and
- 4. an energy functional as an infinitesimal indicator for the behaviour of the membrane.
- But: The Energy functional must be global!

Naive Mathematical Formulation

Assume that $\Omega \subset \mathbb{R}^n$ is an open domain with Lipschitz boundary $\partial \Omega \in C^{0,1}$, $\phi, \psi \in C^{0,1}(\overline{\Omega})$ and assume that

$$\mathscr{F}(u) = \int_{\Omega} f(x, u(x), Du(x)) dx$$

is an energy functional on $C^1(\Omega)$ for some $f \in C^0(\Omega \times \mathbb{R} \times \mathbb{R}^n)$. Find a function $u \in C^1(\Omega) \cap C^0(\overline{\Omega})$ that minimizes \mathscr{F} in the class

$$\mathcal{K} := \{ \mathbf{v} \in \mathcal{C}^1(\Omega) \cap \mathcal{C}^0(\overline{\Omega}) \mid \mathbf{v} \geq \psi, \mathbf{v}|_{\partial\Omega} = \phi \} \,.$$

Example

Let
$$\Omega = B_3(0) \subset \mathbb{R}^n$$
, $\psi(x) = 1 - |x|^2$. Find $u : \overline{\Omega} \to \mathbb{R}$ such that
1. $u = 0$ on $\partial B_3(0)$,
2. $u \ge \psi$ everywhere in $B_3(0)$ and
3. $\mathscr{F}(u) = \inf\{\mathscr{F}(v) \mid v \in K\}$ where
 $K := \{v \in C^1(\Omega) \cap C^0(\overline{\Omega}) \mid v|_{\partial\Omega} = 0, v \ge \psi\}$
and

$$\mathscr{F}(v) = \int_{\Omega} |Dv|^2 dx$$
.

Example (cont.)

We would like to apply the direct method of the calculus of variations to solve this prolem:

- 1. Take a sequence (v_n) such that $v_n \in K$ and $\lim_{n\to\infty} \mathscr{F}(v_n) = \inf_{v\in K} \mathscr{F}(v)$,
- 2. extract a convergent subsequence such that $v_{n_k} \rightarrow v$,
- 3. show that $\mathscr{F}(v) \leq \liminf_{k \to \infty} \mathscr{F}(v_{n_k})$.

PROBLEMS:

- Compactness.
- Lower Semi-continuity.

Intermezzo: Sobolev Spaces 101

The Sobolev Space $W^{k,p}(\Omega)$ is the completion of

$$\{u \in C^k(\Omega) \mid D^{\alpha}u \in L^p(\Omega) \ \forall \ |\alpha| \le k\}$$

with respect to the norm

$$||u||_{k,p} := \left(\sum_{|\alpha| \le k} ||D^{\alpha}u||_{p,\Omega}^{p}\right)^{\frac{1}{p}}$$

Alternatively, $u \in W^{1,p}(\Omega)$ are the functions $u \in L^p(\Omega)$ such that there are $u_1, ..., u_n \in L^p(\Omega)$ such that

$$\int_{\Omega} u D_i \eta \, dx = -\int u_i \eta \, dx \qquad \forall \ \eta \in C^{\infty}_c(\Omega)$$

and $u \in W^{k,p}(\Omega)$ iff $u, u_1, ..., u_n \in W^{k-1,p}(\Omega)$ for higher k.

Intermezzo: Sobolev Spaces 101 (cont.)

If $\partial\Omega\in {\it C}^{0,1}$, then

- for $p < \infty$ bounded subsets of $W^{1,p}(\Omega)$ are weakly compact,
- ▶ if p < n then $W^{1,p}(\Omega) \to L^q(\Omega)$ for all $q \le p^* = \frac{np}{n-p} > p$ and the embedding is compact for $q < p^*$,
- if p > n then $W^{1,p}(\Omega) \to C^{0,\alpha^*}(\overline{\Omega})$ for all $\alpha^* = 1 \frac{n}{p}$.

By induction we proceed to higher order spaces. Reminder:

$$|u|_{0,lpha} = |u|_0 + \sup_{x
eq y \in \overline{\Omega}} rac{|u(x) - u(y)|}{|x - y|^{lpha}}$$

and if $\partial \Omega \in C^{0,1}$ then $C^{k,\alpha}(\overline{\Omega}) \to C^{k,\beta}(\overline{\Omega})$ compactly and with closed image for $\alpha > \beta$. **Reminder 2:** $f_n \rightharpoonup f$ converges weakly iff $\langle \lambda, f_n \rangle \to \langle \lambda, f \rangle$ for all continuous linear functionals λ .

Regularity for Obstacle Problems?

Variational Inequalities

$$0 \leq \frac{d}{dt}\Big|_{t=0} \mathscr{F}(tu+(1-t)v)$$

= $\int_{\Omega} \frac{d}{dt}\Big|_{t=0} f(x, u+t(v-u), Du+t D(v-u)) dx$
= $\int_{\Omega} (\partial_z f) \cdot (v-u) + (\partial_{\xi_i} f) \cdot D_i (v-u) dx$
= $\langle Au + Hu, v - u \rangle$

with

$$\begin{aligned} Au &= -D_i(\partial_{\xi_i} f(x, u, Du)), \qquad Hu &= \partial_z f(x, u, Du) \end{aligned}$$
 as formal expressions in $(W_0^{1,p}(\Omega))' = W^{-1,p'}(\Omega). \end{aligned}$

Elliptic Differential Operators

A quasi-linear differential operator in divergence form is an operator $Q = A + H : W^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ with

$$Au = -\operatorname{div}(a(x, u, Du)), \quad Hu = h(x, u, Du)$$

acting by multiplication and integration (by parts) for a Lipschitz vector field a and function h. Q is called elliptic if the matrix

$$a^{ij}(x,z,\xi)=rac{\partial a^i}{\partial \xi_j}(x,z,\xi)$$

is positive definite. For a functional \mathscr{F} this corresponds to convexity in the gradient since $a^{ij} = \partial_{\xi_i} \partial_{\xi_i} f$.

Regularity for obstacle problems? (cont.)

If we introduce the set of coincidence

$$I:=\{x\in\overline{\Omega}\mid u(x)=\psi(x)\}$$

we can easily see that

- 1. Au + Hu = 0 in $\Omega \setminus I$,
- 2. Obviously $Au + Hu = A\psi + H\psi$ almost everywhere in I and
- 3. $Au + Hu \ge 0$.

Main Theorem

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with $\partial \Omega \in C^{2,\alpha}$, $a^i, h \in C^{0,1}(\overline{\Omega} \times \mathbb{R} \times \mathbb{R}^n)$, A + H an elliptic operator and $\phi, \psi \in C^{1,1}(\overline{\Omega})$. Set

$$\mathcal{K} := \{ \mathbf{v} \in \mathcal{W}^{1,\infty}(\Omega) \mid \mathbf{v} \geq \psi, \mathbf{v}|_{\partial\Omega} = \phi \}$$

and assume $u \in K$ solves

$$\langle Au + Hu, v - u \rangle \geq 0 \qquad \forall v \in K.$$

Then $u \in W^{2,p}(\Omega)$ for all $p < \infty$ and hence $u \in C^{1,\alpha}(\overline{\Omega})$ for all $\alpha < 1$.

Generalizations

- 1. The theorem remains true for domains with sharp edges away from the non-smooth parts. The solution u is always $C^{1,\alpha}$ in the interior and close to smooth parts of the boundary. For a proof we have to deal with a relatively complicated localization process.
- 2. The norm of u can be controlled in known local quantities.
- 3. The theorem remains true for $\alpha = 1$ if $\partial \Omega \in C^{3,\alpha}$, $a \in C^{2,1}$ and $\phi \in C^{2,1}(\overline{\Omega})$ (or $\phi > \psi$ on $\partial \Omega$). This is much harder to show than the case $\alpha < 1$ and the proof is highly technical. The function

$$f(x) := \sum_{n=0}^{\infty} 2^{-n} s(2^n x), \quad s(x) = \min_{m \in \mathbb{Z}} |x - m|$$

lies in $C^{0,\alpha}[0,1]$ for all $\alpha < 1$, but not in $BV(0,1) \subset C^{0,1}[0,1]$.

Proof. Step I: Simplification

We can assume that *h* is bounded and a^{ij} is uniformly positive definite by using cut-off functions. Choose *M* such that $|u|_{\infty} + |Du|_{\infty}^2 + 1 \le M$ and functions

$$egin{array}{rcl} heta(t) &=& egin{cases} t & |t| \leq M \ M+1 & |t| \geq M+1 \ , & | heta| \leq M+1 \ w(t) &=& egin{cases} 1 & 0 \leq t \leq 2M \ 0 & t \geq 3M \ , & t \geq 3M \ , & 0 \leq w, w' \leq 1 \ g(t) &=& egin{cases} 0 & 0 \leq t \leq M \ 1 & t \geq 2M \ , & 0 \leq g, g' \leq 1 \ \end{array} \end{array}$$

Proof. Step I: Simplification (cont.)

Now set

$$\tilde{a}^{i}(x, z, \xi) = a^{i}(x, \theta(z), \xi) \cdot w \left(|\xi|^{2}\right) + k \cdot g \left(|\xi|^{2}\right) \cdot \xi^{i}$$

$$\tilde{h}(x, z, \xi) = h(x, \theta(z), \xi) \cdot w \left(|\xi|^{2}\right)$$

for some k > 0. The operators are nicer now without having changed in a neighbourhood of the solution. Most importantly, for large enough γ the operator $A + H + \gamma$ is coercive, i.e.

$$\langle (A+H+\gamma)u-(A+H+\gamma)v, u-v \rangle > 0 \qquad \forall \ u \neq v \in W^{1,2}(\Omega),$$

so for fixed $u_\infty \in K$ the variational inequality

$$\langle Au + Hu + \gamma(u - u_{\infty}), v - u \rangle \geq 0 \qquad \forall \ v \in K$$

has only one solution.

Proof. Step II: Penalization (first idea)

$$Au + Hu = \begin{cases} 0 & u > \psi \\ A\psi + H\psi & u = \psi \end{cases} = \Theta(u - \psi) \cdot (A\psi + H\psi) \ge 0$$

with $\Theta(z) = \begin{cases} 1 & z > 0 \\ 0 & z = 0 \end{cases}$. Problem: This equation is highly irregular.

$$\Theta_\epsilon(z) := egin{cases} 1 & z \geq \epsilon \ rac{z}{\epsilon} & 0 < z < \epsilon \ 0 & z \leq 0 \end{cases}$$

and

i

$$Au_{\epsilon} + Hu_{\epsilon} = \Theta_{\epsilon}(u_{\epsilon} - \psi) \cdot \max\{A\psi + H\psi, 0\}, \quad u_{\epsilon}|_{\partial\Omega} = \phi$$

with the maximum to get $u_{\epsilon} \geq u$ for free.

Proof. Step II: Penalization (first idea, cont.)

Then we need existence of solutions $u_{\epsilon} \in H^{2,p}(\Omega)$ (for large p), $||u_{\epsilon}||_{2,p} \leq C$ for $C \in \mathbb{R}$ independently of ϵ to deduce that up to a subsequence

$$u_{\epsilon}
ightarrow v \in H^{2,p}(\Omega)$$

by weak compactness, thus $u_{\epsilon} \rightarrow v$ strongly in $H^{1,2}(\Omega)$ by compact embeddings. For our operators then $Au_{\epsilon} + Hu_{\epsilon} \rightarrow Av + Hv$ weakly in $H^{-1,2}(\Omega)$, hence

$$\langle Au_{\epsilon} + Hu_{\epsilon}, w - u_{\epsilon} \rangle \rightarrow \langle Av + Hv, w - v \rangle$$
.

Here we get stuck in the general case. For $A + H = -\Delta$ and $\psi < \phi$ on $\partial\Omega$ one can show that the left term is asymptotically non-negative, thus - as the problem has only one solution $u = v \in H^{2,p}(\Omega) \to C^{1,\alpha}(\overline{\Omega})$, but in our case...

Proof. Step II: Penalization

... we need a different penalization. Let $\beta(z) = \begin{cases} -z^2 & z \leq 0 \\ 0 & z \geq 0 \end{cases}$ and $\mu > 1$. Assume that u_{∞} solves the obstacle problem and set

$$\begin{cases} Au_{\mu} + Hu_{\mu} + \gamma(u_{\mu} - u_{\infty}) + \mu\beta(u_{\mu} - \psi) &= 0 \text{ in } \Omega \\ u_{\mu} &= \phi \text{ on } \partial\Omega \end{cases}.$$

Then by design for $v \in K$ we have

$$\begin{array}{rcl} \langle Au_{\mu} & + & Hu_{\mu} + \gamma(u_{\mu} - u_{\infty}), \mathbf{v} - u_{\mu} \rangle = -\mu \langle \beta(u_{\mu} - \psi), \mathbf{v} - u_{\mu} \rangle \\ \\ & = & \mu \int_{u_{\mu} < \psi} (u_{\mu} - \psi)^{2} \cdot (\mathbf{v} - u_{\mu}) \, d\mathbf{x} \\ \\ & \geq & \mathbf{0} \, . \end{array}$$

Proof. Step II: Penalization (cont.)

Proof that $\lim_{\mu\to\infty} u_{\mu} \in K$. Set

$$L\mathbf{v} := -a^{ij}(x, u, Du)D_iD_j\mathbf{v} - (\partial_z a^i)(x, u, Du)D_i\mathbf{v} + \gamma \mathbf{v}$$

Then

$$Lu = (\partial_i a^i)(x, u, Du) - h(x, u, Du) + \gamma u_{\infty} - \mu \beta (u - \psi)$$

and by the maximum principle, if $u < \psi$ then

$$\begin{array}{rcl} 0 & \leq & L(\psi-u) \\ & = & C(a,h,\psi)-\mu(u-\psi)^2 \, . \end{array}$$

The remaining estimates can be derived similarly. Existence follows via Schauder's fixed point theorem and suitable a priori estimates in $W^{2,p}$.

The case $\alpha = 1$

The case $\alpha = 1$ is more difficult for several reasons:

- From ||Au||∞ we can only deduce bounds on ||u||_{2,p}, not ||u||_{2,∞}, so we have to work them out directly,
- ► $H^{2,\infty}$ is neither reflexive nor separable, nor do smooth functions lie dense, so we always have to work with $H^{2,p}$ and consider show independence while $p \to \infty$,
- While for p < ∞ we only get H^{1,p} → C^{0,1-ⁿ/p} in the case p = ∞ we have the converse direction by Rademacher's theorem:

$$H^{2,\infty}=C^{1,1}$$
 .

This space is much more powerful than other Hölder spaces, so additional complications are to be expected.

Thank You!

