Regularity of Solutions to Obstacle Problems

Stephan Wojtowytsch

Department of Mathematical Sciences, Durham University
December 4, 2013

Obstacle Problems

Ingredients

An obstacle problem is the problem of modelling a membrane suspended over an obstacle and fastened to a wire on the boundary of a domain. We need

1. a domain $\Omega \subset \mathbb{R}^{n}$,
2. an obstacle $\psi: \bar{\Omega} \rightarrow \mathbb{R}$,
3. the wire $\phi: \partial \Omega \rightarrow \mathbb{R}$ and
4. an energy functional as an infinitesimal indicator for the behaviour of the membrane.

But: The Energy functional must be global!

Naive Mathematical Formulation

Assume that $\Omega \subset \mathbb{R}^{n}$ is an open domain with Lipschitz boundary $\partial \Omega \in C^{0,1}, \phi, \psi \in C^{0,1}(\bar{\Omega})$ and assume that

$$
\mathscr{F}(u)=\int_{\Omega} f(x, u(x), D u(x)) d x
$$

is an energy functional on $C^{1}(\Omega)$ for some $f \in C^{0}\left(\Omega \times \mathbb{R} \times \mathbb{R}^{n}\right)$. Find a function $u \in C^{1}(\Omega) \cap C^{0}(\bar{\Omega})$ that minimizes \mathscr{F} in the class

$$
K:=\left\{v \in C^{1}(\Omega) \cap C^{0}(\bar{\Omega})|v \geq \psi, v|_{\partial \Omega}=\phi\right\}
$$

Example

```
Let \(\Omega=B_{3}(0) \subset \mathbb{R}^{n}, \psi(x)=1-|x|^{2}\). Find \(u: \bar{\Omega} \rightarrow \mathbb{R}\) such that
1. \(u=0\) on \(\partial B_{3}(0)\),
2. \(u \geq \psi\) everywhere in \(B_{3}(0)\) and
3. \(\mathscr{F}(u)=\inf \{\mathscr{F}(v) \mid v \in K\}\) where
\[
K:=\left\{v \in C^{1}(\Omega) \cap C^{0}(\bar{\Omega})|v|_{\partial \Omega}=0, v \geq \psi\right\}
\]
and
```

$$
\mathscr{F}(v)=\int_{\Omega}|D v|^{2} d x
$$

Example (cont.)

We would like to apply the direct method of the calculus of variations to solve this prolem:

1. Take a sequence $\left(v_{n}\right)$ such that $v_{n} \in K$ and $\lim _{n \rightarrow \infty} \mathscr{F}\left(v_{n}\right)=\inf _{v \in K} \mathscr{F}(v)$,
2. extract a convergent subsequence such that $v_{n_{k}} \rightarrow v$,
3. show that $\mathscr{F}(v) \leq \liminf _{k \rightarrow \infty} \mathscr{F}\left(v_{n_{k}}\right)$.

PROBLEMS:

- Compactness.
- Lower Semi-continuity.

Intermezzo: Sobolev Spaces 101

The Sobolev Space $W^{k, p}(\Omega)$ is the completion of

$$
\left\{u \in C^{k}(\Omega)\left|D^{\alpha} u \in L^{p}(\Omega) \quad \forall\right| \alpha \mid \leq k\right\}
$$

with respect to the norm

$$
\|u\|_{k, p}:=\left(\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{p, \Omega}^{p}\right)^{\frac{1}{p}}
$$

Alternatively, $u \in W^{1, p}(\Omega)$ are the functions $u \in L^{p}(\Omega)$ such that there are $u_{1}, \ldots, u_{n} \in L^{p}(\Omega)$ such that

$$
\int_{\Omega} u D_{i} \eta d x=-\int u_{i} \eta d x \quad \forall \eta \in C_{c}^{\infty}(\Omega)
$$

and $u \in W^{k, p}(\Omega)$ iff $u, u_{1}, \ldots, u_{n} \in W^{k-1, p}(\Omega)$ for higher k.

Intermezzo: Sobolev Spaces 101 (cont.)

If $\partial \Omega \in C^{0,1}$, then

- for $p<\infty$ bounded subsets of $W^{1, p}(\Omega)$ are weakly compact,
- if $p<n$ then $W^{1, p}(\Omega) \rightarrow L^{q}(\Omega)$ for all $q \leq p^{*}=\frac{n p}{n-p}>p$ and the embedding is compact for $q<p^{*}$,
- if $p>n$ then $W^{1, p}(\Omega) \rightarrow C^{0, \alpha^{*}}(\bar{\Omega})$ for all $\alpha^{*}=1-\frac{n}{p}$.

By induction we proceed to higher order spaces. Reminder:

$$
|u|_{0, \alpha}=|u|_{0}+\sup _{x \neq y \in \bar{\Omega}} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}
$$

and if $\partial \Omega \in C^{0,1}$ then $C^{k, \alpha}(\bar{\Omega}) \rightarrow C^{k, \beta}(\bar{\Omega})$ compactly and with closed image for $\alpha>\beta$.
Reminder 2: $f_{n} \rightharpoonup f$ converges weakly iff $\left\langle\lambda, f_{n}\right\rangle \rightarrow\langle\lambda, f\rangle$ for all continuous linear functionals λ.

Regularity for Obstacle Problems?

Variational Inequalities

$$
\begin{aligned}
0 & \leq\left.\frac{d}{d t}\right|_{t=0} \mathscr{F}(t u+(1-t) v) \\
& =\left.\int_{\Omega} \frac{d}{d t}\right|_{t=0} f(x, u+t(v-u), D u+t D(v-u)) d x \\
& =\int_{\Omega}\left(\partial_{z} f\right) \cdot(v-u)+\left(\partial_{\xi_{i}} f\right) \cdot D_{i}(v-u) d x \\
& =\langle A u+H u, v-u\rangle
\end{aligned}
$$

with

$$
A u=-D_{i}\left(\partial_{\xi_{i}} f(x, u, D u)\right), \quad H u=\partial_{z} f(x, u, D u)
$$

as formal expressions in $\left(W_{0}^{1, p}(\Omega)\right)^{\prime}=W^{-1, p^{\prime}}(\Omega)$.

Elliptic Differential Operators

A quasi-linear differential operator in divergence form is an operator $Q=A+H: W^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ with

$$
A u=-\operatorname{div}(a(x, u, D u)), \quad H u=h(x, u, D u)
$$

acting by multiplication and integration (by parts) for a Lipschitz vector field a and function $h . Q$ is called elliptic if the matrix

$$
a^{i j}(x, z, \xi)=\frac{\partial a^{i}}{\partial \xi_{j}}(x, z, \xi)
$$

is positive definite. For a functional \mathscr{F} this corresponds to convexity in the gradient since $a^{i j}=\partial_{\xi_{i}} \partial_{\xi_{j}} f$.

Regularity for obstacle problems? (cont.)

If we introduce the set of coincidence

$$
I:=\{x \in \bar{\Omega} \mid u(x)=\psi(x)\}
$$

we can easily see that

1. $A u+H u=0$ in $\Omega \backslash I$,
2. Obviously $A u+H u=A \psi+H \psi$ almost everywhere in I and 3. $A u+H u \geq 0$.

Main Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with $\partial \Omega \in C^{2, \alpha}$, $a^{i}, h \in C^{0,1}\left(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{n}\right)$,
$A+H$ an elliptic operator and $\phi, \psi \in C^{1,1}(\bar{\Omega})$. Set

$$
K:=\left\{v \in W^{1, \infty}(\Omega)|v \geq \psi, v|_{\partial \Omega}=\phi\right\}
$$

and assume $u \in K$ solves

$$
\langle A u+H u, v-u\rangle \geq 0 \quad \forall v \in K
$$

Then $u \in W^{2, p}(\Omega)$ for all $p<\infty$ and hence $u \in C^{1, \alpha}(\bar{\Omega})$ for all $\alpha<1$.

Generalizations

1. The theorem remains true for domains with sharp edges away from the non-smooth parts. The solution u is always $C^{1, \alpha}$ in the interior and close to smooth parts of the boundary. For a proof we have to deal with a relatively complicated localization process.
2. The norm of u can be controlled in known local quantities.
3. The theorem remains true for $\alpha=1$ if $\partial \Omega \in C^{3, \alpha}$, $a \in C^{2,1}$ and $\phi \in C^{2,1}(\bar{\Omega})$ (or $\phi>\psi$ on $\partial \Omega$). This is much harder to show than the case $\alpha<1$ and the proof is highly technical. The function

$$
f(x):=\sum_{n=0}^{\infty} 2^{-n} s\left(2^{n} x\right), \quad s(x)=\min _{m \in \mathbb{Z}}|x-m|
$$

lies in $C^{0, \alpha}[0,1]$ for all $\alpha<1$, but not in $B V(0,1) \subset C^{0,1}[0,1]$.

Proof. Step I: Simplification

We can assume that h is bounded and $a^{i j}$ is uniformly positive definite by using cut-off functions. Choose M such that $|u|_{\infty}+|D u|_{\infty}^{2}+1 \leq M$ and functions

$$
\begin{aligned}
& \theta(t)=\left\{\begin{array}{ll}
t & |t| \leq M \\
M+1 & |t| \geq M+1
\end{array}, \quad|\theta| \leq M+1\right. \\
& w(t)=\left\{\begin{array}{ll}
1 & 0 \leq t \leq 2 M \\
0 & t \geq 3 M
\end{array},\right. \\
& 0 \leq w, w^{\prime} \leq 1 \\
& g(t)=\left\{\begin{array}{ll}
0 & 0 \leq t \leq M \\
1 & t \geq 2 M
\end{array},\right. \\
& 0 \leq g, g^{\prime} \leq 1
\end{aligned}
$$

Proof. Step I: Simplification (cont.)

Now set

$$
\begin{aligned}
\tilde{a}^{i}(x, z, \xi) & =a^{i}(x, \theta(z), \xi) \cdot w\left(|\xi|^{2}\right)+k \cdot g\left(|\xi|^{2}\right) \cdot \xi^{i} \\
\tilde{h}(x, z, \xi) & =h(x, \theta(z), \xi) \cdot w\left(|\xi|^{2}\right)
\end{aligned}
$$

for some $k>0$. The operators are nicer now without having changed in a neighbourhood of the solution. Most importantly, for large enough γ the operator $A+H+\gamma$ is coercive, i.e.

$$
\langle(A+H+\gamma) u-(A+H+\gamma) v, u-v\rangle>0 \quad \forall u \neq v \in W^{1,2}(\Omega)
$$

so for fixed $u_{\infty} \in K$ the variational inequality

$$
\left\langle A u+H u+\gamma\left(u-u_{\infty}\right), v-u\right\rangle \geq 0 \quad \forall v \in K
$$

has only one solution.

Proof. Step II: Penalization (first idea)

$$
A u+H u=\left\{\begin{array}{ll}
0 & u>\psi \\
A \psi+H \psi & u=\psi
\end{array}=\Theta(u-\psi) \cdot(A \psi+H \psi) \geq 0\right.
$$

with $\Theta(z)=\left\{\begin{array}{ll}1 & z>0 \\ 0 & z=0\end{array}\right.$. Problem: This equation is highly irregular.

$$
\Theta_{\epsilon}(z):= \begin{cases}1 & z \geq \epsilon \\ \frac{z}{\epsilon} & 0<z<\epsilon \\ 0 & z \leq 0\end{cases}
$$

and

$$
A u_{\epsilon}+H u_{\epsilon}=\Theta_{\epsilon}\left(u_{\epsilon}-\psi\right) \cdot \max \{A \psi+H \psi, 0\},\left.\quad u_{\epsilon}\right|_{\partial \Omega}=\phi
$$

with the maximum to get $u_{\epsilon} \geq u$ for free.

Proof. Step II: Penalization (first idea, cont.)

Then we need existence of solutions $u_{\epsilon} \in H^{2, p}(\Omega)$ (for large p), $\left\|u_{\epsilon}\right\|_{2, p} \leq C$ for $C \in \mathbb{R}$ independently of ϵ to deduce that up to a subsequence

$$
u_{\epsilon} \rightharpoonup v \in H^{2, p}(\Omega)
$$

by weak compactness, thus $u_{\epsilon} \rightarrow v$ strongly in $H^{1,2}(\Omega)$ by compact embeddings. For our operators then $A u_{\epsilon}+H u_{\epsilon} \rightharpoonup A v+H v$ weakly in $H^{-1,2}(\Omega)$, hence

$$
\left\langle A u_{\epsilon}+H u_{\epsilon}, w-u_{\epsilon}\right\rangle \rightarrow\langle A v+H v, w-v\rangle .
$$

Here we get stuck in the general case. For $A+H=-\Delta$ and $\psi<\phi$ on $\partial \Omega$ one can show that the left term is asymptotically non-negative, thus - as the problem has only one solution $u=v \in H^{2, p}(\Omega) \rightarrow C^{1, \alpha}(\bar{\Omega})$, but in our case \ldots

Proof. Step II: Penalization

... we need a different penalization. Let $\beta(z)=\left\{\begin{array}{ll}-z^{2} & z \leq 0 \\ 0 & z \geq 0\end{array}\right.$ and
$\mu>1$. Assume that u_{∞} solves the obstacle problem and set

$$
\left\{\begin{aligned}
A u_{\mu}+H u_{\mu}+\gamma\left(u_{\mu}-u_{\infty}\right)+\mu \beta\left(u_{\mu}-\psi\right) & =0 \text { in } \Omega \\
u_{\mu} & =\phi \text { on } \partial \Omega
\end{aligned}\right.
$$

Then by design for $v \in K$ we have

$$
\begin{aligned}
\left\langle A u_{\mu}\right. & \left.+H u_{\mu}+\gamma\left(u_{\mu}-u_{\infty}\right), v-u_{\mu}\right\rangle=-\mu\left\langle\beta\left(u_{\mu}-\psi\right), v-u_{\mu}\right\rangle \\
& =\mu \int_{u_{\mu}<\psi}\left(u_{\mu}-\psi\right)^{2} \cdot\left(v-u_{\mu}\right) d x \\
& \geq 0
\end{aligned}
$$

Proof. Step II: Penalization (cont.)

Proof that $\lim _{\mu \rightarrow \infty} u_{\mu} \in K$. Set

$$
L v:=-a^{i j}(x, u, D u) D_{i} D_{j} v-\left(\partial_{z} a^{i}\right)(x, u, D u) D_{i} v+\gamma v
$$

Then

$$
L u=\left(\partial_{i} a^{i}\right)(x, u, D u)-h(x, u, D u)+\gamma u_{\infty}-\mu \beta(u-\psi)
$$

and by the maximum principle, if $u<\psi$ then

$$
\begin{aligned}
0 & \leq L(\psi-u) \\
& =C(a, h, \psi)-\mu(u-\psi)^{2}
\end{aligned}
$$

The remaining estimates can be derived similarly. Existence follows via Schauder's fixed point theorem and suitable a priori estimates in $W^{2, p}$.

The case $\alpha=1$

The case $\alpha=1$ is more difficult for several reasons:

- From $\|A u\|_{\infty}$ we can only deduce bounds on $\|u\|_{2, p}$, not $\|u\|_{2, \infty}$, so we have to work them out directly,
- $H^{2, \infty}$ is neither reflexive nor separable, nor do smooth functions lie dense, so we always have to work with $H^{2, p}$ and consider show independence while $p \rightarrow \infty$,
- While for $p<\infty$ we only get $H^{1, p} \rightarrow C^{0,1-\frac{n}{p}}$ in the case $p=\infty$ we have the converse direction by Rademacher's theorem:

$$
H^{2, \infty}=C^{1,1}
$$

This space is much more powerful than other Hölder spaces, so additional complications are to be expected.

Thank You!

