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How do we model Mitochondria Cells?
So essentially, it is our topic to find out how elastic membranes inside a fixed container
behave, e.g. the inner membrane of a Mitochondrion.

Naive idea: n = 2, 3. We have

1. Ω ⊂⊂ Rn and
2. a subset E ⊂ Ω such that it is smooth in the sense that

M ≡ ∂E ∈ C 2 and its one/two-dimensional volume is fixed to
H n−1(M) ≡ S ∈ R.

In physics we can safely assume that the realized membranes
minimize some sort of energy - but which one?



Some Differential Geometry

Let M ∈ C 2 be a submanifold of R3. The metric g on M (or the
first fundamental form) is the restriction of the scalar product of
R3 to the tangent spaces of M. The second fundamental form II
is defined by

II (x , y) = 〈Dxν, y〉

for a unit normal ν of M and two tangent vectors x , y to M.
Geometrically it measures how fast the submanifold bends with
respect to the surrounding space or how quickly the normal vectors
change as seen by the submanifold. The mean curvature H is the
trace of II with respect to g :

H = g ij IIij .



The Willmore Functional

The Willmore Functional is a widely accepted simple model for a
suitable bending energy:

W (M) =

∫
M

H2 dH n−1 .

So we are looking for minimizers of W in the class of connected
orientable compact C 2-manifolds embedded into Ω with Hausdorff
volume H n−1(M) ≡ S . Big question: Do these exist?!?



n=2

We have to enlarge the class by a bit. The class defined before are
just C 2-closed curves parametrized by arclength:

M ≡ γ : [0, S ]→ R2, W (M) =

∫ S

0
|γ̈(t)|2 dt .

Clearly, we find a minimizer in W 2,2(S1
S), so by Sobolev

embeddings in C 1(S1
S) by the direct method of the calculus of

variations: Take a minimizing sequence and show that it

1. is bounded, hence has a weakly convergent subsequence and
2. that the functional is lower semi-continuous with respect to

weak convergence.

So far, there is no regularity theory for this constrained
minimization. Note that if the length of the curves is not sufficiently
large with respect to Ω, they will always just converge to a circle.



n=3. Varifolds

A few problems in three dimensions:
1. The only compact 1-manifold is the circle. In two dimension,

there is a countable set of admissible surfaces.
2. Even when restricting to one topological type, due to

(Gaussian) curvature, there is no analogue of the arclength
parametrization. (Like there is no isometric atlas of the
earth...)

3. Even if there were, the Sobolev embeddings get significantly
weaker in this dimension.

⇒ We need a different approach over the generalized surfaces of
geometric measure theory, so called varifolds. Here we basically
take measure theoretic W 1,1-limits of smooth manifolds.



Remark
At this point, generalized surfaces (Varifolds and Currents) enter the stage. They are sort
of like Lipschitz surfaces that admit singularities. It is the analogue of looking at abstract
submanifolds and moving away from a particular parametrization, just in a measure
theoretic setting. I am thinking about giving a presentation about this at some point.
For example, the C 1-limit curve of a minimizing sequence might have points where it
tangentially touches itself (just immersed, not embedded). This is not problematic due to
our relying on the parametrization, but it poses major problems in higher dimensions.



First Field of Problems. Sharp Interface Limit

We look at a sequence of sets Ek ⊂⊂ Ω such that
W (∂Ek)→ inf W (M) where M is admissible. We can show the
existence of a limit set E of Ek and a varifold limit L of ∂Ek such
that ∂E ⊂ L and W (L) ≤ lim infk→∞W (∂Ek). Questions:
1. Is it true that the multiplicity of L is odd if and only if we are

on the boundary ∂E? Explanation: The curve can touch itself
tangentially again. When it touches itself an even number of
times, the different orientations delete each other in a sense -
but to avoid a loss of mass in the limit, we count it multiple
number of times in the varifold setting in n = 3.

2. For all L that can be obtained this way, can we always find a
sequence Ek such that W (∂Ek)→ W (L)? (Where mean
curvature is extended to varifolds through the variation of the
area functional)



Towards Computation

In our proofs, we look at sequences Ek , ∂Ek and their characteristic
functions χEk ∈ BV (Ω) (functions with vector valued measures as
derivatives which can live on sets of Hausdorff dimension s with
n − 1 ≤ s ≤ n). Two problems occur:

1. A conceptual theoretic problem: BV (Ω) is not separable and
fairly horrible to work with,

2. a practical problem: In computer programming we are
restricted to working with meshes (of a fairly high resolution,
but still)... It is quite hard to allow for boundaries lying in
arbitrary locations and - at least with linear meshes - it is not
easy to incorporate a curvature quantity of those systems.

⇒ regularization of the problem and an approach over diffuse
interfaces.



Γ-convergence and diffuse interfaces

Instead of working with 2χE − 1 and the minimization of W (∂E )
under the condition H n−1(∂E ) = S we work with uε ∈W 2,2(Ω)
such that uε → 2χE − 1 in L1(Ω) as ε→ 0 and uε = −1 on ∂Ω
(Thus E is embedded in Ω). We then think of {u = 0} as the
membrane and try to minimize a functional

Eε(v) = Wε(v) + εσ−1(Sε(v)− S)2

where σ ∈ (0, 1) and Wε is an approximation of the Willmore
energy W , Sε is an approximation of the area functional.



Γ-convergence and diffuse interfaces

In practice one picks

Wε(v) =
1

c0ε

∫
Ω

(
ε∆v − W ′(v)

ε

)2

dx

Sε(v) =
1
c0

∫
Ω

ε

2
|∇v |2 +

1
ε
W (v) dx

where W (z) = (1− z2)2 and c0 = 2
√

2
3 .

Question: In what sense to Wε and Sε converge? And in what
sense do the corresponding minmization problems converge?

The minimization of Sε means to have a function being almost
everywhere close to ±1 (the W term) and having as short a transit
area as possible (the gradient term), so far the heuristics. We then
think of {u = 0} as the approximate interface.



Γ-convergence and diffuse interfaces

A sequence of functions Fε : X → R on a topological space X is
said to be Γ-convergent to F : X → R if

1. lim infε→0 Fε(uε) ≤ F (u) whenever uε → u and
2. there is a sequence uε → u such that

F (u) ≥ lim supε→0 Fε(uε).

Interesting Properties of Γ-convergence:
1. If Fε(uε) ≤ inf Fε + ε and uε → u, then F (u) = inf F .
2. Γ-limits are always lower semi-continuous.
3. Γ− limε→0 F = F .
4. Pointwise limits and Γ-limits can disagree.
5. −(Γ− limFε) 6= Γ− lim(−Fε), i.e. Γ-limits do not necessarily

behave linearly.



Remark
This obviously causes problems... Wε is Γ-convergent to W and Sε is Γ-convergent to the
n − 1-dimensional Hausdorff measure of the discontinuity set, but what does that mean
for Eε = Wε + (Sε − S)2? This is problematic due to the non-linearity of Γ-convergence...
Also the gradient flow approach is helpful for finding local minimizers only, while
Γ-convergence only works for global minimizers - and the gradient flow seemed to be the
most reasonable approach to finding minimizers, since it actually helps preserve a starting
topology.
On the other hand, it seems to work pretty well. Also, in this model it would be relatively
easy to incorporate volume forces (e.g. the tendency of the interior of the membrane to
keep to a certain volume etc.)
And to be fair, membranes do have volume, so probably the sharp interface model should
even be approximated by a Γ-limit in a philosophical sense.



Practical Implementation
We hand our program a starting interface, e.g. (a slightly smoothed
version of)

u =

{
1 r < 4.5 · sin(8φ) + 5
−1 else

and let it relaxate under the influence of a gradient flow.
Heuristically, if we vary u then an energy

E (u) =

∫
Ω

f (x , u,Du,∆u) dx

evolves by δEu(u̇) i.e.

d
dt

∣∣∣∣
t=0

E (u + tφ) =

∫
Ω

fuφ+ fDiuDiφ+ f∆u∆φ dx

=

∫
Ω

(fu − div(fDi u) + ∆f∆u)φ dx



Practical Implementation
This means that the steepest descent is in direction

φ = −(fu − div(fDiu) + ∆f∆u)

so we would want to solve the PDE

ut(x , t) = −(fu − div(fDiu) + ∆f∆u) .

In our case, we get

ut(x , t) = − 1
c0

(
2W ′(u) W ′′(u)

ε3
− 2W ′′(u)∆u

ε
+ 2ε∆∆u

− 2W ′′(u) ∆u + W ′′′(u) |∇u|2

ε

)
− 2

c0 ε1−σ

(∫
Ω

ε

2
|∇u|2 +

W (u)

ε
dx − S

) {
W ′(u)

ε
− ε∆u

}



Second Field of Problems. Implementation

Written out like this, it is probably the most horrible PDE I have
ever seen :-) Fourth order non-linear and including a global term of
u via the integral... Still, it is quasi-linear so we can solve it with a
Galerkin Space Finite Elements Scheme :-)
1. Implementation of a Topological Energy Term which will allow

for topological transitions (e.g. sphere to torus) but prevent
splitting into multiple connected components.

2. Parallelization of the Computations.
3. Finding a better Γ-approximation of the connectedness

condition and/or Γ-approximations in other problems (e.g.
minimizing magnetic fields with known topology).



What I actually do

To be honest - at the moment, mostly read and think about stuff.
The approximation of Sε and Wε is relatively well known (although
the rigorous proof for Wε is fairly recent). A major focus of my
supervisor’s research is the phase field implementation of
topological conditions. The computer implementation is to a large
degree his, and I am now involved in the adjustments and
improvement of it. There are also many open questions about the
sharp interface that we wish to address, as well as the issue of
convergence of the gradient flow of Eε to that of W under an area
condition.


