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1.1. Alexandrov’s Theorem

Theorem ([ Alexandrov, 1955 ])
Let Σ2 be a closed embedded cmc surface in R3, in H3,
or in a hemi-sphere S3

+. Then Σ2 is a distance sphere.

ν

Σ2

ρ(Σ2)

Idea of Proof.
Consider reflections through a family
of (parallel) inward moving planes.
By the maximum principle, Σ2 = ρ(Σ2)
upon first contact.
Thus Σ2 = ρ(Σ2) for all reflections ρ
preserving the center of Σ2.

Remarks
i) Each distance sphere S2 ⊂ S3 is contained in a

closed hemi-sphere.
ii) In S3 there are Clifford tori and many other cmc

surfaces of higher genus [ cf. Kapouleas, 1997 ].
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1.2. Hopf’s Theorem

Theorem ([ Hopf, 1956 ])
Let S2 be an immersed cmc sphere in R3, H3, or S3.
Then S2 is a distance sphere.

Ingredients.
i) The Codazzi equations for hΣ = 〈 . ,A . 〉 imply:

on any immersed cmc surface, QH := π2,0(hΣ) is a
holomorphic quadratic differential.

ii)
{

hol. quad. differentials on S2 = CP1} = 0 , hence:

hΣ − 1
2 tr(A) g = 2<e QH = 0 .

iii) Complete, totally-umbilical surfaces Σ2 in R3,
in H3, or in S3 are distance spheres.

Remark
The identity ∂̄QH = 0 can be understood as a first integral
of the cmc equation.
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2.1. Rotationally-Invariant Cmc Spheres in M 2
κ × R

These spheres will serve as model surfaces later on !

Construction of S2
H ↪→ M 2

κ × R .

0 rπ√
κ

ξ

1√
κ

−1√
κ

H=0.033
√

κ

H=0.121
√

κ

H=0.375
√

κ

H=1.075
√

κ

i) The relevant ODE-system:
∂
∂s r = − sin θ
∂
∂s ξ = cos θ
∂
∂s θ = 2H − cos(θ) ctκ(r)

Convention: (cos θ, sin θ) is the exterior
unit normal vector field of the meridian
curve c(s) = (r(s), ξ(s)).

ii) A first integral [ cf. Hsiang, 1989 ]:
L := cos(θ) snκ(r)− 4H snκ(1

2r)2

iii) The curve c(s) intersects the fixed point set
⇐⇒ L = 0 ( or, in case κ > 0, iff L = −4H/κ ).
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2.1?. Rotationally-Invariant Cmc Spheres in M 2
κ × R

Explicit Solution for κ > 0.
1 = (κ+ 4H 2) · 1κ sin2(1

2r
√
κ
)

+ 4H 2 · 1κ sinh2(1
2ξ
√
κ · 1

2H

√
κ+ 4H 2

)
Principal Curvatures.

hΣ =

(
H + κ

4H cos2(θ) 0

0 H − κ
4H cos2(θ)

)

Remarks
i) If 0 < 4H 2 < κ , the model spheres S2

H constructed
above do not project into closed hemi-spheres.

ii) The spheres S2
H are not totally-umbilical.

iii) The bilinear forms q := 2H · hΣ − κ · dξ2 , however,
are again multiples of the induced metric ι?g.
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2.2. Adapting Alexandrov’s Theorem

Theorem
Any closed embedded cmc surface Σ2 in H2 × R or
S2

+ × R is a rotationally-invariant vertical bigraph.

Such a bigraph Σ2 is necessarily congruent to some S2
H .

Idea of the Proof.
Alexandrov’s moving planes argument.

Caveats.
i) Closed embedded cmc surfaces Σ2 ↪→ S2 × R that

do not project into some hemi-sphere S2
+ are only

guaranteed to be vertical bigraphs.
ii) Not all of the rotationally-invariant cmc spheres

S2
H ↪→ S2 × R do project into hemi-spheres.

iii) In S2 × R itself, there again exist embedded cmc
tori and embedded cmc surfaces of higher genus.
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2.3. What about Extending Hopf’s Theorem ?

Immediate Obstacles.
I For target manifolds other than space forms, the r.h.s.

of the Codazzi equations does not vanish anymore:
〈∇XA ·Y −∇Y A ·X ,Z 〉

= 〈R(X ,Y ) ν ,Z 〉 = 〈X ×Y ,G (ν × Z )〉 ,
Here A = D ν and ∇XY = (DXY )tan, and
G ≡ Ric− 1

2 Sc · 1l denotes the Einstein tensor.

I Conclusion: ∂̄QH ≡ ∂̄(π2,0(hΣ)) 6= 0 .
I The model spheres S2

H are not totally-umbilical.

Encouraging Facts.
i) The fields q = 2H · hΣ − κ · ι?(dξ2) are linear combi-

nations of hΣ and ι?(dξ2) with constant coefficients.
ii) Their (2, 0)-parts vanish on S2

H , and so Q := π2,0(q)
may be holomorphic on all cmc surfaces Σ2 # M 2

κ × R.
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3. New Results for Cmc Spheres in M 2
κ × R

Theorem 1 ([ A & Rosenberg, 2004 ])
Any cmc surface Σ2 # M 2

κ × R comes with a natural
holomorphic quadratic differential given by

Q := 2H · π2,0(hΣ)− κ · π2,0(ι?(dξ2)) .

This result is proved by direct computation.
As in H. Hopf’s work, Theorem 1 is the key to

Theorem 2 ([ A & Rosenberg, 2004 ])
Any immersed cmc sphere S2 # M 2

κ × R is one of the
rotationally-invariant model spheres S2

H ↪→ M 2
κ × R .

Further Ingredients in the Proof of Theorem 2.
i)
{

hol. quad. differentials on S2 = CP1} = 0 .
ii) Given κ 6= 0 and H ∈ R, one can use ODE techniques

in order to classify the cmc surfaces ι : Σ2 # M 2
κ × R

with mean curvature H and with Q ≡ 0.
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3.1. On the New Holomorphic Quad. Differentials

Basic Ingredients for the Proof of Theorem 1.
I On oriented surfaces (Σ2, ι?g) , the almost complex

structure J is parallel, and the ∂̄-operator is given by

∂̄Q(X ; Y1,Y2) = 1
2
(
∇XQ + i ∇JXQ

)
(Y1,Y2)

=: ∇ 1
2 (1+iJ)X Q (Y1,Y2) .

I A = H · 1l + A0 , and, on surfaces, traceless symmetric
endomorphisms like A0 anti-commute with J .

I The Codazzi equations for surfaces Σ2 in 3-manifolds:
〈∇XA ·Y −∇Y A ·X ,Z 〉

= 〈X ×Y ,G (ν × Z )〉 = 〈(X ×Y )× Z ,G ν〉 .

Here A = D ν , and G denotes the Einstein tensor.
The final expression follows, since ν ⊥ X ,Y ,Z and

G (ν × Z) = tr(G) · ν × Z − (Gν)× Z − ν × (GZ ) .
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3.1?. On the New Holomorphic Quad. Differentials

Key Steps in the Proof of Theorem 1.
i) The Codazzi equations imply that

∂̄
(
π2,0(hΣ)

)
(X ; Y1,Y2) = 〈ψ(X ; Y1,Y2) ,G ν 〉

where
ψ(X ; Y1,Y2) := 1

2

[
〈X−,Y +

1 〉Y +
2 + 〈X−,Y +

2 〉Y +
1
]
,

X− := 1
2 (1 + iJ) X , and Y +

µ := 1
2 (1− iJ) Yµ .

ii) Computing ∇ in terms of D and ν, it follows that
the vertical projectors L := dξ2 satisfy

∂̄
(
π2,0(ι?L)

)
(X ; Y1,Y2)

= 〈Y +

1 ,D(X−)L ·Y
+

2 〉 − 2H 〈ψ(X ; Y1,Y2) ,L ν 〉

iii) The product structure of the targets M 2
κ × R implies

that DL = 0 and, moreover, that G = −κL . Thus

∂̄
(
π2,0(2H · hΣ − κ · ι?L)

)
(X ; Y1,Y2) = 0 .
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3.1?. On the New Holomorphic Quad. Differentials

Getting some Conceptual Understanding.
i) Since DL = 0 and G = −κL , it follows from the

basic structure of Wirtinger calculus that the terms
∂̄(π2,0(hΣ))(X ; Y1,Y2) and ∂̄(π2,0(ι?L))(X ; Y1,Y2)
must both be multiples of 〈ψ(X ; Y1,Y2) ,L ν 〉 .
Hence there exist universal constants a, b ∈ C such
that

∂̄
(
a · π2,0(hΣ)− b · π2,0(ι?L)

)
(X ; Y1,Y2) = 0

for any immersed cmc surface Σ2 # M 2
κ × R .

ii) On the rot.-invariant model spheres S2
H ↪→ M 2

κ × R ,
the quadratic differential Q = π2,0(2H · hΣ − κ · ι?L)
vanishes identically, and hence ∂̄Q ≡ 0 , too.
This particular case now fixes the universal constants
a and b above to the claimed values.
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3.2. An Auxillary Classification Result

Theorem 3 ([ A & Rosenberg, 2004 ])
Let ι : Σ2 # M 2

κ × R be a complete immersed surface with
constant mean curvature H and with Q ≡ 0. Suppose that
(κ,H ) 6= 0. Then the following holds:

I if 4H 2 + κ > 0 , then Σ2 is congruent to a rot.-inv.
model sphere S2

H ↪→ M 2
κ × R .

I if 4H 2 + κ ≤ 0 , then Σ2 is a complete open surface
of type D2

H , P2
H , or C 2

H , respectively. The three cases
can be distinguished by the sign of 4H 2 + κ cos2 θ
where θ := arcsin(dξ · ν) denotes the Gauß angle.

Remarks
i) Here D2

H and C 2
H denote rotationally-inv. cmc surfaces

that are homeomorphic to disks or annuli (catenoids).
ii) The P2

H are orbits under 2-dim. solvable subgroups
A N ⊂ SO(2, 1)+ × R .
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3.2?. An Auxillary Classification Result

κ > 0 : Meridians for S2
H

0 rπ√
κ

ξ

1√
κ

−1√
κ

H=0.033
√

κ

H=0.121
√

κ

H=0.375
√

κ

H=1.075
√

κ

κ < 0 : Meridians for S2
H and D2

H

0 r3√
−κ

ξ

2√
−κ

H=1.15
√
−κ

H=0.87
√
−κ

H=0.66
√
−κ

H=0.5
√
−κ

H=0.33
√
−κ

H=0.12
√
−κ

S 2
H

D 2
H

κ < 0 : Meridians for C 2
H

0 r3√
−κ

ξ
1√
−κ

−1√
−κ

H=0.033
√
−κ

H=0.121
√
−κ

H=0.275
√
−κ

κ < 0 : Meridians of P2
H are limits

D 2
H

P 2
H

C 2
H
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3.3. Key Steps in Proving This Classification Result

The unit normal field ν of an immersion ι : Σ2 # M 2
κ × R

provides a lift of ι into the total space of the unit tangent
bundle π : N 5

κ := T1(M 2
κ × R) → M 2

κ × R .

Proposition (Prolongation)
Immersed surfaces ι : Σ2 # M 2

κ × R with constant mean
curvature H and Q ≡ 0 lift to integral surfaces ν : Σ2 ↪→N 5

κ

of an explicit 2-dimensional distribution EH ⊂ TN 5
κ .

Properties of EH .
i) EH is invariant under the action of Iso0(M 2

κ × R).
This action has 4-dim. orbits that are separated by

Θ: N 5
κ → [−1

2π ,
1
2π ] ,

ii) The Gauß map θ : s 7→ Θ ◦ c(s) of any meridian solves
∂
∂s θ = 1

4H
(
4H 2 + κ cos2 θ

)
.

iii) EH is integrable.
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4. Further Generalization of the Target Spaces

Is it possible to replace the product spaces M 2
κ × R by

more general oriented Riemannian manifolds (M 3, g) ?

Theorem 4 ([ A , 2006 ])
Let L0 be a C-valued, traceless, symmetric bilinear form
on (M 3, g). Then the expression

Q := π2,0(hΣ + ι?L0)

defines a holomorphic quadratic differential on any sur-
face ι : Σ2 # (M 3, g) with constant mean curvature H ,
if and only if L0 solves the differential equation

DXL0 = 1
2 i
[
?X ,G − 2H L0

]
. (∗)

Remark
The ODE-system (∗) is overdetermined. The integrability
condition — even required for local solutions — imposes
serious restrictions on the geometry of (M 3, g).
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4.1. Results Concerning Homogeneous Bundles

Theorem 5 ([ A , 2006 ])
Let (M̃ 3, g) be a simply-connected, oriented Riemannian
manifold. Then there exists a solution L0 of

DXL0 = 1
2 i
[
?X ,G − 2H L0

]
, (∗)

iff (M̃ 3, g) is a hom. space with an at least 4-dimensional
isometry group, or, equivalently, iff it is a space form or a
homogeneous bundle M 3

κ,τ → N 2
κ .

New target spaces: S3
Berger , Nil(3) , and S̃l(2,R) .

Remark
The hom. bundles M 3

κ,τ → N 2
κ are the products S2 × R

and H2×R , the Berger spheres S3
η , the Heisenberg group

Nil(3) , and S̃l(2,R) , and explicit solutions of (∗) are

L0 := − κ− τ2

2H− iτ (P − 1
31l) .

Here P denotes the field of vertical projectors.
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4.1?. Results Concerning Homogeneous Bundles

The holomorphic quad. differentials Q := π2,0(hΣ + ι?L0)
that come with these solutions L0 are the key to:

Theorem 6 ([ A , 2006 ])
Any immersed cmc sphere S2 in a homogeneous bundle
M 3

κ,τ → N 2
κ is in fact embedded and rotationally-invariant.

Thus its shape is determined by the mean curvature H .

Of couse, we have to refine Theorem 3 appropriately, too.

Remarks
i) Thus we have extended H. Hopf’s result to immersed

cmc spheres in homogeneous spaces representing 7 of
the 8 maximal homogeneous structures [ cf. Thurston ].

ii) On Solv(3), however, the cmc equation has — due to
lack of symmetry — no first integrals like our holo-
morphic quad. differentials. More precisely, there is
no 1-dim. isotropy group.
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4.2. On the Geometry of Homogeneous 3-Manifolds

The dimension of G := Iso(M̃ 3, g) is either 3, 4, or 6.
We’ll discuss each case for simply-connected spaces.

a) dim G = 6 :
These spaces have constant curvature κ. Up to scaling,
they are the standard spaces S3 , R3 , and H3 .
Their Einstein tensor is G = −κ 1l . Evidently, DG ≡ 0 .

b) dim G = 4 :
These spaces are homogeneous bundles πκ,τ : M̃ 3

κ,τ → Ñ 2
κ

over simply-connected surfaces of constant curvature κ.
They have tot.-geod. fibers and const. bundle curvature τ .

Convention: [X ,Y ]vert = τ ·X ×Y for all hor. vector fields.
Range of (κ, τ) : the curve κ = τ2 must be excluded, as it yields

spaces of constant curvature.

Complete list: S2 × R R3 H2 × R
S3

Berger Nil(3) S̃l(2,R)
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4.2?. On the Geometry of Homogeneous 3-Manifolds

b) dim G = 4 (cont.):
Further properties of the spaces M̃ 3

κ,τ :
i) Their Einstein tensor is

G = −1
4τ

2 1l− (κ− τ2) P .

ii) Moreover, DXG = 1
2τ [ ?X ,G ] .

So they are symmetric spaces, iff τ = 0 .
iii) Finally, their Cotton tensor turns out to be −3

2τ G0 .
So they are locally conformally flat, iff τ = 0 .

iv) For any pair κ, τ , the isotropy group Gp of any point
p is bigger than SO(2) . It contains S(O(2)× O(1)) .

v) Hence, for any horizontal geodesic γ : R → M̃ 3
κ,τ ,

there is a 180o-rotation φγ containing γ in its fixed
point set. In fact, G is generated by these rotations.
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4.2?. On the Geometry of Homogeneous 3-Manifolds

c) dim G = 3 :
These spaces are 3-dimensional Lie groups equipped with
left-invariant metrics [ cf. Milnor, 1976 ].

Remarks
i) There are several isomorphism classes of 3-dimen.

real Lie algebras, but only one of them gives raise
to a new maximal homogeneous structure: Solv(3).

ii) A quotient of Solv(3) is a torus bundle over S1.
iii) The geometry of Solv(3) is also very special:

I ker(Ric) is a 2-dim. integrable distribution.
Its Weingarten map has 2 distinct eigenvalues.

I The Cotton tensor has 3 distinct eigenvalues.
I G and Cotton commute.

Yet, the isotropy groups are finite and, in fact,
isomorphic to the dihedral group D4.
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5.1. Equivariant Minimal Surfaces in Nil(3)

The 4 Basic Types [ cf. Figueroa, Mercuri, Pedrosa ]
a) Vertical Planes: total preimages of straight lines,

invariant w.r.t. vertical translations.
b) Catenoids and Horizontal Umbrellas: invariant

w.r.t. a group φt of rotations around some vert. axis.
c) Helicoids and Helicoidal Catenoids: invariant

w.r.t. a group φt of screw motions around a vert. axis.
d) Saddle-Type Surfaces: invariant w.r.t. a group φt

of isometries that project to translations of R2.

Remarks
i) The umbrellas and the saddle-type surfaces are

graphs w.r.t. the Riem. submersion Nil(3) → R2 .
ii) Q = 0 on umbrellas and on vertical planes, whereas

Q = c dz2 6= 0 for the saddle-type surfaces.
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5.2. Further Examples of Minimal Surfaces in Nil(3)

a) Local Scherk Surfaces.
They come as Nitsche graphs over a square in R2 w.r.t.
the submersion Nil(3) → R2. Their boundary consists of
the vertical geodesics over the 4 vertices of the square.

i) They are invariant w.r.t. the 180o-rota-
tions around hor. lifts of the diagonals.
(→ Schwarz reflection principle.)

ii) They do not extend to doubly-periodic
minimal surfaces in Nil(3).

iii) Upon enlarging the square, they
converge to saddle-type surfaces not
umbrellas.

Application (A Weak Bernstein Theorem)
Serrin style curvature bounds for (global) minimal graphs.
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5.2?. Further Examples of Minimal Surfaces in Nil(3)

b) Triply-Periodic Scherk Surfaces Σ̂2.
In order to construct these surfaces, fix a triangle γ̄ in the
barycentric subdivision of the fundamental square in R2,
and proceed as follows:

i) Consider a horizontal lift of γ̄ starting
over the vertex of the square, and add
a vertical segment to get a closed
polygon γ.

ii) Solve the Plateau problem ∂Σ2 = γ
and extend Σ2 to a global minimal
surface Σ̂2 by means of the Schwarz
reflection principle.

Remark
Σ̂2 = Γ · Σ2 where Γ⊂ Iso (Nil(3)) is the discrete subgroup
generated by the four 180o-rotations around the edges of γ.
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5.3. Half-Space Theorems

Theorem 7 ([ A & Rosenberg, 2004 ])
Let Σ2 be a proper, possibly branched minimal surface in
the Heisenberg group Nil(3). Suppose that Σ2 is contained
in the complement of some horizontal umbrella. Then Σ2

is congruent to this umbrella by a vertical translation.

Method of Proof.
The same argument as in R3 works, since the catenoids
collapse to doubly-covered punctured umbrellas when
their necksize is shrunk to 0.
Remarks

i) There is no half-space theorem w.r.t. the level sets
H2 × {t0} in the product H2 × R.

ii) Yet, the horizontal umbrellas in Nil(3) are hyperbolic
and not parabolic.

Question: Are there also half-space theorems w.r.t. the
saddle-type surfaces in Nil(3) rather than the umbrellas ?
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7.1. Alexandrov’s Moving Planes Argument

Theorem ([ Alexandrov, 1955 ])
Let Σ2 be a closed embedded cmc surface in R3, in H3,
or in a hemi-sphere S3

+. Then Σ2 is a distance sphere.

ν

Σ2

ρ(Σ2)

Idea of Proof.
Consider reflections through a family
of (parallel) inward moving planes.
By the maximum principle, Σ2 = ρ(Σ2)
upon first contact.
Thus Σ2 = ρ(Σ2) for all reflections ρ
preserving the center of Σ2.

Remarks
i) Each distance sphere S2 ⊂ S3 is contained in a

closed hemi-sphere.
ii) In S3 there are Clifford tori and many other cmc

surfaces of higher genus [ cf. Kapouleas, 1997 ].
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7.2. Meridian Curves of the Model Surfaces
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7.3. Local Scherk Surfaces in Nil(3)

a) Local Scherk Surfaces.
They come as Nitsche graphs over a square in R2 w.r.t.
the submersion Nil(3) → R2. Their boundary consists of
the vertical geodesics over the 4 vertices of the square.

i) They are invariant w.r.t. the 180o-rota-
tions around hor. lifts of the diagonals.
(→ Schwarz reflection principle.)

ii) They do not extend to doubly-periodic
minimal surfaces in Nil(3).

iii) Upon enlarging the square, they
converge to saddle-type surfaces not
umbrellas.

Application (A Weak Bernstein Theorem)
Serrin style curvature bounds for (global) minimal graphs.
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7.4. Triply-Peridic Scherk Surfaces in Nil(3)

b) Triply-Periodic Scherk Surfaces Σ̂2.
In order to construct these surfaces, fix a triangle γ̄ in the
barycentric subdivision of the fundamental square in R2,
and proceed as follows:

i) Consider a horizontal lift of γ̄ starting
over the vertex of the square, and add
a vertical segment to get a closed
polygon γ.

ii) Solve the Plateau problem ∂Σ2 = γ
and extend Σ2 to a global minimal
surface Σ̂2 by means of the Schwarz
reflection principle.

Remark
Σ̂2 = Γ · Σ2 where Γ⊂ Iso (Nil(3)) is the discrete subgroup
generated by the four 180o-rotations around the edges of γ.


