On Generalized Hopf Differentials

Uwe Abresch
Ruhr-Universität Bochum
44780 Bochum
Germany
e-mail: abresch@math.rub.de
August 2006

Joint work with: Harold Rosenberg (Univ. Paris VII)
Supported by CNRS and DFG SPP 1154

1.1. Alexandrov's Theorem

Theorem ([Alexandrov, 1955])
Let Σ^{2} be a closed embedded cmc surface in \mathbb{R}^{3}, in \mathbb{H}^{3}, or in a hemi-sphere \mathbb{S}_{+}^{3}. Then Σ^{2} is a distance sphere.

Idea of Proof.

Consider reflections through a family of (parallel) inward moving planes.
By the maximum principle, $\Sigma^{2}=\rho\left(\Sigma^{2}\right)$ upon first contact.
Thus $\Sigma^{2}=\rho\left(\Sigma^{2}\right)$ for all reflections ρ preserving the center of Σ^{2}.

Remarks
i) Each distance sphere $S^{2} \subset \mathbb{S}^{3}$ is contained in a closed hemi-sphere.
ii) In \mathbb{S}^{3} there are Clifford tori and many other cmc surfaces of higher genus [cf. Kapouleas, 1997].

Table of Contents

1. Classical Results for Cmc Surfaces in Space Forms Alexandrov's Theorem
Hopf's Theorem
2. Simple Extensions to Product Spaces

Rotationally-Invariant Cmc Spheres in $M_{\kappa}^{2} \times \mathbb{R}$
Adapting Alexandrov's Theorem
What about Extending Hopf's Theorem?
3. New Results for Cmc Spheres in $M_{\kappa}^{2} \times \mathbb{R}$

On the New Holomorphic Quad. Differentials An Auxillary Classification Result
Key Steps in Proving This Classification Result
4. Further Generalization of the Target Spaces

Results Concerning Homogeneous Bundles
On the Geometry of Homogeneous 3-Manifolds
5. Minimal Surfaces in the Heisenberg Group

Equivariant Minimal Surfaces in $\operatorname{Nil}(3)$
Further Examples of Minimal Surfaces in Nil(3)
Half-Space Theorems

1.2. Hopf's Theorem

Theorem ([Hopf, 1956])
Let S^{2} be an immersed cmc sphere in $\mathbb{R}^{3}, \mathbb{H}^{3}$, or \mathbb{S}^{3}. Then S^{2} is a distance sphere.

Ingredients.
i) The Codazzi equations for $h_{\Sigma}=\langle., A$.$\rangle imply:$ on any immersed cmc surface, $Q_{H}:=\pi_{2,0}\left(h_{\Sigma}\right)$ is a holomorphic quadratic differential.
ii) $\left\{\right.$ hol. quad. differentials on $\left.\mathbb{S}^{2}=\mathbb{C P}^{1}\right\}=0$, hence:

$$
h_{\Sigma}-\frac{1}{2} \operatorname{tr}(A) g=2 \Re \mathfrak{e} Q_{H}=0 .
$$

iii) Complete, totally-umbilical surfaces Σ^{2} in \mathbb{R}^{3}, in \mathbb{H}^{3}, or in \mathbb{S}^{3} are distance spheres.

Remark

The identity $\bar{\partial} Q_{H}=0$ can be understood as a first integral of the cmc equation.
2.1. Rotationally-Invariant CmC Spheres in $M_{\kappa}^{2} \times \mathbb{R}$

These spheres will serve as model surfaces later on!
Construction of $S_{H}^{2} \hookrightarrow M_{\kappa}^{2} \times \mathbb{R}$.
i) The relevant ODE-system:

$$
\begin{aligned}
& \frac{\partial}{\partial s} r=-\sin \theta \\
& \frac{\partial}{\partial s} \xi=\cos \theta \\
& \frac{\partial}{\partial s} \theta=2 H-\cos (\theta) \operatorname{ct}_{\kappa}(r)
\end{aligned}
$$

Convention: $(\cos \theta, \sin \theta)$ is the exterior unit normal vector field of the meridian curve $c(s)=(r(s), \xi(s))$.
ii) A first integral [cf. Hsiang, 1989]:

$$
L:=\cos (\theta) \operatorname{sn}_{\kappa}(r)-4 H \operatorname{sn}_{\kappa}\left(\frac{1}{2} r\right)^{2}
$$

iii) The curve $c(s)$ intersects the fixed point set

$$
\Longleftrightarrow \quad L=0 \quad(\text { or }, \text { in case } \kappa>0, \text { iff } L=-4 H / \kappa)
$$

2.1. Rotationally-Invariant Cmc Spheres in $M_{\kappa}^{2} \times \mathbb{R}$

Principal Curvatures

$$
h_{\Sigma}=\left(\begin{array}{cc}
H+\frac{\kappa}{4 H} \cos ^{2}(\theta) & 0 \\
0 & H-\frac{\kappa}{4 H} \cos ^{2}(\theta)
\end{array}\right)
$$

Remarks
i) If $0<4 H^{2}<\kappa$, the model spheres S_{H}^{2} constructed above do not project into closed hemi-spheres.
ii) The spheres S_{H}^{2} are not totally-umbilical.
iii) The bilinear forms $q:=2 H \cdot h_{\Sigma}-\kappa \cdot \mathrm{d} \xi^{2}$, however, are again multiples of the induced metric $\iota^{\star} g$.

2.2. Adapting Alexandrov's Theorem

Theorem

Any closed embedded cmc surface Σ^{2} in $\mathbb{H}^{2} \times \mathbb{R}$ or $\mathbb{S}_{+}^{2} \times \mathbb{R}$ is a rotationally-invariant vertical bigraph.
Such a bigraph Σ^{2} is necessarily congruent to some S_{H}^{2}.
Idea of the Proof.
Alexandrov's moving planes argument.
Caveats.
i) Closed embedded cmc surfaces $\Sigma^{2} \hookrightarrow \mathbb{S}^{2} \times \mathbb{R}$ that do not project into some hemi-sphere \mathbb{S}_{+}^{2} are only guaranteed to be vertical bigraphs.
ii) Not all of the rotationally-invariant cmc spheres $S_{H}^{2} \hookrightarrow \mathbb{S}^{2} \times \mathbb{R}$ do project into hemi-spheres.
iii) In $\mathbb{S}^{2} \times \mathbb{R}$ itself, there again exist embedded cmc tori and embedded cmc surfaces of higher genus.

2.3. What about Extending Hopf's Theorem?

Immediate Obstacles.

- For target manifolds other than space forms, the r.h.s. of the Codazzi equations does not vanish anymore:

$$
\begin{aligned}
& \left\langle\nabla_{X} A \cdot Y-\nabla_{Y} A \cdot X, Z\right\rangle \\
& \quad=\langle R(X, Y) \nu, Z\rangle=\langle X \times Y, G(\nu \times Z)\rangle
\end{aligned}
$$

Here $A=\mathrm{D} \nu$ and $\nabla_{X} Y=\left(\mathrm{D}_{X} Y\right)^{\mathrm{tan}}$, and $G \equiv R i c-\frac{1}{2} S c \cdot \mathbb{1}$ denotes the Einstein tensor.

- Conclusion: $\bar{\partial} Q_{H} \equiv \bar{\partial}\left(\pi_{2,0}\left(h_{\Sigma}\right)\right) \neq 0$.
- The model spheres S_{H}^{2} are not totally-umbilical.

Encouraging Facts.
i) The fields $q=2 H \cdot h_{\Sigma}-\kappa \cdot \iota^{\star}\left(\mathrm{d} \xi^{2}\right)$ are linear combinations of h_{Σ} and $\iota^{\star}\left(\mathrm{d} \xi^{2}\right)$ with constant coefficients.
ii) Their (2,0)-parts vanish on S_{H}^{2}, and so $Q:=\pi_{2,0}(q)$ may be holomorphic on all cmc surfaces $\Sigma^{2} \leftrightarrow M_{\kappa}^{2} \times \mathbb{R}$.

3. New Results for Cmc Spheres in $M_{\kappa}^{2} \times \mathbb{R}$

Theorem 1 ([A__ \& Rosenberg, 2004])
Any cmc surface $\Sigma^{2} \rightarrow M_{\kappa}^{2} \times \mathbb{R}$ comes with a natural holomorphic quadratic differential given by

$$
Q:=2 H \cdot \pi_{2,0}\left(h_{\Sigma}\right)-\kappa \cdot \pi_{2,0}\left(\iota^{\star}\left(\mathrm{d} \xi^{2}\right)\right)
$$

This result is proved by direct computation.
As in H. Hopf's work, Theorem 1 is the key to
Theorem 2 ([A__ \& Rosenberg, 2004])
Any immersed cmc sphere $S^{2} \rightarrow M_{\kappa}^{2} \times \mathbb{R}$ is one of the rotationally-invariant model spheres $S_{H}^{2} \hookrightarrow M_{\kappa}^{2} \times \mathbb{R}$.

Further Ingredients in the Proof of Theorem 2.
i) $\left\{\right.$ hol. quad. differentials on $\left.\mathbb{S}^{2}=\mathbb{C P}^{1}\right\}=0$.
ii) Given $\kappa \neq 0$ and $H \in \mathbb{R}$, one can use ODE techniques in order to classify the cmc surfaces $\iota: \Sigma^{2} \rightarrow M_{\kappa}^{2} \times \mathbb{R}$ with mean curvature H and with $Q \equiv 0$.

3.1. On the New Holomorphic Quad. Differentials

Basic Ingredients for the Proof of Theorem 1.

- On oriented surfaces $\left(\Sigma^{2}, \iota^{\star} g\right)$, the almost complex structure J is parallel, and the $\bar{\partial}$-operator is given by

$$
\begin{aligned}
\bar{\partial} Q\left(X ; Y_{1}, Y_{2}\right) & =\frac{1}{2}\left(\nabla_{X} Q+i \nabla_{J X} Q\right)\left(Y_{1}, Y_{2}\right) \\
& =: \nabla_{\frac{1}{2}(1+i J) X} Q\left(Y_{1}, Y_{2}\right)
\end{aligned}
$$

- $A=H \cdot \mathbb{1}+A_{0}$, and, on surfaces, traceless symmetric endomorphisms like A_{0} anti-commute with J.
- The Codazzi equations for surfaces Σ^{2} in 3-manifolds:

$$
\begin{aligned}
& \left\langle\nabla_{X} A \cdot Y-\nabla_{Y} A \cdot X, Z\right\rangle \\
& \quad=\langle X \times Y, G(\nu \times Z)\rangle=\langle(X \times Y) \times Z, G \nu\rangle
\end{aligned}
$$

Here $A=\mathrm{D} \nu$, and G denotes the Einstein tensor.
The final expression follows, since $\nu \perp X, Y, Z$ and

$$
G(\nu \times Z)=\operatorname{tr}(G) \cdot \nu \times Z-(G \nu) \times Z-\nu \times(G Z)
$$

3.1. On the New Holomorphic Quad. Differentials

Key Steps in the Proof of Theorem 1.
i) The Codazzi equations imply that

$$
\bar{\partial}\left(\pi_{2,0}\left(h_{\Sigma}\right)\right)\left(X ; Y_{1}, Y_{2}\right)=\left\langle\psi\left(X ; Y_{1}, Y_{2}\right), G \nu\right\rangle
$$

where

$$
\begin{aligned}
& \psi\left(X ; Y_{1}, Y_{2}\right):=\frac{1}{2}\left[\left\langle X^{-}, Y_{1}^{+}\right\rangle Y_{2}^{+}+\left\langle X^{-}, Y_{2}^{+}\right\rangle Y_{1}^{+}\right] \\
& X^{-}:=\frac{1}{2}(1+i J) X, \quad \text { and } \quad Y_{\mu}^{+}:=\frac{1}{2}(1-i J) Y_{\mu}
\end{aligned}
$$

ii) Computing ∇ in terms of D and ν, it follows that the vertical projectors $L:=\mathrm{d} \xi^{2}$ satisfy

$$
\begin{aligned}
& \bar{\partial}\left(\pi_{2,0}\left(\iota^{\star} L\right)\right)\left(X ; Y_{1}, Y_{2}\right) \\
& \quad=\left\langle Y_{1}^{+}, \mathrm{D}_{\left(X^{-}\right)} L \cdot Y_{2}^{+}\right\rangle-2 H\left\langle\psi\left(X ; Y_{1}, Y_{2}\right), L \nu\right\rangle
\end{aligned}
$$

Generalized H
iii) The product structure of the targets $M_{\kappa}^{2} \times \mathbb{R}$ implies that $\mathrm{D} L=0$ and, moreover, that $G=-\kappa L$. Thus

$$
\bar{\partial}\left(\pi_{2,0}\left(2 H \cdot h_{\Sigma}-\kappa \cdot \iota^{\star} L\right)\right)\left(X ; Y_{1}, Y_{2}\right)=0
$$

3.1. On the New Holomorphic Quad. Differentials

Getting some Conceptual Understanding.
i) Since $\mathrm{D} L=0$ and $G=-\kappa L$, it follows from the basic structure of Wirtinger calculus that the terms $\bar{\partial}\left(\pi_{2,0}\left(h_{\Sigma}\right)\right)\left(X ; Y_{1}, Y_{2}\right)$ and $\bar{\partial}\left(\pi_{2,0}\left(\iota^{\star} L\right)\right)\left(X ; Y_{1}, Y_{2}\right)$ must both be multiples of $\left\langle\psi\left(X ; Y_{1}, Y_{2}\right), L \nu\right\rangle$. Hence there exist universal constants $a, b \in \mathbb{C}$ such that

$$
\bar{\partial}\left(a \cdot \pi_{2,0}\left(h_{\Sigma}\right)-b \cdot \pi_{2,0}\left(\iota^{\star} L\right)\right)\left(X ; Y_{1}, Y_{2}\right)=0
$$

for any immersed cmc surface $\Sigma^{2} \rightarrow M_{\kappa}^{2} \times \mathbb{R}$.
ii) On the rot.-invariant model spheres $S_{H}^{2} \hookrightarrow M_{\kappa}^{2} \times \mathbb{R}$, the quadratic differential $Q=\pi_{2,0}\left(2 H \cdot h_{\Sigma}-\kappa \cdot \iota^{\star} L\right)$ vanishes identically, and hence $\bar{\partial} Q \equiv 0$, too.
This particular case now fixes the universal constants a and b above to the claimed values.

H

eneralized Hop Differentials Uwe Abresc Contents Classical Results Extensions to Product Spaces

3.2. An Auxillary Classification Result

i) Here D_{H}^{2} and C_{H}^{2} denote rotationally-inv. cmc surfaces that are homeomorphic to disks or annuli (catenoids).
ii) The P_{H}^{2} are orbits under 2-dim. solvable subgroups $\mathrm{AN} \subset \mathrm{SO}(2,1)^{+} \times \mathbb{R}$.

3.2. An Auxillary Classification Result

$\boldsymbol{\kappa}>\mathbf{0}:$ Meridians for S_{H}^{2}

$\boldsymbol{\kappa}<\mathbf{0}:$ Meridians for C_{H}^{2}

$\boldsymbol{\kappa}<\mathbf{0}:$ Meridians for S_{H}^{2} and D_{H}^{2}

$\boldsymbol{\kappa}<\mathbf{0}$: Meridians of P_{H}^{2} are limits

3.3. Key Steps in Proving This Classification Result

The unit normal field ν of an immersion $\iota: \Sigma^{2} \leadsto M_{\kappa}^{2} \times \mathbb{R}$ provides a lift of ι into the total space of the unit tangent bundle $\pi: N_{\kappa}^{5}:=T_{1}\left(M_{\kappa}^{2} \times \mathbb{R}\right) \rightarrow M_{\kappa}^{2} \times \mathbb{R}$.
Proposition (Prolongation)
Immersed surfaces $\iota: \Sigma^{2} \rightarrow M_{\kappa}^{2} \times \mathbb{R}$ with constant mean curvature H and $Q \equiv 0$ lift to integral surfaces $\nu: \Sigma^{2} \hookrightarrow N_{\kappa}^{5}$ of an explicit 2-dimensional distribution $E_{H} \subset T N_{\kappa}^{5}$.

Properties of E_{H}.
i) E_{H} is invariant under the action of $\operatorname{Iso}_{0}\left(M_{\kappa}^{2} \times \mathbb{R}\right)$. This action has 4-dim. orbits that are separated by

$$
\Theta: N_{\kappa}^{5} \rightarrow\left[-\frac{1}{2} \pi, \frac{1}{2} \pi\right],
$$

ii) The Gauß map $\theta: s \mapsto \Theta \circ c(s)$ of any meridian solves

$$
\frac{\partial}{\partial s} \theta=\frac{1}{4 H}\left(4 H^{2}+\kappa \cos ^{2} \theta\right)
$$

iii) E_{H} is integrable.

4. Further Generalization of the Target Spaces

Is it possible to replace the product spaces $M_{\kappa}^{2} \times \mathbb{R}$ by more general oriented Riemannian manifolds $\left(M^{3}, g\right)$?
Theorem 4 ([A _ , 2006])
Let L_{0} be a \mathbb{C}-valued, traceless, symmetric bilinear form on $\left(M^{3}, g\right)$. Then the expression

$$
Q:=\pi_{2,0}\left(h_{\Sigma}+\iota^{\star} L_{0}\right)
$$

defines a holomorphic quadratic differential on any surface $\iota: \Sigma^{2} \rightarrow\left(M^{3}, g\right)$ with constant mean curvature H, if and only if L_{0} solves the differential equation

$$
\begin{equation*}
\mathrm{D}_{X} L_{0}=\frac{1}{2} i\left[\star X, G-2 H L_{0}\right] \tag{*}
\end{equation*}
$$

Remark
The ODE-system (*) is overdetermined. The integrability condition - even required for local solutions - imposes serious restrictions on the geometry of $\left(M^{3}, g\right)$.

H
 \triangle Generalized Hop Differentials Uwe Abresch Contents Classical Results Simple Extensions New Results
 Further Generalization of | the Target Spaces |
| :--- |
| $\begin{array}{l}\text { Resutit coneening } \\ \text { Homogeneous Bundes }\end{array}$ | Hoogogeoeus Sunder Onthe Gementr of Homogneous 3 -Manifold Minimal Surfaces Group

Generalization of
the Target Space Minimal Surfaces in the
Group

4.1. Results Concerning Homogeneous Bundles

Theorem 5 ([A__, 2006])
Let $\left(\tilde{M}^{3}, g\right)$ be a simply-connected, oriented Riemannian manifold. Then there exists a solution L_{0} of

$$
\begin{equation*}
\mathrm{D}_{X} L_{0}=\frac{1}{2} i\left[\star X, G-2 H L_{0}\right] \tag{*}
\end{equation*}
$$

iff $\left(\tilde{M}^{3}, g\right)$ is a hom. space with an at least 4-dimensional isometry group, or, equivalently, iff it is a space form or a homogeneous bundle $M_{\kappa, \tau}^{3} \rightarrow N_{\kappa}^{2}$.
New target spaces: $\mathbb{S}_{\text {Berger }}^{3}, \operatorname{Nil}(3)$, and $\widetilde{\mathrm{SI}}(2, \mathbb{R})$.
Remark
The hom. bundles $M_{\kappa, \tau}^{3} \rightarrow N_{\kappa}^{2}$ are the products $\mathbb{S}^{2} \times \mathbb{R}$ and $\mathbb{H}^{2} \times \mathbb{R}$, the Berger spheres \mathbb{S}_{η}^{3}, the Heisenberg group $\mathrm{NiI}(3)$, and $\widetilde{\mathrm{SI}}(2, \mathbb{R})$, and explicit solutions of $(*)$ are

$$
L_{0}:=-\frac{\kappa-\tau^{2}}{2 H-i \tau}\left(P-\frac{1}{3} \mathbb{1}\right) .
$$

Here P denotes the field of vertical projectors.

4.2. On the Geometry of Homogeneous 3-Manifolds

The dimension of $G:=\operatorname{Iso}\left(M^{3}, g\right)$ is either 3,4 , or 6.
We'll discuss each case for simply-connected spaces.
a) $\operatorname{dim} G=6$:

These spaces have constant curvature κ. Up to scaling, they are the standard spaces $\mathbb{S}^{3}, \mathbb{R}^{3}$, and \mathbb{H}^{3}.
Their Einstein tensor is $G=-\kappa \mathbb{1}$. Evidently, $\mathrm{D} G \equiv 0$.
b) $\operatorname{dim} G=4$:

These spaces are homogeneous bundles $\pi_{\kappa, \tau}: \tilde{M}_{\kappa, \tau}^{3} \rightarrow \tilde{N}_{\kappa}^{2}$ over simply-connected surfaces of constant curvature κ.
They have tot.-geod. fibers and const. bundle curvature τ.
Convention: $\quad[X, Y]^{\text {vert }}=\tau \cdot X \times Y$ for all hor. vector fields.
Range of (κ, τ) : the curve $\kappa=\tau^{2}$ must be excluded, as it yields spaces of constant curvature.

Complete list:

$$
\begin{array}{c|c|c}
\mathbb{S}^{2} \times \mathbb{R} & \mathbb{R}^{3} & \mathbb{H}^{2} \times \mathbb{R} \\
\hline \mathbb{S}_{\text {Berger }}^{3} & \operatorname{Nil}(3) & \widetilde{\mathrm{S} I}(2, \mathbb{R})
\end{array}
$$

$\mathbb{S}_{\text {Berger }}^{3}$	$\operatorname{NiI}(3)$	$\widetilde{\mathrm{SI}}(2, \mathbb{R})$

New Results

Further

Generalization of the Target Spaces

4.1. Results Concerning Homogeneous Bundles

The holomorphic quad. differentials $Q:=\pi_{2,0}\left(h_{\Sigma}+\iota^{\star} L_{0}\right)$ that come with these solutions L_{0} are the key to:

Theorem 6 ([A__, 2006])
Any immersed cmc sphere S^{2} in a homogeneous bundle $M_{\kappa, \tau}^{3} \rightarrow N_{\kappa}^{2}$ is in fact embedded and rotationally-invariant. Thus its shape is determined by the mean curvature H.

Of couse, we have to refine Theorem 3 appropriately, too. Remarks
i) Thus we have extended H. Hopf's result to immersed cmc spheres in homogeneous spaces representing 7 of the 8 maximal homogeneous structures [cf. Thurston].
ii) On $\operatorname{Solv}(3)$, however, the cmc equation has - due to lack of symmetry - no first integrals like our holomorphic quad. differentials. More precisely, there is no 1 -dim. isotropy group.

$)_{\infty}^{4}$

zed Hop Differentials Uwe Abresch

Contents

Classical Results Simple Extensions to Product Space Further Further
Generalization of the Target Space Results Conceming
Homogeneous Sundes On the Geometry of
Homomeneousus 3 3 Manifol Minimal Surfaces in the Heisenberg Group

4.2* On the Geometry of Homogeneous 3-Manifolds

b) $\operatorname{dim} G=4$ (cont.):

Further properties of the spaces $\tilde{M}_{\kappa, \tau}^{3}$:
i) Their Einstein tensor is

$$
G=-\frac{1}{4} \tau^{2} \mathbb{1}-\left(\kappa-\tau^{2}\right) P
$$

ii) Moreover, $\quad \mathrm{D}_{X} G=\frac{1}{2} \tau[\star X, G]$.

So they are symmetric spaces, iff $\tau=0$.
iii) Finally, their Cotton tensor turns out to be $-\frac{3}{2} \tau G_{0}$. So they are locally conformally flat, iff $\tau=0$.
iv) For any pair κ, τ, the isotropy group G_{p} of any point p is bigger than $\mathrm{SO}(2)$. It contains $\mathrm{S}(\mathrm{O}(2) \times \mathrm{O}(1))$.
v) Hence, for any horizontal geodesic $\gamma: \mathbb{R} \rightarrow \tilde{M}_{\kappa, \tau}^{3}$, there is a 180°-rotation ϕ_{γ} containing γ in its fixed point set. In fact, G is generated by these rotations.

+

Generalized Hop Differentials Uwe Abresch Contents Classical Results Simple Extensions to Product Spaces New Results Further Generalization of the Target Spaces Results Concening
Homogeneous sundes

Homogeneous 3 -Manifolds Minimal Surfaces in the Heisenber

4.2. On the Geometry of Homogeneous 3-Manifolds

\rightarrow
c) $\operatorname{dim} G=3$:

These spaces are 3-dimensional Lie groups equipped with left-invariant metrics [cf. Milnor, 1976].

Remarks
i) There are several isomorphism classes of 3-dimen. real Lie algebras, but only one of them gives raise to a new maximal homogeneous structure: Solv(3).
ii) A quotient of $\operatorname{Solv}(3)$ is a torus bundle over \mathbb{S}^{1}.
iii) The geometry of $\operatorname{Solv}(3)$ is also very special:

- $\operatorname{ker}(R i c)$ is a 2 -dim. integrable distribution.

Its Weingarten map has 2 distinct eigenvalues.

- The Cotton tensor has 3 distinct eigenvalues.
- G and Cotton commute.

Yet, the isotropy groups are finite and, in fact, isomorphic to the dihedral group D_{4}.

5.1. Equivariant Minimal Surfaces in Nil(3)

The 4 Basic Types [cf. Figueroa, Mercuri, Pedrosa]
a) Vertical Planes: total preimages of straight lines, invariant w.r.t. vertical translations.
b) Catenoids and Horizontal Umbrellas: invariant w.r.t. a group ϕ_{t} of rotations around some vert. axis.
c) Helicoids and Helicoidal Catenoids: invariant w.r.t. a group ϕ_{t} of screw motions around a vert. axis.
d) Saddle-Type Surfaces: invariant w.r.t. a group ϕ_{t} of isometries that project to translations of \mathbb{R}^{2}.

Remarks
i) The umbrellas and the saddle-type surfaces are graphs w.r.t. the Riem . submersion $\mathrm{Nil}(3) \rightarrow \mathbb{R}^{2}$.
ii) $Q=0$ on umbrellas and on vertical planes, whereas $Q=\mathrm{cd} z^{2} \neq 0$ for the saddle-type surfaces

5.2. Further Examples of Minimal Surfaces in Nil(3)

a) Local Scherk Surfaces.

They come as Nitsche graphs over a square in \mathbb{R}^{2} w.r.t. the submersion $\operatorname{Nil}(3) \rightarrow \mathbb{R}^{2}$. Their boundary consists of the vertical geodesics over the 4 vertices of the square.

i) They are invariant w.r.t. the 180°-rotations around hor. lifts of the diagonals. (\rightarrow Schwarz reflection principle.)
ii) They do not extend to doubly-periodic minimal surfaces in $\mathrm{Nil}(3)$.
iii) Upon enlarging the square, they converge to saddle-type surfaces not umbrellas.

Application (A Weak Bernstein Theorem) Serrin style curvature bounds for (global) minimal graphs.

5.2* Further Examples of Minimal Surfaces in Nil(3)

b) Triply-Periodic Scherk Surfaces $\hat{\Sigma}^{2}$.

In order to construct these surfaces, fix a triangle $\bar{\gamma}$ in the barycentric subdivision of the fundamental square in \mathbb{R}^{2}, and proceed as follows:
i) Consider a horizontal lift of $\bar{\gamma}$ starting over the vertex of the square, and add a vertical segment to get a closed polygon γ.
ii) Solve the Plateau problem $\partial \Sigma^{2}=\gamma$ and extend Σ^{2} to a global minimal surface $\hat{\Sigma}^{2}$ by means of the Schwarz reflection principle.

Generalized Hop Differentials Uwe Abresch Contents Classical Results Simple Extensions to Product Spaces
New Results
Further
Further
Generalization of
the Target Spaces
Minimal Surfaces
in the Heisenberg

Remark
$\hat{\Sigma}^{2}=\Gamma \cdot \Sigma^{2}$ where $\Gamma \subset$ Iso $(\operatorname{Nil}(3))$ is the discrete subgroup generated by the four 180°-rotations around the edges of γ.

5．3．Half－Space Theorems

Theorem 7 （［A＿＿\＆Rosenberg，2004］）
Let Σ^{2} be a proper，possibly branched minimal surface in the Heisenberg group $\mathrm{Nil}(3)$ ．Suppose that Σ^{2} is contained in the complement of some horizontal umbrella．Then Σ^{2} is congruent to this umbrella by a vertical translation．
Method of Proof．
The same argument as in \mathbb{R}^{3} works，since the catenoids collapse to doubly－covered punctured umbrellas when their necksize is shrunk to 0 ．
Remarks
i）There is no half－space theorem w．r．t．the level sets $\mathbb{H}^{2} \times\left\{t_{0}\right\}$ in the product $\mathbb{H}^{2} \times \mathbb{R}$ ．
ii）Yet，the horizontal umbrellas in $\mathrm{Nil}(3)$ are hyperbolic and not parabolic．
Question：Are there also half－space theorems w．r．t．the saddle－type surfaces in $\mathrm{Nil}(3)$ rather than the umbrellas？
\square

6．1．Basic References

围 U．Abresch，H．Rosenberg：
A Hopf Differential for Constant Mean Curvature Surfaces in $\mathbb{S}^{2} \times \mathbb{R}$ and $\mathbb{H}^{2} \times \mathbb{R}$ ，
Acta Math． 193 （2004），141－174．
目 U．Abresch：
A Hopf Differential for Constant Mean Curvature Surfaces in Riemannian 3－Manifolds，
in preparation．
A．D．Alexandrov：
A Characteristic Property of Spheres，
Ann．Mat．Pura Appl． 58 （1962），303－315
围 B．Gidas，W．M．Ni，L．Nirenberg：
Symmetry and Related Properties via the Maximum Principle， Comm．Math．Phys． 68 （1979），209－243．

围 H．Hopf：
Differential Geometry in the Large，
LNM 1000，Springer－Verlag，Berlin 1983.

6．1．Basic References

圊 W．－Y．Hsiang，W．－T．Hsiang：
On the Uniqueness of Isoperimetric Solutions and Imbedded Soap Bubbles in Noncompact Symmetric Spaces I， Invent．Math． 98 （1989），39－58．
N．Kapouleas： Complete Embedded Minimal Surfaces of Finite Total Curvature， J．Differential Geom． 47 （1997），95－169．
R Ch．B．Figueroa，F．Mercuri，R．Pedrosa： Invariant Surfaces of the Heisenberg Groups， Ann．Mat．Pura Appl．（4） 177 （1999），173－194．
目 P．A．Scott：
The Geometries of 3－Manifolds，
Bull．London Math．Soc． 15 （1983），401－487．
國 W．P．Thurston：
Three－Dimensional Geometry and Topology， Princeton Math．Series 35，Princeton Univ．Press， 1997.

6．2．Cmc Tori and Integrable Systems

嗇 U．Abresch：
Constant Mean Curvature Tori in Terms of Elliptic Functions，
J．Reine Angew．Math． 374 （1987），169－192．
E．Uinkall，I．Sterling：
On the Classification of Constant Mean Curvature Tori， Ann．of Math．（2） 130 （1989），407－451．
E A．I．Bobenko：
All Constant Mean Curvature Tori in $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$
in Terms of Theta－Functions，
Math．Ann． 290 （1991），209－245．
固 N．J．Hitchin：
Harmonic Maps from a 2－Torus to the 3－Sphere，
J．Differential Geom． 31 （1990），627－710．
F．E．Burstall，D．Ferus，F．Pedit，U．Pinkall：
Harmonic Tori in Symmetric Spaces and
Commuting Hamiltonian Systems on Loop Algebras， Ann．of Math．（2） 138 （1993），173－212．

6．2＊Cmc Tori and Integrable Systems

目 J．Dorfmeister，F．Pedit，H．Wu： Weierstrass Type Representation of Harmonic Maps into Symmetric Spaces，
Comm．Anal．Geom．i6（1998），633－668．
（ F．E．Burstall，F．Pedit，U．Pinkall：
Schwarzian Derivatives and Flows of Surfaces，
Diff．Geometry and Integrable Systems（Tokyo，2000），39－61 Contemp．Math．308，Amer．Math．Soc．，Providence，RI， 2002
固 J．Dorfmeister，M．Kilian：
Dressing Preserving the Fundamental Group，
Differential Geom．Appl． 23 （2005），176－204．

4
 Generalized Ho

Generalized Hopf
Differentials Differentials Uwe Abresch

6．3．Recent Developments

目 D．Benoît：
Isometric immersions into 3－dimensional homogeneous manifolds， Comment．Math．Helv．，in preparation．
圁 D．Benoît：
The Gauss map of minimal surfaces in the Heisenberg group， ArXiv：math．DG／0606299．
回 D．A．Berdinski，I．A．Taimanov：
Surfaces in three－dimensional Lie groups，
ArXiv：math．DG／0503707 v2，14．Nov． 2005.
鲁 T．H．Colding，W．P．Minicozzi II：
Embedded minimal disks，in：Global theory of minimal surfaces，
Clay Math．Proc． 2 （2005），405－438，Amer．Math．Soc．，Providence，RI．
T．T．Colding，W．P．Minicozzi II：
The space of embedded minimal surfaces of fixed genus in a 3－manifold，
1．Estimates off the axis for disks，Ann．of Math． 160 （2004），27－68，
II．Multi－valued graphs in disks，Ann．of Math． 160 （2004），69－92，
III．Planar domains，Ann．of Math． 160 （2004），523－572，
IV．Locally simply connected surfaces，Ann．of Math． 160 （2004），573－615．

6．3．Recent Developments

击 P．Collin，R．Kusner，W．H．Meeks III，H．Rosenberg： The topology，geometry and conformal structure of properly embedded minimal surfaces，
J．Differential Geom． 67 （2004），377－393．
圊 W．H．Meeks III，H．Rosenberg： Stable minimal surfaces in $M \times \mathbb{R}$ ，
J．Differential Geom． 68 （2004），515－534．
（ W．H．Meeks III： The limit lamination metric or the Colding－Minicozzi minimal lamination Illinois J．Math． 49 （2005），645－658．
國 W．H．Meeks III，H．Rosenberg： The uniqueness of the helicoid， Ane uniqueness of the helicoid，
Ann．
 Minimal surfaces of finite topology，in：Global theory of minimal surfaces， Clay Math．Proc． 2 （2005），471－488，Amer．Math．Soc．，Providence，RI．
围 W．H．Meeks III，H．Rosenberg：
The theory of minimal surfaces in $M \times \mathbb{R}$ ，
Comment．Math．Helv． 80 （2005），811－858．

7．1．Alexandrov＇s Moving Planes Argument

7.2. Meridian Curves of the Model Surfaces
$\boldsymbol{\kappa}>\mathbf{0}:$ Meridians for S_{H}^{2}

7.2. Meridian Curves of the Model Surfaces
$\boldsymbol{\kappa}<\mathbf{0}:$ Meridians for C_{H}^{2}

 Uwe Abresch References Zoomed Figures
Alexandorovs
 Meridian Cures
of the Modes
Local Schase
Lcherk
 Tintyly Peridic Scherk
Surfaces in Nil(3)
7.2. Meridian Curves of the Model Surfaces
$\boldsymbol{\kappa}<\mathbf{0}$: Meridians for S_{H}^{2} and D_{H}^{2}

7.2. Meridian Curves of the Model Surfaces

$\boldsymbol{\kappa}<\mathbf{0}:$ Meridians of P_{H}^{2} are limits

$+$
 Generalized Hop

 Differentials Uwe Abresch
7.3. Local Scherk Surfaces in $\operatorname{Nil}(3)$

7.4. Triply-Peridic Scherk Surfaces in Nil(3)
$\underbrace{4}$ Generalized Hopf Differentials Uwe Abresch

References

Zoomed Figures
Alxandiov's
Mouing Planes Arga Meridian Cures
Of the Model Surfaces
 Surfaces in Nil(3)
Triply. Peridic
Scherer

