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0. Why Topological String ?

1. Exactly solvable models in string theory : Toy models

for investigating various dualities, that might be com-

pared with sine-Gordon model in 2D QFT (for soliton

and boson/fermion correspondence) and Ising model

in statistical physics (for phase transition)

2. Counting of instantons (BPS states) : Microscopic

state counting of (extremal) black-hole, Low energy

effective action of 4-dim N = 2 supersymmetric

(8 SUSY) theories (Seiberg-Witten prepotential)

3. Amusing Laboratory to enjoy and develop deep ideas

in mathematics (Donaldson, Langlands, · · · · · · · · · )



Plan of my talk — (The numbering refers to the previous slide)

1. Art of Topological Vertex

Topological vertex as building block of topological string

amplitudes on (local) toric Calabi-Yau 3-folds – Toric

geometry, Link invariants (Schur functions)

2. Seiberg-Witten Prepotential

Geometric Engineering – Asymptotic growth of Gromov-

Witten invariants of local Hirzebruch surface

3. Experiments on ”Non-Nef” cases

(1) O(−p) ⊕O(p − 2) → P
1 (p 6= 0,1,2)

(2) KFn
→ Fn = P(O

P1(−n)⊕O
P1) (n 6= 0,1,2)



1. Art of Topological Vertex

With a proposal of Topological Vertex, we have an al-

gorithm of computing all genus (A-model) topological

string amplitudes on (local) toric Calabi-Yau 3-fold; we

can compute the partition function, that is supposed to

be a generating function of (local) Gromov-Witten invari-

ants, by a diagramatic way.

Remark :

There are no (non-trivial) compact toric Calabi-Yau man-

ifold. A typical example of toric Calab-Yau 3-fold is KS;

the canonical bundle of toric (Fano) surface S.



The proposal (in a complete form) was made in

[M. Aganagic, A. Klemm, M. Mariño and C. Vafa, hep-th/0305132]

based on the idea of open/closed string duality, or the

duality between Chern-Simons theory and Gromov-Witten

theory. Some related works that led to the proposal are

[M. Aganagic, M. Mariño and C. Vafa, hep-th/0206164,

A. Iqbal, hep-th/0207114]

There is an attempt at formulating the algorithm in more

rigorous manner, based on relative Gromov-Witten the-

ory and virtual localization w.r.t. toric action;

[J. Li, C.-C. M. Liu, K. Liu and J. Zhou, math-AG/0408426]



Toric Calabi-Yau Geometry

Xi (i = 1, · · · , k + 3) : affine coordinates

with U(1)k charges Qa
i (a = 1, · · · , k)

Moment map w.r.t. U(1)k action : µ(X) =
∑k+3

i=1 Qa
i |Xi|2

CY3(r
a) :=











k+3
∑

i=1
Qa

i |Xi|2 = ra











/

U(1)k

Symplectic Quotient (ra : Kähler parameters)

Toric fan (diagram) in R3 is generated by {v1, v2, · · · , vk+3}
with

∑k+3
i=1 Qa

i vi = 0. Due to the Calabi-Yau condition
∑k+3

i=1 Qa
i = 0, they are on the same plane (say, z = 1).



0

vi

vj

vk

Xi = 0 Xj = 0

Xk = 0

Building block of toric fan (diagram) representing an affine

local patch ' A3 with local coordinates Xi, Xj, Xk and

its dual trivalent vertex, (where the toric action degener-

ates at face=divisor [4-cycle], edge=curve [2-cycle] and

vertex=point [0-cycle])



For each edge (' invariant rational curve) we assign a

Young tableau (or a partition) µi.

µ1

µ2

µ3

Topological Vertex

Cµ1µ2µ3(q), q = exp(−gs)

gs : a parameter of genus expansion

Topological string amplitude is obtained by ”gluing” topo-

logical vertices Cµ1µ2µ3(q), according to the gluing of

affine local patches to make a given toric Calabi-Yau 3-

fold.



Feynman diagram like rules

• Vertices ⇒ trivalent coupling : Cµ1µ2µ3(q)

• Edges ⇒ propagator : (−1)`µ · e−t·`µ

t: the Kähler parameter of P1 ; `µ :=
∑

(i,j)∈µ 1

• Slopes of edges ⇒ framing : (−1)m·`µ · qm
2 ·κµ

m := −→v in ∧ −→v out ; κµ := 2
∑

(i,j)∈µ(j − i)

t
−→v in

−→v out
m=1

∑

ν Cµ1µ2ν(q) · e−t·`ν · Cνtµ3µ4
(q) · q

κν
2

t
−→v in

−→v out

m=0

∑

ν Cµ1µ2ν(q) · (−e−t)`ν · Cνtµ3µ4
(q)



REMARKS

The gluing rule of topological vertex is different from that

of 2D TQFT based on cobordisms of Riemann surfaces.

The algorithm gives all genus amplitudes (q = exp(−gs)).

It is one of surprises in topological vertex formalism that

a simple structure of the partition function emerges after

summing up all genera.



Technical Notes

Topological Vertex is derived from the duality to the Chern-

Simons theory and expressed in terms of the large N

leading part of the Hopf link invariants Wµ1µ2(q);

Cµ1µ2µ3(q) = q
κµ2
2 +

κµ3
2

∑

ν1,ν2

N
µ1µt

3
ν1ν2

Wµt
2ν1

(q)Wµ2ν2(q)

Wµ2•(q)

Recall that the Hilbert space of the Chern-Simons theory

on T2 × R can be identified with the space of conformal

blocks H(T2) of WZW theory on T2.



The Hopf link invariants WPQ(q, λ) are obtained as the

normalized modular S-matrix elements on H(T 2);

SPQ

S••
=

∑

w∈SN
(−1)wq−(ΛP+ρN)·w(ΛQ+ρN)

∑

w∈SN
(−1)wq−ρN ·w(ρN)

q := exp

(

2πi

N + k

)

, λ := qN

where the symmetric group SN is the Weyl group, ΛR is

the highest weight of R and ρN is the Weyl vector.

By Weyl’s character formula

chR ξ =

∑

w∈SN
(−1)we(ΛR+ρN)·w(ξ)

∑

w∈SN
(−1)weρN ·w(ξ)

,



we see that WPQ(q, λ) can be written by specialization

of the character, or the Schur polynomials (actually func-

tions since we consider N → ∞);

WPQ(q, λ) = chP

(

− 2πi

N + k
ρN

)

chQ

(

− 2πi

N + k
(ΛP + ρN)

)

= λ−1
2(|P |+|Q|)sP (xi = qi−1

2)sQ(xi = q−λP
i +i−1

2)

This formula is proved in more general context in

[H.R.Morton and S.G. Lukac, math.GT/0108011]

Finally the origin of the the framing factor is the eigen-

values of the T -transformation (T ∈ SL(2, Z)) which is

diagonal on conformal blocks.



2. Seiberg-Witten Prepotential

Seiberg-Witten prepotential FSW(a,Λ) gives a non-perturbative

(including instanton effects) low energy effective action

of 4 dimensional N = 2 SUSY Yang-Mills theory.

Let us consider SU(2) case for simplicity. Instanton ex-

pansion of SU(2) SW prepotential is;

FSW(a,Λ) =
τ0
2

a2+
a2

2

(

log
a

Λ
− 3

2

)

+a2
∞
∑

k=0

(

Λ

a

)4k

Fk

where the coefficients Fk are the ”symplectic volume”

Fk =
∫

Mk
“1”, where Mk is the moduli space of (framed)

SU(2) instantons on R4 with instanton number k.



Seiberg-Witten theory tells that the prepotential FSW (a,Λ)

is obtained by solving the Picard-Fuchs equation for the

period integrals on SU(2) Seiberg-Witten curve;

y2 = (x2 − u)2 − 4Λ4 ,

where u is the moduli parameter. (The curve degener-

ates at u = ±2Λ2, where a massless monopole (dyon)

appears.) Consider the period integral

a(u) :=
∫

α
λSW , aD(u) :=

∫

β
λSW

of SW differential λSW = −1
π

x2dx
y .



The (rigid) special geometry implies an existence of the

prepotential FSW (a,Λ) that satisties

aD(u) =
∂FSW

∂a

Then we can proceed as follows;

Picard-Fuchs equation ⇒ a = a(u), aD = aD(u)

Inversion u = u(a) and Integration ⇒ FSW (a,Λ)



The partition function of topological srting

Z(t) = exp







∞
∑

g=0
g2g−2
s Fg(t)







contains the prepotential as the free energy F0(t) at

genus zero. From the viewpoint of topological string Seiberg-

Witten theory gives a “B-model” computation of FSW .

We can obtain the SW prepotential from the ”double scal-

ing” limit of topological string amplitude on local Hirze-

bruch surface KFn
(n = 0,1,2), which is regarded as

a “A-model” computation of FSW .



Topological string amplitude on local Hirzebruch surface KF0

µ3µ1

µ4

µ2

Z
(F0)
top str =

∑

µ1···µ4
Wµ4µ1Wµ1µ2Wµ2µ3Wµ3µ4

×e−tF ·(`µ1+`µ3)−tB·(`µ2+`µ4)

Recall that the Hirzebruch surface Fn is a P1 bundle over P1. The
second homology class H2(Fn,Z) is spanned by the two cycles
B and F , where their representatives are the base P1 and the P1

fiber, respectively. The intersection numbers of these cycles are

B · B = −n , F · F = 0 , B · F = +1 .

tB and tF are the Kähler parameters of B and F .



Define the instanton expansion of free energy as follows

(QB = e−tB, QF = e−tF ) ;

logZtopstr(QB, QF , q)

= Fone loop(QF , q) + Finst(QB, QF , q)

Finst(QB, QF , q) =
∞
∑

k=1

∞
∑

n=1

1

n
Q nk

B Fk(Q
n

F , qn)

Fk(QF , q) =
∞
∑

g=0

(

sin
gs

2

)2g−2
f(k)
g (QF )

where f
(k)
g gives the k-instanton amplitude at ”genus” g .

Note that we take the expansion of the Gopakumar-Vafa

type.



We list the function f
(k)
0 (Q ≡ QF ) up to k = 3;

f
(1)
0 =

2

(1 − Q)2

= 2 + 4Q + 6Q2 + 8Q3 + 10Q4 + 12Q5

+ 14Q6 + 16Q7 + 18Q8 + · · ·

f
(2)
0 =

2Q(3Q2 + 4Q + 3)

(1 − Q)6(Q + 1)2

= 6Q + 32Q2 + 110Q3 + 288Q4 + 644Q5

+ 1280Q6 + 2340Q7 + 4000Q8 + · · ·

f
(3)
0 =

2Q(4Q6 + 23Q5 + 50Q4 + 62Q3 + 50Q2 + 23Q + 4)

(1 − Q)10(Q2 + Q + 1)2

= 8Q + 110Q2 + 756Q3 + 3556Q4 + 13072Q5

+ 40338Q6 + 109120Q7 + 266266Q8 + · · ·

The coefficients of the Taylor expansion in QF = e−tF <<

1 (large volume region) are the G-V (or G-W) invariants.



On the otherhand, one can obtain the SW prepotential of

4D SU(2) pure Yang-Mills theory by the following scal-

ing limit;

QB = (εΛ)4 , QF = e−4εa , q = e−2εgs

with ε → 0. In this limit the fiber P1 is collapsing, tF →
0, (1−QF ) ∼ tF and the instanton sum can be approx-

imated by an integral (Laplace transform)

∑

n
Ng,β · e−nt ∼

∫

dn Ng,β · e−nt



Thus, it is the asymptotic growth of the Gromov-Witten

invariants Ng,β (β = kB + nF ) as n → ∞, which is

relevant for the computation of FSW .

In general f
(k)
g (QF ) has the following structure;

f(k)
g (QF ) =

P
(k)
g (QF )

(1 − QF)2g+4k−2
,

where P
(k)
g (QF ) is regular at QF = 1 and the asymp-

totic growth is governed by P
(k)
g (1).



The terms in the topological string amplitude that survive
in this limit are

a2
(

Λ

a

)4k ∞
∑

g=0

g2g−2
s

P
(k)
g (1)

22g−2+8ka2g
= g−2

s a2
(

Λ

a

)4k P
(k)
0 (1)

28k−2
+· · · · · ·

Up to sign flip at odd instanton numbers of F1, we obtain

an universal results independent of n = 0,1,2;

P
(1)
0 (1) = 2, P

(2)
0 (1) = 5, P

(3)
0 (1) = 48, · · · · · ·

which give the coefficients of SW prepotential

F1 =
1

25
, F2 =

5

214
, F3 =

3

218
, · · · · · ·



More generally

Topological string =⇒ Nekrasov’s partition function

A.Iqbal and A.-K. Kashani-Poor : hep-th/0212279, hep-th/0306032

T. Eguchi and H.K. : hep-th/0310235

Nekrasov’s partition function =⇒ Seiberg-Witten prepo-

tential

proved independently by three different approachs.

Nakajima-Yoshioka : math.AG/0306198

Okounkov-Nekrasov : hep-th/0306238

Braverman(-Etingof) : math.AG/0401409, 0409441



3. Comments on Non-Nef cases

Among rational ruled surfaces (Hirzebruch surfaces) Fn,

only F0,F1 and F2 are nef. That is, for any irreducible

curve C, we have (−KFn
) · C ≥ 0. By the adjunc-

tion formula C · C + KS · C = 2g − 2, we see that

Fn, (n 6= 0,1,2) is not nef, since the self-intersection

of the base class B is (−n). For non-nef cases, the

toric diagram becomes concave and the dual diagram

has external lines crossing each other.



For example, let us look at a simpler case of local rational

curve Xp : O(−p) ⊕O(p − 2) → P1

Nef cases (p = 0,1,2)

· · · · · · ·
−2 −1 0 1 2 3 4



Non-nef cases (p 6= 0,1,2)

· · · · · · ·
−2 −1 0 1 2 3 4

Although, the toric diagram becomes ”ugly”, we can for-

mally ”extrapolate” computations in terms of topological

vertex.



Recently, based on the method of J function of Coates-

Givental, a (B-model) computation of equivariant local

Gromov-Witten invariants for non-nef local rational curve

and local Hirzebruch surface is performed; [Forbes-Jinzenji

math.AG/0603728]

They claim that the prepotentials of Xp for 2 < p are

the same as that of p = 0,1,2 and for local Hirzebruch

case, for example, the Gromov-Witten invariants of F1

and F3 are the same up to an appropriate shift of de-

gree.



However, the computation by topological vertex shows

rather different feature. We obtain the following partition

function of topological string on Xp : O(−p) ⊕ O(p −
2) → P1;

Z
(Xp)
top str =

∑

µ
(dimqR(µ))2 q

(p−2)κµ
2 e−t·`µ

[p dependence only appears in the framing factor q
(p−2)κµ

2 ]

The quantum dimension dimqR(µ) is given by a spe-

cialization of the corresponding Schur function (the char-

acter);

dimqR(µ) = sµ(q
ρ), (qρ : xi = qi−1

2)



When p = 0,1,2 the summation over µ can be made in

a closed form by using the Cauchy formula for the Schur

functions

∑

µ
sµ(x)sµ(y) =

∏

1≤i,j

(

1 − xiyj

)

We obtain

Z
(Xp)
top str =

∞
∏

n=1

(

1 − e−t · qn
)(−1)p−1·n

and

logZ
(Xp)
top str =

∞
∑

g=0
g2g−2
s Fg(t) =

∞
∑

k=1

(−1)p · e−t·k

k sinh2
(

kgs
2

)



which leads the famous trilogarithm (multi-cover struc-

ture) at genus zero;

F0(t) = (−1)p · Li3(e
−t) = (−1)p

∞
∑

k=1

e−t·k

k3

The claim in [Forbes-Jinzenji math.AG/0603728] is that this

is valid for all p.

However, for p 6= 0,1,2, due to the appearance of the

framing factor in the topological vertex formalism, we find

different results in the instanton expansion;

Z
(Xp)
top str = 1 +

∞
∑

k=1

Zke−tk



Gopakumar-Vafa invariants n k
g of Xp;

n 1
0 = (−1)p

n 2
0 =

1

4
p (p − 2) +

1

8
(1 − (−1)p)

n 3
0 =

(−1)p

6
p (p − 1)2 (p − 2)

n 4
0 =

1

12
p (p − 1)2 (p − 2)

(

2p2 − 4p + 1
)

n 5
0 =

(−1)p

24
p (p − 1)2 (p − 2)

(

5p4 − 20p3 + 25p2 − 10p + 2
)

... ...

In general n k
g=0 is a polynomial in p of order 2k − 2.



Quite recently, the genue zero Gromov-Witten invariants

of Xp is estimated, based on the analysis of (a one cut

solution to) a corresponding matrix model; [ N. Caporaso,

L. Griguolo, M. Mariño, S. Pasquetti and D. Seminara, hep-th/0606120]

N0,k =
1

k2k!

(

(p − 1)2k − 1
)

!

(p(p − 2)k)!

Using the Stiring’s formula n! ∼
√

2πnnne−n, one can

obtain the following asmptotic growth for p 6= 0,1,2;

N0,k ∼ k−
7
2ek·tc , tc := log(p(p−2))p(p−2)(p−1)2(p−1)2

(should be compared with N0,k ∼ k−3 , tc := 0)



Physical implication of the difference of the asymptotic

behavior is that in the corresponding matrix model, which

is also related to two-dimensional (q-deformed) Yang-

Mills theory on P1, a phase transition takes place at

t = tc for 2 < p.

How does this difference come from?

According to [Bryan and Pandharipande math.AG/0411037],

in the local Gromov-Witten theory of curves, we can in-

troduce equivariant parameters (λ1, λ2) for toric action

on the rank two fiber of Xp.



If we take λ1 = λ2, then we have F0(t) = (−1)p ·
Li3(e

−t), independent of p. But if we take ”anti-diagonal”

choice λ1 + λ2 = 0, then the result depends on p and

there is a clear difference between p = 0,1,2 and other

cases.

How about the case of local Hirzebruch surface Fn, which

was of our original interest ?



Z
(Fn)
top str =

∑

µ1µ2

(Kµ1µ2(QF ))2 · Q`µ1+`µ2
B Q

n`µ2
F

· (−1)n(`µ2−`µ1)q
n
2(κµ2−κµ1)

where Kµ1µ2(Q) :=
∑

ν Q`νWµ1ν(q)Wνµ2(q) can be

computed in a closed form by using the Schur function

identities and QB := e−tB, QF := e−tF .

We find f
(k)
g (F2) = Qk

F · f(k)
g (F0) (independent of g),

which means a simple relation N
F2
g,kB+nF = N

F0
g,kB+(n+k)F

between the Gromov-Witten invariants of F0 and F2.



The computation by [Forbes-Jinzenji] claims a similar rela-

tion between F1 and F3 ; N
F3
0,kB+nF = N

F1
0,kB+(n+k)F .

However, again, the topological vertex computation shows
rather different results; For example,

f
(2)
0 (F1) =

2Q2(3Q2 + 4Q + 3)

(1 − Q)6(1 + Q)2
,

f
(2)
0 (F3) = Q10 − 2Q9 − Q8 + 4Q7 + 6Q6 + 4Q5

+ 6Q4 + 4Q3 − Q2 − 2Q + 1/ (1 − Q)6 (1 + Q)2

It is an open problem to understand the discrepancy of

the Gromov-Witten invariants from the viewpoint of the

equivariant Gromov-Witten theory, like the case of local

curves.


