Asymptotically de Sitter Einstein-Weyl geometries in 2+1 dimensions

Lionel Mason,
The Mathematical Institute, Oxford

Durham, 14th August, 2006
Theme: Holomorphic discs \& problems in differential geometry
Work in progress with Claude LeBrun (\& some with David Calderbank).

Some motivation from integral geometry

The Radon transform:

Given a function $f(\lambda, \mu)$ on $\mathscr{T}_{\mathbb{R}}=\mathbb{R}^{2}$, we can integrate along the lines

$$
L_{\left(x_{0}, x_{1}\right)}=\left\{(\lambda, \mu) \mid \mu=x_{0}+\lambda x_{1}\right\}
$$

to obtain

$$
f(\lambda, \mu) \longrightarrow \hat{f}\left(x_{0}, x_{1}\right)=\int_{L\left(x_{0}, x_{1}\right)} f\left(\lambda, x_{0}+\lambda x_{1}\right) \mathrm{d} \lambda
$$

this is an isomorphism (under suitable analytic assumptions).
Question: what if we replace lines by other curves?
(0) Parabolas: in \mathbb{R}^{2} are given by

$$
C_{\left(x_{0}, x_{1}, x_{2}\right)}=\left\{(\lambda, \mu) \mid \mu=x_{0}+\lambda x_{1}+\lambda^{2} x_{2}\right\}
$$

The space of parabolas is $\mathscr{M}=\mathbb{R}^{3}$ and the transform
$f(\lambda, \mu) \longrightarrow \hat{f}\left(x_{0}, x_{1}, x_{2}\right)=\int_{C_{\left(x_{0}, x_{1}, x_{2}\right)}} f\left(\lambda, x_{0}+\lambda x_{1}+\lambda^{2} x_{2}\right) \mathrm{d} \lambda \quad \in C^{\infty}(\mathscr{M})$
can no longer be an isomorphism, but:
the range can be characterised (under suitable analytic hypotheses) by

$$
\left(\frac{\partial^{2}}{\partial x_{0} \partial x_{2}}-\frac{\partial^{2}}{\partial x_{1}^{2}}\right) \hat{f}=0
$$

(+) Circles:

Consider circles C_{x} in $\mathscr{T}_{\mathbb{R}}=S^{2}$. The space of oriented circles is

$$
\mathscr{M}_{\mathrm{dS}}=S^{2} \times \mathbb{R}=\{\text { axis direction }, t=\cot \psi) .
$$

For $f \in C^{\infty}\left(S^{2}\right), x \in \mathscr{M}_{\mathrm{dS}}$, define $f \longrightarrow \hat{f}(x)=\int_{C_{x}} f \in C^{\infty}(\mathscr{M})$.
This time we have $\square_{g_{\mathrm{dS}}} \hat{f}=0$ where

$$
g_{\mathrm{dS}}=\frac{\mathrm{d} t^{2}}{\left(1+t^{2}\right)}-\left(1+t^{2}\right) d s_{S^{2}}^{2}
$$

is the $2+1$-dimensional de-Sitter metric.

(-) Hyperbolae:

Let $\mathbb{R}^{2} \subset \mathscr{T}=\mathbb{R} \mathbb{P}^{1} \times \mathbb{R} \mathbb{P}^{1}$, the quadric of signature (2,2) in $\mathbb{R} \mathbb{P}^{3}$.
A hyperbola $C_{x} \subset \mathscr{T}_{\mathbb{R}} \subset \mathbb{R P}^{3}$ is the intersection of a plane with $\mathscr{T}_{\mathbb{R}}$.
The space of oriented hyperbolae is $\mathscr{M}_{\text {adS }}=S^{1} \times \mathbb{R}^{2}$ (solid torus).
For $f \in C^{\infty}\left(S^{1} \times S^{1}\right), x \in \mathscr{M}_{\text {adS }}$, define $f \longrightarrow \hat{f}(x)=\int_{C_{x}} f$.
Then $\hat{f} \in C^{\infty}\left(\mathscr{M}_{\text {adS }}\right)$ such that $\square_{g_{\text {adS }}} \hat{f}=0$ where

$$
g_{\mathrm{adS}}=\left(1+r^{2}\right) \mathrm{d} \theta^{2}-\frac{\mathrm{d} r^{2}}{\left(1+r^{2}\right)}-r^{2} d \phi^{2},
$$

is the $2+1$-dimensional anti de-Sitter metric on $\mathscr{M}_{\text {ads }}$.
(Here $\theta \in \mathbb{R} / 2 \pi \mathbb{Z},(r, \phi)=$ polar coords on \mathbb{R}^{2}-note periodicity of time).

Questions:

- When does integration over a three-parameter family of curves $C_{x} \subset \mathscr{T}_{\mathbb{R}}^{2}$, $x \in \mathscr{M}^{3}$ give rise to solutions to a wave equation?
- What geometries arise?

We have correspondence space $\mathscr{F}_{\mathbb{R}}=\left\{(x,(\lambda, \mu)) \in \mathscr{M} \times \mathscr{T}_{\mathbb{R}} \mid z \in C_{x}\right\}$ with double fibration

The curves through $(\lambda, \mu) \in \mathscr{T}_{\mathbb{R}}$ form 2-surface $\Sigma_{(\lambda, \mu)}=p\left(q^{-1}(\lambda, \mu)\right) \subset \mathscr{M}$.
by considering δ-functions on $\mathscr{T}_{\mathbb{R}}$, the $\Sigma_{(\lambda, \mu)}$ must be characteristic and \exists a compatible connection for which they are totally geodesic.

Theorem 1. [Cartan 1941] Let \mathscr{M} arise as above such that the characteristics are compatible with a Lorentzian metric, then \mathscr{M} is an Einstein-Weyl space.

Definition 1. An Einstein-Weyl space in $2+1$ dimensions is a three manifold \mathscr{M} equipped with

- a conformal class of Lorentzian metrics $[g]$,
- a torsion-free affine connection $\nabla: \Gamma(T \mathscr{M}) \rightarrow \Omega^{1} \otimes T \mathscr{M}$
such that $\nabla[g]=0$ and $\operatorname{Sym}_{0} \operatorname{Ricci}(\nabla)=0$.
- Cartan shows that the equations determine evolution from initial data of four free functions of 2 variables.
- If $\exists g \in[g]$ such that $\nabla g=0$, then the metric is flat, dS or adS.
- Einstein-Weyl equations \Leftrightarrow integrability of the 2-planes $\Sigma_{(\lambda, \mu)}$ and hence $\Leftrightarrow \exists \mathscr{T}_{\mathbb{R}}$ (Lax pair description).
\leadsto the equations are an 'integrable system'.
- The geometry is the most general 3-dimensional geometry on which the Bogomolny equations $F_{A}=* D_{A} \Phi$ on a connection D_{A} on a bundle $E \rightarrow \mathscr{M}$ plus Higgs field $\Phi \in \operatorname{End}(E)$ are an integrable system.
\leadsto notion of an integrable background geometry.
- This geometry is the non-linear part of the generic symmetry reduction from anti-self-dual conformal structures in four dimensions (and hence hyper-complex or hyper-kahler spaces, scalar-flat Kahler manifolds, but all in split signature).

Symmetry Reductions include:

1. $\mathrm{SU}(\infty)$ Toda equations:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} \mathrm{e}^{u}}{\partial t^{2}} .
$$

when there is a geodesic shear free and twist-free congruence of time-like geodesics.
2. The dispersionless KP equations

$$
u_{t x}-\left(u u_{x}\right)_{x}=u_{y y}
$$

when there is a constant weighted (null) vector field.
3. The spinor vortex equations for a metric g and spinor ψ in 2-dimensions

$$
\not D \psi=\frac{3}{2} \psi, \quad R=|\psi|^{2}-1 .
$$

This is the generic symmetry reduction.

Families of curves and holomorphic discs

A 3-parameter family of curves in 2-dim \leftrightarrow a free function of four variables:

$$
\mu=f\left(\lambda, x_{0}, x_{1}, x_{2}\right)
$$

whereas Einstein-Weyl spaces depend on just functions of 2 variables.
Question: Can we characterise families of curves for Einstein-Weyl spaces?
Complex analysis: In the de Sitter case, $\mathscr{T}_{\mathbb{R}}=S^{2}$; we must understand this as the antiholomorphic diagonal inside $\mathscr{T}=\mathbb{C P}^{1} \times \mathbb{C P}^{1}$.

Holomorphic discs: Oriented circles in $\mathscr{T}_{\mathbb{R}}$ can be characterized as those oriented closed curves in $\mathscr{T}_{\mathbb{R}}$ that bound holomorphic discs $D \subset \mathscr{T}$ with $\partial D \subset \mathscr{T}_{\mathbb{R}}$ in appropriate topological class.

Thus, $\mathscr{M}_{d S}=$ moduli space of holomorphic discs $D \subset \mathscr{T}$ with $\partial D \subset \mathscr{T}_{\mathbb{R}}$.

Theorem 2. Let $\left(\mathscr{M}^{3},[g], \nabla\right)$ be an Einstein-Weyl space with $\mathscr{M}=S^{2} \times \mathbb{R}$ that is asymptotically de Sitter and is oriented and time oriented compatibly with the asymptotic structure.

Let $\mathscr{T}_{\mathbb{R}}=\{$ totally geodesic null 2-planes in $\mathscr{M}\}$.
Then $\mathscr{T}_{\mathbb{R}}$ is S^{2} and admits a canonical embedding $\mathscr{T}_{\mathbb{R}} \hookrightarrow \mathscr{T}=\mathbb{C P}^{1} \times \mathbb{C P}^{1}$.
\mathscr{M} can be reconstructed as the moduli space of embedded holomorphic discs D_{x} in $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ such that $\partial D_{x} \subset \mathscr{T}_{\mathbb{R}}$.

Theorem 3. There is a $1: 1$ correspondence between oriented and time oriented asymptotically anti de Sitter Einstein-Weyl spaces on $S^{2} \times \mathbb{R}$ and (small) deformations of the embedding of the anti-holomorphic diagonal in $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$.

Definition 2. ($\mathscr{M},[g], \nabla)$ is asymptotically de Sitter if

- \exists conformal compactification $(\tilde{\mathscr{M}}, \tilde{g}, \tilde{\nabla})$ with $\tilde{\mathscr{M}}=S^{2} \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\mathscr{M} \simeq S^{2} \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \subset \tilde{\mathscr{M}}$ (cf. Penrose),
- \tilde{g} smooth on $\tilde{\mathscr{M}}$ and $\tilde{g} \in[g]$ on \mathscr{M}.
- $\tilde{\nabla}=\nabla$ on \mathscr{M}, and $\tilde{\nabla} \tilde{g}=\nu \tilde{g}$ where ν has a simple pole in τ at $\pm \frac{\pi}{2}$, where τ is coordinate on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ factor (cf. $t=\tan \tau$ in de Sitter case).

Proof of theorem:

- Let $\mathscr{F}_{\mathbb{R}} \subset \mathbb{P} T^{*} \mathscr{M} \rightarrow \mathscr{M}$ be the S^{1}-bundle of real null co-vectors; let $\mathscr{F} \rightarrow \mathscr{M}$ be the $\mathbb{C P}^{1}$ bundle of complex null co-vectors.
- \mathscr{F} is divided into two parts $\mathscr{F}^{ \pm}$by $\mathscr{F}_{\mathbb{R}}$; e.g., choose \mathscr{F}^{+}to be those null vectors that induce a spatial complex structure agreeing with the spatial orientation.
- Define a 3-dim complex distribution \mathscr{D} on \mathscr{F}^{+}by

$$
\mathscr{D}_{(n, x)}=\left\{\operatorname{ker} n \cap H o r_{\nabla}, \partial / \partial \bar{n}\right\}
$$

where $x \in \mathscr{M},\left.n \in \mathscr{F}^{+}\right|_{x}, \partial / \partial \bar{n}$ is the d-bar operator in the direction of the $\mathbb{C P}^{1}$ fibres of \mathscr{F}.

- The Einstein-Weyl equations $\Leftrightarrow \mathscr{D}$ is Frobenius integrable.
- \mathscr{D} has $\operatorname{dim} 3$, and $\mathscr{D} \cap \overline{\mathscr{D}}$ has $\operatorname{dim} 2$ on $\mathscr{F}_{\mathbb{R}}$ but 1 on $\mathscr{F}-\mathscr{F}_{\mathbb{R}}$.
- Define $\mathscr{T}=\mathscr{F}^{+} / \mathscr{D} \cap \overline{\mathscr{D}} ; \mathscr{D}$ descends to endow \mathscr{T} with an integrable complex structure.
- With given assumptions, \mathscr{T} is topologically $S^{2} \times S^{2}$. By checking asymptotics, it can be seen to be $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ as a complex manifold.
- $\mathscr{T}_{\mathbb{R}}=\mathscr{F}_{\mathbb{R}} / \mathscr{D} \cap \overline{\mathscr{D}}$ is a 2-dim totally real submanifold of \mathscr{T}.
- Each $x \in \mathscr{M} \leftrightarrow$ a holomorphic disc $D_{x}=\left.\mathscr{F}^{+}\right|_{x}$ with $\partial D_{x}=\left.\mathscr{F}_{\mathbb{R}}\right|_{x}$. This projects to a holomorphic disc $D_{x} \subset \mathscr{T}$ with $\partial D_{x} \subset \mathscr{T}_{\mathbb{R}}$.

Proof that $\left(\mathscr{M}^{3},[g], \nabla\right)$ can be reconstructed from the embedding $\mathscr{T}_{\mathbb{R}} \hookrightarrow$ $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$:

The task of finding a holomorphic disc $D \subset \mathscr{T}$ with $\partial D \subset \mathscr{T}_{\mathbb{R}}$ is an elliptic boundary value problem with Fredholm linearization.

The moduli space of such discs in the appropriate topological class is necessarily 3 -dim, and gives \mathscr{M}.

Each point $z \in \mathscr{T}_{\mathbb{R}}$ corresponds to a two-surface Σ_{z} in \mathscr{M} where, for $x \in \mathscr{M}, x \in \Sigma_{z} \Leftrightarrow z \in \partial D_{x}$.
\exists ! Einstein-Weyl structure on \mathscr{M} for which these two-surfaces are totally geodesic null surfaces.

Remark: Note that points at infinity correspond to the limiting case where D is a $\mathbb{C P}^{1}$ and intersects $\mathscr{T}_{\mathbb{R}}$ in a point.

Proof: that, arbitrary small deformations of $\mathscr{T}_{\mathbb{R}}$ correspond to asymptotically de Sitter Einstein-Weyl spaces.

Such elliptic boundary value problems are, via the implicit function theorem, stable under small deformations.

Thus, the reconstruction can be performed when $\mathscr{T}_{\mathbb{R}} \hookrightarrow \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ is any small deformation of the standard embedding of the anti-holomorphic diagonal S^{2} in $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$, i.e., \exists a 3 -parameter family \mathscr{M}^{3} of holomorphic discs, $D_{x} \hookrightarrow \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ with $\partial D_{x} \subset \mathscr{T}_{\mathbb{R}}$.

The existence of an Einstein-Weyl structure on \mathscr{M} for which the Σ_{z} are totally geodesic null surfaces is no longer trivial, but follows by standard arguments.

Other cases \& reductions

Asymptotically anti-de Sitter case: $\mathscr{T}_{\mathbb{R}} \simeq S^{1} \times S^{1}$ is a small deformation of $\mathbb{R} \mathbb{P}^{1} \times \mathbb{R} \mathbb{P}^{1} \subset \mathbb{C P}^{1} \times \mathbb{C P}^{1}$.

Asymptotically flat case: $\mathscr{T} \simeq$ Hirzebruch surface $\mathbb{P}\left(\mathcal{O} \oplus \mathcal{O}(2), \mathscr{T}_{\mathbb{R}} \simeq\right.$ $S^{1} \times S^{1}$.

Theorem 4. Solutions reduce to $\mathrm{SU}(\infty)$ Toda if $\mathscr{T}_{\mathbb{R}}$ is Lagrangian for the symplectic structure $\Im \Omega, \Omega$ is a meromorphic 2 -form with two double poles. With one quadruple pole on each conic, the reduction is DKP.

Theorem 5. A lorentizian spinor vortex geometry arises when $\exists p: \mathscr{T} \rightarrow$ $\mathbb{C P}^{1}$ such that $\mathscr{T}_{\mathbb{R}} \simeq p^{-1}\left(\right.$ an S^{1} in $\left.\mathbb{C P}^{1}\right)$. The holomorphic discs are p^{-1} of Riemann maps $D \rightarrow \mathbb{C P}^{1}$ with ∂D on subintervals of the S^{1}. The Lax pair operators are the Loewner differential equations for the Riemann maps.

Further twistor constructions based on holomorphic discs

LeBrun \& M, math.DG/0211021, J. Diff. Geom. 61, 2002:
$\left\{\begin{array}{l}\text { Zoll projective structures } \\ \text { on } S^{2}\end{array}\right\} \stackrel{\text { 1:1 }}{\longleftrightarrow}\left\{\begin{array}{l}\text { Deformations of embedding } \mathbb{R P}^{2} \subset \\ \mathbb{C P}^{2}\end{array}\right\}$

LeBrun \& M, math.DG/0504582, Duke:
$\left\{\begin{array}{l}\text { Self-dual conformal } \\ \text { structures on } S^{2} \times S^{2}\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{l}\text { Deformations of embedding } \mathbb{R P}^{3} \subset \\ \mathbb{C P}^{3}\end{array}\right\}$

M, math-ph/0505039, Crelle:
$\left\{\begin{array}{l}\text { global self-dual } \mathrm{U}(n) \text { Yang-Mills fields } \\ \text { in split signature on } S^{2} \times S^{2} \\ \left(=2 \text { copies of } \mathbb{R}^{2,2}\right),\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{l}\text { Hol. Vector bundle } \\ E \rightarrow \mathbb{C P}^{3} \& \text { hermitian metric } \\ H \text { on }\left.E\right|_{\mathbb{R}^{3}}\end{array}\right\}$.

