Asymptotically de Sitter Einstein-Weyl geometries in 2+1 dimensions

Lionel Mason, The Mathematical Institute, Oxford

Durham, 14th August, 2006

Theme: Holomorphic discs & problems in differential geometry

Work in progress with Claude LeBrun (& some with David Calderbank).

Some motivation from integral geometry

The Radon transform:

Given a function $f(\lambda,\mu)$ on $\mathscr{T}_{\mathbb{R}}=\mathbb{R}^2,$ we can integrate along the lines

$$L_{(x_0, x_1)} = \{ (\lambda, \mu) | \mu = x_0 + \lambda x_1 \}$$

to obtain

$$f(\lambda,\mu) \longrightarrow \hat{f}(x_0,x_1) = \int_{L(x_0,x_1)} f(\lambda,x_0+\lambda x_1) d\lambda$$

this is an isomorphism (under suitable analytic assumptions).

Question: what if we replace lines by other curves?

(0) Parabolas: in \mathbb{R}^2 are given by

$$C_{(x_0,x_1,x_2)} = \{(\lambda,\mu) | \mu = x_0 + \lambda x_1 + \lambda^2 x_2 \}.$$

The space of parabolas is $\mathscr{M}=\mathbb{R}^3$ and the transform

$$f(\lambda,\mu) \longrightarrow \hat{f}(x_0, x_1, x_2) = \int_{C_{(x_0, x_1, x_2)}} f(\lambda, x_0 + \lambda x_1 + \lambda^2 x_2) d\lambda \quad \in C^{\infty}(\mathscr{M})$$

can no longer be an isomorphism, but:

the range can be characterised (under suitable analytic hypotheses) by

$$\left(\frac{\partial^2}{\partial x_0 \partial x_2} - \frac{\partial^2}{\partial x_1^2}\right)\hat{f} = 0$$

(+) Circles:

Consider circles C_x in $\mathscr{T}_{\mathbb{R}} = S^2$. The space of oriented circles is

$$\mathcal{M}_{dS} = S^2 \times \mathbb{R} = \{ axis direction, t = \cot \psi \}.$$

For
$$f \in C^{\infty}(S^2)$$
, $x \in \mathscr{M}_{\mathrm{dS}}$, define $f \longrightarrow \hat{f}(x) = \int_{C_x} f \in C^{\infty}(\mathscr{M})$.

This time we have $\Box_{g_{\mathrm{dS}}} \widehat{f} = 0$ where

$$g_{\rm dS} = \frac{{\rm d}t^2}{(1+t^2)} - (1+t^2)ds_{S^2}^2$$

is the 2 + 1-dimensional de-Sitter metric.

(-) Hyperbolae:

Let $\mathbb{R}^2 \subset \mathscr{T}_{\mathbb{R}} = \mathbb{RP}^1 \times \mathbb{RP}^1$, the quadric of signature (2, 2) in \mathbb{RP}^3 . A hyperbola $C_x \subset \mathscr{T}_{\mathbb{R}} \subset \mathbb{RP}^3$ is the intersection of a plane with $\mathscr{T}_{\mathbb{R}}$. The space of oriented hyperbolae is $\mathscr{M}_{adS} = S^1 \times \mathbb{R}^2$ (solid torus). For $f \in C^{\infty}(S^1 \times S^1)$, $x \in \mathscr{M}_{adS}$, define $f \longrightarrow \hat{f}(x) = \int_{C_x} f$. Then $\hat{f} \in C^{\infty}(\mathscr{M}_{adS})$ such that $\Box_{g_{adS}} \hat{f} = 0$ where $g_{adS} = (1 + r^2) d\theta^2 - \frac{dr^2}{(1 + r^2)} - r^2 d\phi^2$,

is the 2 + 1-dimensional anti de-Sitter metric on \mathcal{M}_{adS} . (Here $\theta \in \mathbb{R}/2\pi\mathbb{Z}$, $(r, \phi) = polar$ coords on \mathbb{R}^2 —note periodicity of time).

Questions:

- When does integration over a three-parameter family of curves $C_x \subset \mathscr{T}^2_{\mathbb{R}}$, $x \in \mathscr{M}^3$ give rise to solutions to a wave equation?
- What geometries arise?

We have correspondence space $\mathscr{F}_{\mathbb{R}} = \{(x, (\lambda, \mu)) \in \mathscr{M} \times \mathscr{T}_{\mathbb{R}} | z \in C_x\}$ with double fibration

The curves through $(\lambda,\mu) \in \mathscr{T}_{\mathbb{R}}$ form 2-surface $\Sigma_{(\lambda,\mu)} = p(q^{-1}(\lambda,\mu)) \subset \mathscr{M}$.

by considering δ -functions on $\mathscr{T}_{\mathbb{R}}$, the $\Sigma_{(\lambda,\mu)}$ must be characteristic and \exists a compatible connection for which they are totally geodesic.

Theorem 1. [Cartan 1941] Let \mathcal{M} arise as above such that the characteristics are compatible with a Lorentzian metric, then \mathcal{M} is an Einstein-Weyl space.

Definition 1. An Einstein-Weyl space in 2 + 1 dimensions is a three manifold \mathcal{M} equipped with

- a conformal class of Lorentzian metrics [g],
- a torsion-free affine connection $\nabla: \Gamma(T\mathscr{M}) \to \Omega^1 \otimes T\mathscr{M}$

such that $\nabla[g] = 0$ and $Sym_0Ricci(\nabla) = 0$.

• Cartan shows that the equations determine evolution from initial data of four free functions of 2 variables.

- If $\exists g \in [g]$ such that $\nabla g = 0$, then the metric is flat, dS or adS.
- Einstein-Weyl equations ⇔ integrability of the 2-planes Σ_(λ,μ) and hence ⇔ ∃ 𝒮_ℝ (Lax pair description).
 → the equations are an 'integrable system'.
- The geometry is the most general 3-dimensional geometry on which the Bogomolny equations F_A = *D_AΦ on a connection D_A on a bundle E → M plus Higgs field Φ ∈ End(E) are an integrable system.
 → notion of an integrable background geometry.
- This geometry is the non-linear part of the generic symmetry reduction from anti-self-dual conformal structures in four dimensions (and hence hyper-complex or hyper-kahler spaces, scalar-flat Kahler manifolds, but all in split signature).

Symmetry Reductions include:

1. $SU(\infty)$ Toda equations:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 e^u}{\partial t^2}.$$

when there is a geodesic shear free and twist-free congruence of time-like geodesics.

2. The dispersionless KP equations

$$u_{tx} - (uu_x)_x = u_{yy} \,.$$

when there is a constant weighted (null) vector field.

3. The spinor vortex equations for a metric g and spinor ψ in 2-dimensions

$$D\psi = \frac{3}{2}\psi$$
, $R = |\psi|^2 - 1$.

This is the generic symmetry reduction.

Families of curves and holomorphic discs

A 3-parameter family of curves in 2-dim \leftrightarrow a free function of four variables:

 $\mu = f(\lambda, x_0, x_1, x_2),$

whereas Einstein-Weyl spaces depend on just functions of 2 variables.

Question: Can we characterise families of curves for Einstein-Weyl spaces?

Complex analysis: In the de Sitter case, $\mathscr{T}_{\mathbb{R}} = S^2$; we must understand this as the antiholomorphic diagonal inside $\mathscr{T} = \mathbb{CP}^1 \times \mathbb{CP}^1$.

Holomorphic discs: Oriented circles in $\mathscr{T}_{\mathbb{R}}$ can be characterized as those oriented closed curves in $\mathscr{T}_{\mathbb{R}}$ that bound holomorphic discs $D \subset \mathscr{T}$ with $\partial D \subset \mathscr{T}_{\mathbb{R}}$ in appropriate topological class.

Thus, \mathcal{M}_{dS} = moduli space of holomorphic discs $D \subset \mathscr{T}$ with $\partial D \subset \mathscr{T}_{\mathbb{R}}$.

Theorem 2. Let $(\mathscr{M}^3, [g], \nabla)$ be an Einstein-Weyl space with $\mathscr{M} = S^2 \times \mathbb{R}$ that is asymptotically de Sitter and is oriented and time oriented compatibly with the asymptotic structure.

Let $\mathscr{T}_{\mathbb{R}} = \{ \text{totally geodesic null 2-planes in } \mathscr{M} \}.$

Then $\mathscr{T}_{\mathbb{R}}$ is S^2 and admits a canonical embedding $\mathscr{T}_{\mathbb{R}} \hookrightarrow \mathscr{T} = \mathbb{CP}^1 \times \mathbb{CP}^1$.

 \mathscr{M} can be reconstructed as the moduli space of embedded holomorphic discs D_x in $\mathbb{CP}^1 \times \mathbb{CP}^1$ such that $\partial D_x \subset \mathscr{T}_{\mathbb{R}}$.

Theorem 3. There is a 1:1 correspondence between oriented and time oriented asymptotically anti de Sitter Einstein-Weyl spaces on $S^2 \times \mathbb{R}$ and (small) deformations of the embedding of the anti-holomorphic diagonal in $\mathbb{CP}^1 \times \mathbb{CP}^1$.

Definition 2. $(\mathcal{M}, [g], \nabla)$ is asymptotically de Sitter if

- \exists conformal compactification $(\tilde{\mathscr{M}}, \tilde{g}, \tilde{\nabla})$ with $\tilde{\mathscr{M}} = S^2 \times [-\frac{\pi}{2}, \frac{\pi}{2}]$ and $\mathscr{M} \simeq S^2 \times (-\frac{\pi}{2}, \frac{\pi}{2}) \subset \tilde{\mathscr{M}}$ (cf. Penrose),
- \tilde{g} smooth on $\tilde{\mathscr{M}}$ and $\tilde{g} \in [g]$ on \mathscr{M} .
- $\tilde{\nabla} = \nabla$ on \mathcal{M} , and $\tilde{\nabla}\tilde{g} = \nu \tilde{g}$ where ν has a simple pole in τ at $\pm \frac{\pi}{2}$, where τ is coordinate on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ factor (cf. $t = \tan \tau$ in de Sitter case).

Proof of theorem:

- Let 𝓕_R ⊂ ℙT*𝓜 → 𝓜 be the S¹-bundle of real null co-vectors; let 𝓕 → 𝓜 be the ℂℙ¹ bundle of complex null co-vectors.
- *F* is divided into two parts *F*[±] by *F*_ℝ; e.g., choose *F*⁺ to be those
 null vectors that induce a spatial complex structure agreeing with the
 spatial orientation.
- Define a 3-dim complex distribution \mathscr{D} on \mathscr{F}^+ by

$$\mathscr{D}_{(n,x)} = \{\ker n \cap Hor_{\nabla}, \partial/\partial \bar{n}\}\$$

where $x \in \mathcal{M}$, $n \in \mathcal{F}^+|_x$, $\partial/\partial \bar{n}$ is the d-bar operator in the direction of the \mathbb{CP}^1 fibres of \mathcal{F} .

- The Einstein-Weyl equations $\Leftrightarrow \mathscr{D}$ is Frobenius integrable.
- \mathscr{D} has dim 3, and $\mathscr{D} \cap \overline{\mathscr{D}}$ has dim 2 on $\mathscr{F}_{\mathbb{R}}$ but 1 on $\mathscr{F} \mathscr{F}_{\mathbb{R}}$.
- Define *T* = *F*⁺/*D* ∩ *D*; *D* descends to endow *T* with an integrable complex structure.
- With given assumptions, \mathscr{T} is topologically $S^2 \times S^2$. By checking asymptotics, it can be seen to be $\mathbb{CP}^1 \times \mathbb{CP}^1$ as a complex manifold.
- $\mathscr{T}_{\mathbb{R}} = \mathscr{F}_{\mathbb{R}} / \mathscr{D} \cap \overline{\mathscr{D}}$ is a 2-dim totally real submanifold of \mathscr{T} .
- Each $x \in \mathscr{M} \leftrightarrow$ a holomorphic disc $D_x = \mathscr{F}^+|_x$ with $\partial D_x = \mathscr{F}_{\mathbb{R}}|_x$. This projects to a holomorphic disc $D_x \subset \mathscr{T}$ with $\partial D_x \subset \mathscr{T}_{\mathbb{R}}$.

Proof that $(\mathscr{M}^3, [g], \nabla)$ can be reconstructed from the embedding $\mathscr{T}_{\mathbb{R}} \hookrightarrow \mathbb{CP}^1 \times \mathbb{CP}^1$:

The task of finding a holomorphic disc $D \subset \mathscr{T}$ with $\partial D \subset \mathscr{T}_{\mathbb{R}}$ is an elliptic boundary value problem with Fredholm linearization.

The moduli space of such discs in the appropriate topological class is necessarily 3-dim, and gives \mathcal{M} .

Each point $z \in \mathscr{T}_{\mathbb{R}}$ corresponds to a two-surface Σ_z in \mathscr{M} where, for $x \in \mathscr{M}$, $x \in \Sigma_z \Leftrightarrow z \in \partial D_x$.

 \exists ! Einstein-Weyl structure on \mathcal{M} for which these two-surfaces are totally geodesic null surfaces. \Box

Remark: Note that points at infinity correspond to the limiting case where D is a \mathbb{CP}^1 and intersects $\mathscr{T}_{\mathbb{R}}$ in a point.

Proof: that, arbitrary small deformations of $\mathscr{T}_{\mathbb{R}}$ correspond to asymptotically de Sitter Einstein-Weyl spaces.

Such elliptic boundary value problems are, via the implicit function theorem, stable under small deformations.

Thus, the reconstruction can be performed when $\mathscr{T}_{\mathbb{R}} \hookrightarrow \mathbb{CP}^1 \times \mathbb{CP}^1$ is any small deformation of the standard embedding of the anti-holomorphic diagonal S^2 in $\mathbb{CP}^1 \times \mathbb{CP}^1$, i.e., \exists a 3-parameter family \mathscr{M}^3 of holomorphic discs, $D_x \hookrightarrow \mathbb{CP}^1 \times \mathbb{CP}^1$ with $\partial D_x \subset \mathscr{T}_{\mathbb{R}}$.

The existence of an Einstein-Weyl structure on \mathcal{M} for which the Σ_z are totally geodesic null surfaces is no longer trivial, but follows by standard arguments. \Box

Other cases & reductions

Asymptotically anti-de Sitter case: $\mathscr{T}_{\mathbb{R}} \simeq S^1 \times S^1$ is a small deformation of $\mathbb{RP}^1 \times \mathbb{RP}^1 \subset \mathbb{CP}^1 \times \mathbb{CP}^1$.

Asymptotically flat case: $\mathscr{T} \simeq$ Hirzebruch surface $\mathbb{P}(\mathcal{O} \oplus \mathcal{O}(2), \mathscr{T}_{\mathbb{R}} \simeq S^1 \times S^1$.

Theorem 4. Solutions reduce to $SU(\infty)$ Toda if $\mathscr{T}_{\mathbb{R}}$ is Lagrangian for the symplectic structure $\Im\Omega$, Ω is a meromorphic 2-form with two double poles. With one quadruple pole on each conic, the reduction is DKP.

Theorem 5. A lorentizian spinor vortex geometry arises when $\exists p : \mathscr{T} \to \mathbb{CP}^1$ such that $\mathscr{T}_{\mathbb{R}} \simeq p^{-1}$ (an S^1 in \mathbb{CP}^1). The holomorphic discs are p^{-1} of Riemann maps $D \to \mathbb{CP}^1$ with ∂D on subintervals of the S^1 . The Lax pair operators are the Loewner differential equations for the Riemann maps.

Further twistor constructions based on holomorphic discs

LeBrun & M, math.DG/0211021, J. Diff. Geom. 61, 2002:

 $\left\{ \begin{array}{l} \text{Zoll projective structures} \\ \text{on } S^2 \end{array} \right\} \xleftarrow{1:1} \left\{ \begin{array}{l} \text{Deformations of embedding } \mathbb{RP}^2 \subset \\ \mathbb{CP}^2 \end{array} \right\}$

LeBrun & M, math.DG/0504582, Duke:

 $\begin{cases} \mathsf{Self-dual} & \mathsf{conformal} \\ \mathsf{structures} \text{ on } S^2 \times S^2 \end{cases} \xrightarrow{1:1} \begin{cases} \mathsf{Deformations} \text{ of embedding } \mathbb{RP}^3 \subset \\ \mathbb{CP}^3 \end{cases}$

M, math-ph/0505039, Crelle:

 $\begin{cases} \text{global self-dual } \mathrm{U}(n) \text{ Yang-Mills fields} \\ \text{in split signature on } S^2 \times S^2 \\ (= 2 \text{ copies of } \mathbb{R}^{2,2}), \end{cases} \xrightarrow{1:1} \begin{cases} \text{Hol. Vector bundle} \\ E \to \mathbb{CP}^3 \text{ \& hermitian metric} \\ H \text{ on } E|_{\mathbb{RP}^3} \end{cases} . \end{cases}$