Gromov–Witten theory of orbifold- CP^1 and integrable hierarchies

Todor E. Milanov (joint work with Hsian-Hua Tseng) Durham, August 18, 2006

GW theory of orbifold- ${\mathbb CP}^1$ and integrable hierarchies

August 18, 2006

6

Frobenius structure

$$M = \left\{ x^k + \sum_{i=1}^k t_i x^{k-i} + \sum_{j=1}^{m-1} t_{k+j} \left(\frac{Qe^{t_N}}{x} \right)^j + \left(\frac{Qe^{t_N}}{x} \right)^m \right\},\,$$

where $N = k + m = \dim_C M$.

- multiplication f in $T_fM \cong C[x]/\langle f' \rangle$, $\partial/\partial t_i \mapsto [\partial_{t_i} f]$.
- \bullet metric on M

$$\eta_{ij} = (\partial_{t_i}, \partial_{t_j})_f = -(\operatorname{res}_{x=0} + \operatorname{res}_{x=\infty}) \frac{(\partial_{t_i} f\omega) (\partial_{t_j} f\omega)}{df}$$

- Euler vector field $E_f = [f] \in T_f M$
- unity vector field $\partial/\partial t_k$

 η is a flat metric, $H := T_0 M$, $TM \cong M \times H$ via the Levi–Civita connection, i.e. we trivialize the tangent bundle by choosing flat coordinates τ_i $1 \leq i \leq N$. Let $\partial_i := \partial/\partial \tau_i$.

Define vector fields $J_{\mathcal{B}}: M \times C^* \to H$

$$(J_{\mathcal{B}}(\tau, z), \partial_i) = z \partial_i \int_{\mathcal{B}} e^{f_{\tau}/z} \omega,$$

where

$$\mathcal{B} \in \lim_{M} H_1(C^*, \operatorname{Re} f_{\tau}/z < -M; Z) \cong Z^N$$

GW theory of orbifold- ${\mathbb CP}^1$ and integrable hierarchies

August 18, 2006

Theorem 1. The vector fields $J_{\mathcal{B}}$ are horizontal sections of

$$\nabla = d - z^{-1} \sum_{i=1}^{N} (\partial_i \bullet) d\tau_i - \left(z^{-2} \mu - z^{-1} E \bullet \right) dz,$$

where $\mu = \nabla^{\text{L.C.}} E - \frac{1}{2} Id$.

Theorem 2. M is isomorphic as a Frobenius manifold to the quantum cohomology of orbifold- CP^1 with two orbifold points of type C/Z_m and C/Z_k .

4

Fock space formalism

$$\mathcal{H} = H((z^{-1})) = \mathcal{H}_+ \oplus \mathcal{H}_-, \quad \Omega(f, g) = \operatorname{Res}_{z=0} (f(-z), g(z)) dz$$
$$\mathcal{H} \ni f = \sum_{n,i} p_{n,i} d\tau_i (-z)^{-n-1} + q_n^i \partial_i z^n$$

- Fock space $B_H = \operatorname{Fun}(\mathcal{H}_+) = C[[q_n^i \mid n \geq 0, 1 \leq i \leq N]].$
- $S(\tau, z)$ and $R(\tau, z)$ two symplectic transformations which describe the singularities of ∇ near $z = \infty$ and z = 0.
- Assume $\tau \in M$ is such that f_{τ} is a Morse function. $\mathcal{D}^{M} = \widehat{S}^{-1} \widehat{R} \mathcal{D}_{\text{pt}}^{\otimes n}$, $\mathcal{A}_{\tau}^{M} = \widehat{R} \mathcal{D}_{\text{pt}}^{\otimes n}$ two vectors in the Fock space.

Conjecture 1: $\log \mathcal{D}^M$ and $\log \mathcal{A}_{\tau}^M$ are generating functions for the descendent and the ancestor GW invariants of orbifold- CP^1 with two orbifold points of type C/Z_m and C/Z_k .

GW theory of orbifold- ${\mathbb CP}^1$ and integrable hierarchies

August 18, 2006

6

Vertex operators

 $f_{\tau}(x) = \lambda$ has N solutions $x_i(\tau, \lambda) \in C^*$, $1 \le i \le N$, except for $(\tau, \lambda) \in \Delta$ – hypersurface in $M \times C$, called discriminant.

 (τ_0, λ_0) – reference point

• For each $\alpha \in H_1(C^*, f_{\tau_0}^{-1}(\lambda_0); C)$

$$(I_{\alpha}^{(-n)}(\tau,\lambda),\partial_{i}) = -\partial_{i} \int_{\alpha(\tau,\lambda)} \frac{(\lambda - f_{\tau})^{n}}{n!} \omega, \quad 1 \leq i \leq N$$

$$I_{\alpha}^{n}(\tau,\lambda) = \partial_{\lambda}^{n} I_{\alpha}^{(0)}(\tau,\lambda),$$

$$\mathbf{f}_{\tau}^{\alpha}(\lambda) = \sum_{n} I_{\alpha}^{(n)}(\tau,\lambda)(-z)^{n},$$

$$\Gamma_{\tau}^{\alpha} = \exp \widehat{\mathbf{f}}_{\tau}^{\alpha}.$$

• $1 \le a \le N$

$$(I_a^{(-n)}(\tau,\lambda),\partial_i) = -\partial_i \int_{[x_a]} d^{-1} \left(\frac{1}{n!} (\lambda - f_\tau)^n \omega\right),$$

$$I_a^{(n)} = \partial_\lambda^n I_a^{(0)},$$

$$\mathbf{f}_\tau^a(\lambda) = \sum_n I_a^{(n)}(\tau,\lambda)(-z)^n,$$

$$\Gamma_\tau^a = \exp \widehat{\mathbf{f}}_\tau^a.$$

• Let $c_a(\tau, \lambda) = 1/f'_{\tau}(x_a)$, then for each critical value u_i of f_{τ} , in a neighborhood of $\lambda = u_i$ the operator

$$\sum_{a=1}^{N} c_a \Gamma_{\tau}^a \otimes \Gamma_{\tau}^{-a}$$

is R—equivalent, up to terms analytic in a neighbourhood of $\lambda = u_i$, to the operator which defines the HQE of KdV.

GW theory of orbifold- ${\mathbb CP}^1$ and integrable hierarchies

August 18, 2006

8

• the above operator is not monodromy invariant:

$$\sum_{a=1}^{N} c_a \left(\Gamma_{\tau}^{r_a \phi} \otimes \Gamma_{\tau}^{-r_a \phi} \right) \left(\Gamma_{\tau}^{a} \otimes \Gamma_{\tau}^{-a} \right),$$

where $r_a \in 2\pi i \mathbb{Z}$ are some numbers depending on the monodromy transformation.

• to offset the complication, look at a larger Fock space $\mathcal{B}_H = \left\{ \sum a_I(x, \partial_x) \mathbf{q}^I \mid a_I \text{ differential operators} \right\} \text{ and introduce}$ the following vertex operator

$$\Gamma_{\tau}^{\delta} = \exp\left((\mathbf{f}_{\tau}^{\phi} - w_{\tau})\epsilon\partial_{x}\right) \exp\left(xv_{\tau}/\epsilon\right).$$

It satisfies the following commutation relation:

$$\left(\Gamma_{\tau}^{\delta\#} \otimes \Gamma_{\tau}^{\delta}\right) \left(\Gamma_{\tau}^{r \phi} \otimes \Gamma_{\tau}^{-r \phi}\right) = e^{(\hat{w}_{\tau} \otimes 1 - 1 \otimes \hat{w}_{\tau}) r} \Gamma_{\tau}^{\delta\#} \otimes \Gamma_{\tau}^{\delta},$$

where w_{τ} , via our quantization formalism, is a linear function in \mathbf{q} independent of λ .

Integrable hierarchies

Theorem 3: For each $n \in \mathbb{Z}$ the one-form

$$\left(\Gamma_{\tau}^{\delta\#} \otimes \Gamma_{\tau}^{\delta}\right) \left(\sum_{i=1}^{N} c_{\tau}^{i} \Gamma_{\tau}^{i} \otimes \Gamma_{\tau}^{-i}\right) \left(\mathcal{A}_{\tau}^{M} \otimes \mathcal{A}_{\tau}^{M}\right) \ d\lambda,$$

computed at \mathbf{q}' , \mathbf{q}'' such that $\hat{w}'_{\tau} - \hat{w}''_{\tau} = n$ is regular in λ .

Regular means: put $(q')_n^i = x_n^i - y_n^i$, $(q'')_n^i = x_n^i + y_n^i$ and expand in the powers of $y_0^i, y_1^i, \dots (y_0^k \text{ excluded})$

$$\sum_{I} \left(\sum_{j \le K} P_{I,j} \lambda^j \right) y^I,$$

where $P_{I,j}$ is a quadratic polynomial in $\partial^{\bullet} \mathcal{A}_{\tau}^{M}(x_{0}^{k}+x+n\epsilon,...)$ and $\partial^{\bullet} \mathcal{A}_{\tau}^{M}(x_{0}^{k}+x,...)$. The regularity means that $P_{I,j}=0$ for j<0.

GW theory of orbifold- ${\mathbb CP}^1$ and integrable hierarchies

August 18, 2006

10

The above system of PDE admits some kind of a limit

Theorem 4: For each $n \in \mathbb{Z}$ the one-form

$$\left(\Gamma_{\infty}^{\delta\#} \otimes \Gamma_{\infty}^{\delta}\right) \left(\sum_{a} c_{\infty}^{a} \Gamma_{\infty}^{a} \otimes \Gamma_{\infty}^{-a} + \sum_{b} c_{\infty}^{b} \Gamma_{\infty}^{b} \otimes \Gamma_{\infty}^{-b}\right) \left(\mathcal{D}^{\mathcal{M}} \otimes \mathcal{D}^{\mathcal{M}}\right) d\lambda$$

computed at \mathbf{q}' , \mathbf{q}'' such that $(q')_0^k - (q'')_0^k = n\epsilon$ is regular in λ .

The vertex operators can be computed explicitly:

$$\mathbf{f}_{\infty}^{a} = \frac{1}{k} \mathbf{g}_{\infty}^{a} - \sum_{i=1}^{k-1} \sum_{n \in \mathbb{Z}} \frac{\prod_{l=-\infty}^{n-1} (i/k-l)}{\prod_{l=-\infty}^{0} (i/k-l)} \lambda^{i/k+n} \partial_{i} (-z)^{-n-1},$$

where

$$\mathbf{g}_{\infty}^{a} = \sum_{n \geq 0} \frac{\lambda^{n}}{n!} (\log \lambda - C_{n}) d\tau_{k} (-z)^{-n-1} + \sum_{n \geq 0} n! \lambda^{-n-1} d\tau_{k} z^{n},$$

and $C_0 := 0$, $C_n := 1 + 1/2 + \ldots + 1/n$ are the Harmonic numbers.

$$\mathbf{f}_{\infty}^{b} = -\frac{1}{m} \mathbf{g}_{\infty}^{b} - \sum_{j=1}^{m} \sum_{n \in \mathbb{Z}} \frac{\prod_{l=-\infty}^{-n-1} (j/m-l)}{\prod_{l=-\infty}^{0} (j/m-l)} \lambda^{j/m+n} \partial_{k+m-j} (-z)^{-n-1},$$

where

$$\mathbf{g}_{\infty}^{b} = \sum_{n \ge 0} \frac{\lambda^{n}}{n!} \left[\log(\lambda Q^{-m}) - C_{n} \right] d\tau_{k} (-z)^{-n-1} + \sum_{n \ge 0} n! \lambda^{-n-1} d\tau_{k} z^{n}.$$

GW theory of orbifold- \mathbb{CP}^1 and integrable hierarchies

August 18, 2006

$$L = \Lambda^k + u_1 \Lambda^{k-1} + \ldots + u_{k+m} \Lambda^{-m}, \ \Lambda = e^{\epsilon \partial_x}$$

$$A_{k-i,n} = \frac{\Gamma(1+i/k)}{\Gamma(n+1+i/k)} \left(L^{n+i/k} \right)_{+}, \text{ for } i = 1, \dots, k-1$$

$$A_{k+j,n} = -\frac{\Gamma(1+j/m)}{\Gamma(n+1+j/m)} \left(L^{n+j/m} \right)_{-}, \text{ for } j = 1, \dots, m$$

$$A_{k,n} = \frac{2}{n!} \left[L^{n} \left(\log L - \frac{1}{2} \left(\frac{1}{k} + \frac{1}{m} \right) c_{n} \right) \right]_{+}$$

Extended bi-graded Toda hierarchy (G. Carlet)

$$\epsilon \frac{\partial L}{\partial q_n^i} = [A_{i,n}, L].$$

Conjecture 2: The HQE from Theorem 4 characterize the tau-functions of the Extended bi-graded Toda hierarchy.