Abelian functions as a \mathcal{D}-module

by Atsushi Nakayashiki
Kyushu University
in Methods of Integrable
Systems in Geometry at University of Durham
19th August, 2006

1. Theta function

$\omega_{1}, \omega_{2}, \eta_{1}, \eta_{2} \cdots g \times g$ complex matrices
s.t.

- $\operatorname{det}\left(\omega_{1}\right) \neq 0$,
${ }^{\bullet}{ }^{t} \tau=\tau, \operatorname{Im} \tau>0$, if $\tau=\omega_{1}^{-1} \omega_{2}$,
- $M\left(\begin{array}{cc} & 1 \\ -1 & \end{array}\right){ }^{t} M=-\frac{\pi i}{2}\left(\begin{array}{cc} & 1 \\ -1 & \end{array}\right)$, if $M=\left(\begin{array}{ll}\omega_{1} & \omega_{2} \\ \eta_{1} & \eta_{2}\end{array}\right)$.

Such matrices arise as period matrices of a compact Riemann surfaces of genus g.

Then (F.Klein 1888, Buchstaber-Enolski-Leykin 1997)
$u=\left(u_{1}, \ldots, u_{g}\right), \quad \delta={ }^{t}\left(\delta^{\prime}, \delta^{\prime \prime}\right) \in \mathbb{R}^{2 g}$, $\sigma[\delta](u):$ a holomorphic function on \mathbb{C}^{g},
s.t.

$$
\begin{aligned}
\sigma[\delta]\left(u+\Omega\left(m_{1}, m_{2}\right)\right)= & e^{-\pi i^{t} m_{1} m_{2}+2 \pi i^{t}\left(\delta^{\prime} m_{1}-\delta^{\prime \prime} m_{2}\right)} \\
& \quad \times e^{t E\left(m_{1}, m_{2}\right)\left(u+\frac{1}{2} \Omega\left(m_{1}, m_{2}\right)\right)} \sigma[\delta](u),
\end{aligned}
$$

$\Omega\left(m_{1}, m_{2}\right)=2 \omega_{1} m_{1}+2 \omega_{2} m_{2}$,
$E\left(m_{1}, m_{2}\right)=2 \eta_{1} m_{1}+2 \eta_{2} m_{2}$,
$m_{1}, m_{2} \in \mathbb{Z}^{g}$.

It is known that, for each δ, the function $\sigma[\delta](u)$ exists and is unique up to constant multiples. It is explicitly written using Riemann's theta function $\theta[\delta](z, \tau)$ as

$$
\sigma[\delta](u)=C \exp \left(\frac{1}{2}{ }^{t} u \eta_{1} \omega_{1}^{-1} u\right) \theta[\delta]\left(\left(2 \omega_{1}\right)^{-1} u, \tau\right) .
$$

The matrices ω_{1}, ω_{2} determine an abelian variety

$$
X=\mathbb{C}^{g} / 2 \omega_{1} \mathbb{Z}^{g}+2 \omega_{2} \mathbb{Z}^{g}
$$

Fix a δ and define the theta divisor as the zero set of the sigma function:

$$
\Theta=(\sigma[\delta](u)=0) \subset X
$$

2. Abelian function

The function

$$
\zeta_{i j}(u)=\frac{\partial^{2}}{\partial u_{i} \partial u_{j}} \log \sigma[\delta](u)
$$

satisfies

$$
\zeta_{i j}\left(u+\Omega\left(m_{1}, m_{2}\right)\right)=\zeta_{i j}(u) .
$$

This is an example of an abelian function of order 2 .

Introduce the sapce A as

$$
\begin{aligned}
A= & \{\text { meromorphic functions on } X \text { which are regular } \\
& \text { on } X-\Theta\} \\
= & \cup_{n=0}^{\infty}\left\{\left.f(u)=\frac{F(u)}{\sigma[\delta](u)^{n}} \right\rvert\, f\left(u+\Omega\left(m_{1}, m_{2}\right)\right)=f(u)\right\} \\
= & \cup_{n=0}^{\infty} A(n) .
\end{aligned}
$$

Notice that
$a\left(u+\Omega\left(m_{1}, m_{2}\right)\right)=a(u) \Longrightarrow \frac{\partial a}{\partial u_{i}}\left(u+\Omega\left(m_{1}, m_{2}\right)\right)=\frac{\partial a}{\partial u_{i}}(u)$.
If we set

$$
\mathcal{D}=\mathbb{C}\left[\partial_{u_{1}}, \ldots, \partial_{u_{g}}\right], \quad \partial_{u_{i}}=\frac{\partial}{\partial u_{i}},
$$

then
A becomes a \mathcal{D}-module.
3. Example $-g=1-$

In this case we take $\delta={ }^{t}(1 / 2,1 / 2)$. Then
$\sigma \cdots$ Weierstrass' σ - function

$$
\begin{aligned}
& \wp(u)=-\zeta_{11}(u)=-\frac{\partial^{2}}{\partial u^{2}} \log \sigma(u), \\
& \mathcal{D}=\mathbb{C}\left[\partial_{u}\right], \quad \Theta=\{u=0\} \subset X=\mathbb{C} / 2 \omega_{1} \mathbb{Z}+2 \omega_{2} \mathbb{Z} .
\end{aligned}
$$

and

$$
\begin{aligned}
A(n) & =\mathbb{C} \oplus \mathbb{C} \wp(u) \oplus \mathbb{C} \wp^{\prime}(u) \oplus \cdots \oplus \mathbb{C} \wp^{(n-2)}(u), \\
A & =\mathbb{C} \oplus \mathbb{C} \wp(u) \oplus \mathbb{C} \wp^{\prime}(u) \oplus \cdots, \\
& =\mathcal{D} 1+\mathcal{D} \wp .
\end{aligned}
$$

As a \mathcal{D}-module

- generators $\cdots 1, \wp$
- relations $\cdots \partial_{u}(1)=0$.

This structure can conveniently be described in a \mathcal{D}-free resolution:

$$
0 \longrightarrow \mathcal{D} \longrightarrow \mathcal{D}^{2} \longrightarrow A \longrightarrow 0
$$

Problem Determine

1. generators \longrightarrow cohomologies
2. relations $\longrightarrow \mathrm{a}$ free resolution
3. a linear basis of A.

We study this problem for $g=3$ hyperelliptic Jacobians.

4. $g=3$ hyperelliptic Jacobian

Consider the hyperelliptic curve

$$
C: y^{2}=4 x^{7}+\lambda_{2} x^{6}+\lambda_{4} x^{5}+\cdots+\lambda_{14} .
$$

Take a canonical homology basis $\left\{\alpha_{i}, \beta_{i}\right\}$ and a canonical cohomology basis $\left\{d u_{i}, d v_{j}\right\}$ such that $d u_{i}=x^{3-i} d x / y$ and $d v_{i}$ is a 2 nd kind differential. Define

$$
\omega_{1}=\left(\int_{\alpha_{j}} d u_{i}\right), \quad \omega_{2}=\left(\left(\int_{\beta_{j}} d u_{i}\right), \quad \eta_{1}=\left(\int_{\alpha_{j}} d v_{i}\right), \quad \eta_{2}=\left(\left(\int_{\beta_{j}} d v_{i}\right) .\right.\right.
$$

We specify δ in the definition of σ-function as

$$
\delta=^{t}\left(\delta^{\prime}, \delta^{\prime \prime}\right), \quad \delta^{\prime}={ }^{t}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \quad \delta^{\prime \prime}=^{t}\left(\frac{3}{2}, \frac{2}{2}, \frac{1}{2}\right) .
$$

This δ corresponds to the Riemann constant for the base point ∞ and some choice of canonical homology basis.

Set

$$
\begin{aligned}
& \sigma(u)=\sigma[\delta](u), \\
& u=\left(u_{1}, u_{2}, u_{3}\right)=\left(t_{1}, t_{3}, t_{5}\right), \\
& \wp_{i j}(u)=-\partial_{i} \partial_{j} \log \sigma(u), \quad \partial_{i}=\frac{\partial}{\partial t_{i}} .
\end{aligned}
$$

To study the \mathcal{D}-module structure of A it is important to introduce a filtration on A and to consider the associated graded module. We consider two filtrations on A.

5. Pole filtration

We have already defined an increasing filtration in defining A.

$$
\begin{aligned}
A & =\cup_{n=0}^{\infty} A(n), \\
A(n) & =\{f \in A \mid \text { the order of poles on } \Theta \leq n\},
\end{aligned}
$$

The associated graded space is

$$
\mathrm{gr}^{\text {pol }} A=\oplus_{n} A(n) / A(n-1) .
$$

The relations

$$
\partial_{i} A(n) \subset A(n+1),
$$

imply that

$$
\text { gr }^{\text {pol }} A \text { becomes a } \mathcal{D} \text {-module. }
$$

A minimal set of generators of $\mathrm{gr}^{\mathrm{rol}} A$ is given by a basis of

$$
\frac{\mathrm{gr}^{p o l} A}{\sum_{i=1}^{3} \partial_{i} \mathrm{grr}^{p o l} A} \simeq H^{3}\left(\mathrm{gr}^{p o l} A \otimes \Omega^{\bullet}\right)
$$

Arguments using the grading show that
$\operatorname{dim} H^{3}<\infty \Longrightarrow \mathrm{gr}^{\text {pol }} A$ is finitely generated.
$\Longrightarrow A$ is finitely generated.

6. KP filtration

In general set

$$
\wp_{i_{1} \ldots i_{n}}=-\partial_{i_{1}} \cdots \partial_{i_{n}} \log \sigma(u)
$$

It is known that A is described as

$$
A=\mathbb{C}\left[\wp_{i_{1} \ldots i_{n}} \mid n \geq 2, \quad i_{j} \in\{1,3,5\}\right] .
$$

Define a filtration $\left\{A_{n}\right\}$ by specifying

$$
\wp_{i_{1} \ldots i_{k}} \in A_{n} \quad \text { for any } n \geq i_{1}+\cdots+i_{k}
$$

Then

$$
\begin{aligned}
& A=\cup_{n=0}^{\infty} A_{n} \\
& A_{0}=A_{1}=\mathbb{C} \\
& A_{2}=\mathbb{C}+\mathbb{C} \wp_{11} \\
& A_{3}=\mathbb{C}+\mathbb{C} \wp_{11}+\mathbb{C} \wp_{111} \\
& A_{4}=\mathbb{C}+\mathbb{C} \wp_{11}+\mathbb{C} \wp_{111}+\mathbb{C} \wp_{1111}+\mathbb{C} \wp_{11}^{2}+\mathbb{C} \wp_{13}
\end{aligned}
$$

etc.
The associated graded space is

$$
\operatorname{gr}^{k p} A=\oplus_{n} A_{n} / A_{n-1}
$$

Then

$$
\partial_{i} A_{n} \subset A_{n+i} \Longrightarrow \operatorname{gr}^{k p} A \text { becomes a } \mathcal{D} \text {-module. }
$$

Generators are given by a basis of

$$
\frac{\mathrm{gr}^{k p} A}{\sum_{i=1}^{3} \partial_{i} \mathrm{gr}^{p o l} A} \simeq H^{3}\left(\mathrm{gr}^{k p} A \otimes \Omega^{\bullet}\right) .
$$

Arguments using the grading show that $\operatorname{dim} H^{3}<\infty \Longrightarrow \mathrm{gr}^{k p} A$ is finitely generated. $\Longrightarrow A$ is finitely generated.

7. Algebraic de Rham complex

Set

$$
\Omega^{k}=\sum_{i_{1}<\cdots<i_{k}} \mathbb{C} d t_{i_{1}} \wedge \cdots \wedge d t_{i_{k}} .
$$

The operator

$$
d=\sum_{i=1}^{3} \partial_{i} \otimes d t_{i}: A \otimes \Omega^{k} \longrightarrow A \otimes \Omega^{k+1}
$$

determines a complex, called algebraic de Rham complex,

$$
\left(A \otimes \Omega^{\bullet}, d\right)
$$

algebraic de Rham theorem

$$
H^{i}\left(A \otimes \Omega^{\bullet}\right) \simeq H^{i}(X-\Theta, \mathbb{C})
$$

Similarly the following two complexes are defined.

$$
\left(\mathrm{gr}^{\text {pol }} A \otimes \Omega^{\bullet}, d\right), \quad\left(\mathrm{gr}^{k p} A \otimes \Omega^{\bullet}, d\right) .
$$

The highest cohomology group becomes

$$
H^{3}\left(\mathrm{gr}^{p o l} A \otimes \Omega^{\bullet}\right)=\frac{\left(\mathrm{gr}^{\mathrm{pol}} A\right) d t_{1} \wedge d t_{3} \wedge d t_{5}}{d\left(\sum_{i<j}\left(\mathrm{gr}^{\text {pol }} A\right) d t_{i} \wedge d t_{j}\right)} \simeq \frac{\mathrm{gr}^{\text {pol }} A}{\sum \partial_{i}\left(\mathrm{gr}^{p o l} A\right)}
$$

8. Predictions on Euler characteristic - pole filtration -

In general, for a graded vector space

$$
V=\oplus_{d} V_{d}
$$

define its character by

$$
\operatorname{ch} V=\sum_{d} q^{d} \operatorname{dim} V_{d}
$$

Now
$\operatorname{deg} d t_{i}=-1 \Longrightarrow \operatorname{gr}^{p o l} A \otimes \Omega^{k}$ is graded.

$$
\Longrightarrow \operatorname{ch}\left(\operatorname{gr}^{p o l} A \otimes \Omega^{k}\right) \text { is defined. }
$$

These definitions are straightforwardly generalized for g-dimensional case.

Using the well known formula
$\operatorname{dim} \operatorname{gr}_{n}^{p o l} A=\operatorname{dim} A(n)-\operatorname{dim} A(n-1)= \begin{cases}1 & n=0 \\ 0 & n=1 \\ n^{g}-(n-1)^{g} & n \geq 2\end{cases}$ we get

$$
\begin{aligned}
\operatorname{ch}\left(\operatorname{gr}^{p o l} A\right) & =(1-q)\left(1+\left(q \frac{d}{d q}\right)^{g} \frac{1}{1-q}\right) \\
\operatorname{ch} \Omega^{k} & =\binom{g}{k} q^{-k}
\end{aligned}
$$

The q-Euler characteristic is calculated as

$$
\begin{aligned}
\chi_{q}^{\text {pol }} & :=\sum_{i=0}^{g}(-1)^{i} \operatorname{ch}\left(\mathrm{gr}^{p o l} A \otimes \Omega^{i}\right) \\
& =(-1)^{g} q^{-g}(1-q)^{g+1}\left(1+\left(q \frac{d}{d q}\right)^{g} \frac{1}{1-q}\right) \\
& \xrightarrow{q \rightarrow 1}(-1)^{g} g!.
\end{aligned}
$$

The following is known (can be easily proved).

Proposition

Suppose that Θ is non-singular. Then

$$
\chi(X-\Theta)=(-1)^{g} g!.
$$

This suggests that the pole filtration works well for generic abelian varieties. In fact we can prove the following theorem.

Theorem (Cho-N, '06)

Suppose that Θ is non-singular.
(1) $H^{i}\left(\mathrm{gr}^{p o l} A \otimes \Omega^{\bullet}\right) \simeq H^{i}(X-\Theta)$. In particular it is finite dimensional.
(2) It is possible to construct a \mathcal{D}-free resolution of both gr $^{\text {pol }} A$ and A explicitly.

Notice that

- the theta divisor of 3-dimensional hyperelliptic Jacobian is singular, - $\chi(X-\Theta)=-5 \neq(-1)^{3} 3!=-6$.

9. Predictions on Euler characteristic - KP filtration -

The q-Euler characteristic is already known (Smirnov-N, '01) as

$$
\chi_{q}^{K P}=-q^{-9} \frac{\left[\frac{1}{2}\right]_{q^{2}}[7]_{q^{2}}!}{[3]_{q^{2}}![4]_{q^{2}}!\left[\frac{7}{2}\right]_{q^{2}}},
$$

where

$$
\begin{aligned}
& {[x]_{p}=1-x^{p},} \\
& {[k]_{p}!=[k]_{p}[k-1]_{p} \cdots[1]_{p},}
\end{aligned}
$$

We have

$$
\lim _{q \longrightarrow 1} \chi_{q}^{K P}=-5=\chi(X-\Theta) .
$$

It seems that the KP-filtration works well for our case. In fact we can prove the following.

Proposition
(1) $\operatorname{dim} H^{i}\left(\operatorname{gr}^{k p} A \otimes \Omega^{\bullet}\right)=\operatorname{dim} H^{i}(X-\Theta, \mathbb{C})$

$$
=\binom{6}{i}-\binom{6}{i-2} .
$$

(2) $\operatorname{dim} H^{3}\left(\mathrm{gr}^{p o l} A \otimes \Omega^{\bullet}\right)=\infty$.

This means that gr ${ }^{p o l} A$ is not finitely generated but A is finitely generated.

Set

$$
\left(i_{1}, \ldots, i_{k} ; j_{1}, \ldots, j_{k}\right)=\operatorname{det}\left(\wp_{i_{r} j_{s}}\right) .
$$

Theorem

(1) As a \mathcal{D}-module A is generated by

$$
1, \quad \wp_{i j}, \quad\left(i_{1} i_{2} ; j_{1} j_{2}\right), \quad(123 ; 123) .
$$

(2) We have the explicitly described minimal \mathcal{D}-free resolution of A of the form

$$
0 \longrightarrow \mathcal{D} \otimes W^{1} \longrightarrow \mathcal{D} \otimes W^{2} \longrightarrow \mathcal{D} \otimes W^{3} \longrightarrow 0
$$

Remark The theorem solves the conjecture in [Smirnov-N '01] for $g=3$ case.

10. The singularity of Θ

$$
\begin{aligned}
\Theta & =\{\sigma(u)=0\} \\
\operatorname{Sing} \Theta & =\{(0,0,0)\} .
\end{aligned}
$$

The function σ has the following expansion (H.F.Baker 1898, [BEL] 1999):

$$
\begin{aligned}
& \sigma(u)=\sum a_{\alpha}(\lambda) t^{\alpha}, \quad t^{\alpha}=t_{1}^{\alpha_{1}} t_{3}^{\alpha_{3}} t_{5}^{\alpha_{5}}, \quad a_{\alpha}(\lambda) \in \mathbb{C}\left[\lambda_{2}, \ldots, \lambda_{14}\right] \\
& \left.\sigma(u)\right|_{\lambda_{i} \longrightarrow 0}=s_{(3,2,1)}(t) \quad \ldots \text { Schur function } \\
& = \\
& =t_{5} t_{1}-t_{3}^{2}-\frac{1}{3} t_{3} t_{1}^{3}+\frac{1}{45} t_{1}^{6} \\
& =t_{1}\left(t_{5}-\frac{1}{3} t_{3} t_{1}^{2}+\frac{1}{45} t_{1}^{5}\right)-t_{3}^{2} \\
& \\
& =x y-z^{2} \quad \cdots A_{1} \text { singularity. }
\end{aligned}
$$

Similarly

$$
\sigma(u)=X Y-Z^{2} \quad \operatorname{near}(0,0,0)
$$

$\underline{\text { Example } g=2}$

$$
u=\left(t_{1}, t_{3}\right)
$$

$$
1, \quad \wp_{i j}(u), \quad(13 ; 13)=\left|\begin{array}{ll}
\wp_{11} & \wp_{13} \\
\wp_{13} & \wp_{33}
\end{array}\right|
$$

$$
\sharp=1 \quad+\quad 3 \quad+\quad 1 \quad=5
$$

$\underline{\text { Example } g=3 \text { hyperelliptic } y^{2}=x^{7}+\cdots}$

$$
u=\left(t_{1}, t_{3}, t_{5}\right)
$$

$$
1, \quad \wp_{i j}(u), \quad\left(i_{1} i_{2} ; j_{1} j_{2}\right), \quad(135 ; 135)
$$

$$
\sharp=1+6+6+1=14 .
$$

$\underline{\text { Example } g=3 \text { non-hyperelliptic } y^{3}=x^{4}+\cdots}$

$$
u=\left(t_{1}, t_{2}, t_{5}\right)
$$

1, $\quad \wp_{i j}(u), \quad\left(i_{1} i_{2} ; j_{1} j_{2}\right), \quad(125 ; 125)$

$$
v=\wp_{2222}-6 \wp_{22}^{2}
$$

$$
\sharp=14 \quad+\quad 1 \quad=15
$$

