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1. Theta function

ω1, ω2, η1, η2 · · · g × g complex matrices

s.t.

• det(ω1) �= 0,

• tτ = τ , Im τ > 0, if τ = ω−1
1 ω2,

• M

(
1

−1

)
tM = −πi

2

(
1

−1

)
, if M =

(
ω1 ω2

η1 η2

)
.

Such matrices arise as period matrices of a compact Riemann

surfaces of genus g.

Then (F.Klein 1888, Buchstaber-Enolski-Leykin 1997)

u = (u1, ..., ug), δ = t(δ′, δ′′) ∈ R
2g,

σ[δ](u): a holomorphic function on C
g,

s.t.

σ[δ](u + Ω(m1, m2)) = e−πitm1m2+2πit(δ′m1−δ′′m2)

×e
tE(m1,m2)(u+1

2Ω(m1,m2))σ[δ](u),

Ω(m1,m2) = 2ω1m1 + 2ω2m2,

E(m1,m2) = 2η1m1 + 2η2m2,

m1,m2 ∈ Z
g.
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It is known that, for each δ, the function σ[δ](u) exists and is

unique up to constant multiples. It is explicitly written using

Riemann’s theta function θ[δ](z, τ ) as

σ[δ](u) = C exp(
1

2
tuη1ω

−1
1 u) θ[δ]((2ω1)

−1u, τ ).

The matrices ω1, ω2 determine an abelian variety

X = C
g/2ω1Z

g + 2ω2Z
g

.

Fix a δ and define the theta divisor as the zero set of the

sigma function:

Θ = (σ[δ](u) = 0) ⊂ X

.
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2. Abelian function

The function

ζij(u) =
∂2

∂ui∂uj
log σ[δ](u)

satisfies

ζij(u + Ω(m1, m2)) = ζij(u).

This is an example of an abelian function of order 2.

Introduce the sapce A as

A = {meromorphic functions on X which are regular

on X − Θ}

= ∪∞
n=0

{
f (u) =

F (u)

σ[δ](u)n
| f (u + Ω(m1, m2)) = f (u)

}

= ∪∞
n=0A(n).

Notice that

a(u+Ω(m1, m2)) = a(u) =⇒ ∂a

∂ui
(u+Ω(m1, m2)) =

∂a

∂ui
(u).

If we set

D = C[∂u1, ..., ∂ug], ∂ui
=

∂

∂ui
,

then

A becomes a D-module.
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3. Example− g = 1−
In this case we take δ = t(1/2, 1/2). Then

σ · · · Weierstrass’ σ- function

℘(u) = −ζ11(u) = − ∂2

∂u2 log σ(u),

D = C[∂u], Θ = {u = 0} ⊂ X = C/2ω1Z + 2ω2Z.

and

A(n) = C ⊕ C℘(u) ⊕ C℘′(u) ⊕ · · · ⊕ C℘(n−2)(u),

A = C ⊕ C℘(u) ⊕ C℘′(u) ⊕ · · · ,

= D1 + D℘.

As a D-module

• generators · · · 1, ℘

• relations · · · ∂u(1) = 0.

This structure can conveniently be described in a D-free res-

olution:

0 −→ D −→ D2 −→ A −→ 0.
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Problem Determine

1. generators −→ cohomologies

2. relations −→ a free resolution

3. a linear basis of A.

We study this problem for g = 3 hyperelliptic Jacobians.
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4. g = 3 hyperelliptic Jacobian

Consider the hyperelliptic curve

C : y2 = 4x7 + λ2x
6 + λ4x

5 + · · · + λ14.

Take a canonical homology basis {αi, βi} and a canonical

cohomology basis {dui, dvj} such that dui = x3−idx/y and

dvi is a 2nd kind differential. Define

ω1 =

(∫
αj

dui

)
, ω2 = (

(∫
βj

dui

)
, η1 =

(∫
αj

dvi

)
, η2 = (

(∫
βj

dvi

)
.

We specify δ in the definition of σ-function as

δ = t(δ′, δ′′), δ′ = t(
1

2
,
1

2
,
1

2
), δ′′ = t(

3

2
,
2

2
,
1

2
).

This δ corresponds to the Riemann constant for the base

point ∞ and some choice of canonical homology basis.
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Set

σ(u) = σ[δ](u),

u = (u1, u2, u3) = (t1, t3, t5),

℘ij(u) = −∂i∂j log σ(u), ∂i = ∂
∂ti

.

To study the D-module structure of A it is important to in-

troduce a filtration on A and to consider the associated graded

module. We consider two filtrations on A.
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5. Pole filtration

We have already defined an increasing filtration in defining

A.

A = ∪∞
n=0A(n),

A(n) = {f ∈ A | the order of poles on Θ ≤ n },

The associated graded space is

grpol A = ⊕nA(n)/A(n − 1).

The relations

∂iA(n) ⊂ A(n + 1),

imply that

grpol A becomes a D-module.

A minimal set of generators of grpol A is given by a basis of

grpol A∑3
i=1 ∂i grpol A

� H3(grpol A ⊗ Ω•).

Arguments using the grading show that

dim H3 < ∞ =⇒ grpol A is finitely generated.

=⇒ A is finitely generated.

9



6. KP filtration

In general set

℘i1...in = −∂i1 · · · ∂in log σ(u).

It is known that A is described as

A = C [ ℘i1...in |n ≥ 2, ij ∈ {1, 3, 5} ] .

Define a filtration {An} by specifying

℘i1...ik ∈ An for any n ≥ i1 + · · · + ik.

Then

A = ∪∞
n=0An,

A0 = A1 = C,

A2 = C + C℘11,

A3 = C + C℘11 + C℘111,

A4 = C + C℘11 + C℘111 + C℘1111 + C℘2
11 + C℘13.

etc.

The associated graded space is

grkp A = ⊕n An/An−1.

Then

∂iAn ⊂ An+i =⇒ grkp A becomes a D-module.
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Generators are given by a basis of

grkp A∑3
i=1 ∂i grpol A

� H3(grkp A ⊗ Ω•).

Arguments using the grading show that

dim H3 < ∞ =⇒ grkp A is finitely generated.

=⇒ A is finitely generated.
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7. Algebraic de Rham complex

Set

Ωk =
∑

i1<···<ik

Cdti1 ∧ · · · ∧ dtik.

The operator

d =

3∑
i=1

∂i ⊗ dti : A ⊗ Ωk −→ A ⊗ Ωk+1

determines a complex, called algebraic de Rham complex,

(A ⊗ Ω•, d).

algebraic de Rham theorem

Hi(A ⊗ Ω•) � Hi(X − Θ, C).

Similarly the following two complexes are defined.

(grpol A ⊗ Ω•, d), (grkp A ⊗ Ω•, d).

The highest cohomology group becomes

H3(grpol A⊗Ω•) =
(grpol A)dt1 ∧ dt3 ∧ dt5

d(
∑

i<j(grpol A)dti ∧ dtj)
� grpol A∑

∂i(grpol A)
.
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8. Predictions on Euler characteristic − pole filtration −
In general, for a graded vector space

V = ⊕dVd

define its character by

ch V =
∑

d

qd dim Vd.

Now

deg dti = −1 =⇒ grpol A ⊗ Ωk is graded.

=⇒ ch
(
grpol A ⊗ Ωk

)
is defined.

These definitions are straightforwardly generalized for g-dimensional

case.

Using the well known formula

dim grpoln A = dim A(n)−dim A(n−1) =




1 n = 0

0 n = 1

ng − (n − 1)g n ≥ 2

we get

ch(grpol A) = (1 − q)

(
1 + (q

d

dq
)g

1

1 − q

)
,

chΩk =

(
g

k

)
q−k.
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The q-Euler characteristic is calculated as

χpol
q :=

g∑
i=0

(−1)ich
(
grpol A ⊗ Ωi

)

= (−1)gq−g(1 − q)g+1

(
1 + (q

d

dq
)g

1

1 − q

)
q−→1−→ (−1)g g!.
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The following is known (can be easily proved).

Proposition

Suppose that Θ is non-singular. Then

χ(X − Θ) = (−1)g g!.

This suggests that the pole filtration works well for generic

abelian varieties. In fact we can prove the following theorem.

Theorem (Cho-N, ’06)

Suppose that Θ is non-singular.

(1) Hi(grpol A⊗Ω•) � Hi(X −Θ). In particular it is finite

dimensional.

(2) It is possible to construct a D-free resolution of both

grpolA and A explicitly.
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Notice that

• the theta divisor of 3-dimensional hyperelliptic Jacobian is singular,

• χ(X − Θ) = −5 �= (−1)33! = −6.
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9. Predictions on Euler characteristic − KP filtration −
The q-Euler characteristic is already known (Smirnov-N, ’01)

as

χKP
q = −q−9 [1

2
]q2[7]q2!

[3]q2![4]q2![72 ]q2
,

where

[x]p = 1 − xp,

[k]p! = [k]p[k − 1]p · · · [1]p,

We have

lim
q−→1

χKP
q = −5 = χ(X − Θ).

It seems that the KP-filtration works well for our case. In

fact we can prove the following.

Proposition

(1) dim Hi(grkp A ⊗ Ω•) = dim Hi(X − Θ, C)

=

(
6

i

)
−
(

6

i − 2

)
.

(2) dim H3(grpol A ⊗ Ω•) = ∞.

This means that grpol A is not finitely generated but A is

finitely generated.
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Set

(i1, ..., ik; j1, ..., jk) = det(℘irjs).

Theorem

(1) As a D-module A is generated by

1, ℘ij, (i1i2; j1j2), (123; 123).

(2) We have the explicitly described minimal D-free resolu-

tion of A of the form

0 −→ D ⊗ W 1 −→ D ⊗ W 2 −→ D ⊗ W 3 −→ 0.

Remark The theorem solves the conjecture in [Smirnov-N

’01] for g = 3 case.
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10. The singularity of Θ

Θ = {σ(u) = 0}
SingΘ = {(0, 0, 0)}.

The function σ has the following expansion (H.F.Baker 1898,

[BEL] 1999):

σ(u) =
∑

aα(λ)tα, tα = tα1
1 tα3

3 tα5
5 , aα(λ) ∈ C[λ2, ..., λ14]

σ(u)|λi−→0 = s(3,2,1)(t) · · · Schur function

= t5t1 − t23 − 1
3t3t

3
1 + 1

45t
6
1

= t1(t5 − 1
3
t3t

2
1 + 1

45
t51) − t23

= xy − z2 · · · A1 singularity.

Similarly

σ(u) = XY − Z2 near(0, 0, 0).
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Example g = 2

u = (t1, t3)

1, ℘ij(u), (13; 13) =

∣∣∣∣∣ ℘11 ℘13

℘13 ℘33

∣∣∣∣∣ .

� = 1 + 3 + 1 = 5.
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Example g = 3 hyperelliptic y2 = x7 + · · ·

u = (t1, t3, t5)

1, ℘ij(u), (i1i2; j1j2), (135; 135)

� = 1 + 6 + 6 + 1 = 14.
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Example g = 3 non-hyperelliptic y3 = x4 + · · ·

u = (t1, t2, t5)

1, ℘ij(u), (i1i2; j1j2), (125; 125)

v = ℘2222 − 6℘2
22.

� = 14 + 1 = 15.
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